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ABSTRACT

We present two-dimensional simulations of finite, self-gravitating gaseous sheets. Unlike the case of infinite
sheets, such configurations do not constitute equilibrium states but instead are subject to global collapse unless
countered by pressure forces or rotation. The initial effect of finite geometry is to promote concentrations of
material at the edges of the sheet. If the sheet is not perfectly circular, gravitational focusing results in enhanced
concentrations of mass. In the second-most simple geometry, that of an elliptical outer boundary, the general
result is collapse to a filamentary structure with the densest concentrations of mass at the ends of the filament. We
suggest that these simple calculations have interesting implications for the gravitational evolution of overall
molecular cloud structure, envisioning that such clouds might originate as roughly sheetlike sections of gas
accumulated as a result of large-scale flows in the local interstellar medium. We show some examples of local
clouds with overall filamentary shape and denser concentrations of mass and star clusters near the ends of the
overall extended structure, suggestive of our simple ellipse collapse calculations. We suggest that cluster-forming
gas is often concentrated as a result of gravity acting on irregular boundaries; this mechanism can result in very
rapid infall of gas, which may be of importance to the formation of massive stars. This picture suggests that much
of the supersonic “turbulence” observed in molecular clouds might be gravitationally generated. Our results may
provide impetus for further theoretical explorations of global gravitational effects in molecular clouds and their

implications for generating the substructure needed for fragmentation into stars and clusters.

Subject headings: ISM: clouds — ISM: structure — stars: formation

1. INTRODUCTION

A central issue in star formation is the origin of the small-
scale structure in molecular clouds that leads to the creation of
stars. Many researchers have suggested that this substructure is
due to “turbulence”’; complex, often supersonic, motions lead
to density concentrations, which then collapse to form stars
(e.g., Larson 1992; Elmegreen 1997; Mac Low et al. 1998;
Padoan & Nordlund 1999; Klessen & Burkert 2000, 2001;
Ostriker et al. 1999; Klessen et al. 2000; Bate et al. 2002, 2003;
Gammie et al. 2003; Li et al. 2004; see also the review by
Elmegreen 2002). However, the nature of these supersonic
motions is far from clear, making it difficult to evaluate the role
of turbulent fragmentation in star formation. For example,
small-scale driving of turbulence is employed in many nu-
merical simulations to form stellar mass concentrations, but
this may not be consistent with large-scale structure such as
the extended massive filaments seen in many clouds (e.g.,
Schneider & Elmegreen 1979; Hartmann 2002). Another un-
resolved question is whether the periodic boundary conditions
used in many simulations can really capture the essential
physics of real clouds, in which material can be either accreted
or ejected. More broadly, the recent recognition that molecular
clouds have short lifetimes (Elmegreen 2000; Hartmann et al.
2001, hereafter HBB01) emphasizes the likely role of initial
conditions in establishing the turbulent velocity field, an area
which has not been adequately explored.

A rather different approach to fragmentation was taken by
Larson (1985), who pointed out that infinite self-gravitating
sheets and filaments have a characteristic scale of fastest
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growth, typically a few times the sheet or filament scale height.
In this scenario of gravitational fragmentation, gravity acts on
a smooth distribution of material in a cloud of limited di-
mensionality (sheet or filament geometry) but infinite extent to
produce fragments of finite mass. This model seems to avoid
the need to put smaller (density or velocity) structure in “by
hand.” Hartmann (2002) pointed out that the molecular cloud
cores in Taurus are elongated in the direction of their host
filaments in the sense predicted by gravitational fragmentation.
However, the static initial conditions assumed in the simplified
Larson (1985) discussion are not consistent with observed
supersonic velocity dispersions (e.g., Mizuno et al. 1995). In
addition, as we show below, discarding the assumption of in-
finite sheets or filaments results in crucial modifications to
Larson’s picture; finite sheets behave differently.

In this paper we extend the investigations of Larson (1985)
to consider structure formation in sheets of finite sizes. We
focus on a simplified investigation of initially homogeneous
and isothermal sheets to isolate the essential physics of the
problem without introducing complications due to heating and
cooling processes or turbulent driving. Even within this ex-
tremely limited set of conditions, we show that a rich variety of
fragmenting structures can arise in gravitationally collapsing
finite sheets, including multiple large concentrations that might
lead to the formation of clusters and massive stars, with con-
necting and fragmenting filaments. Our investigations suggest
that gravitationally induced motions may be a significant and
in many cases dominant contributor to supersonic motions in
molecular clouds. We also suggest that boundary effects in
general might play an important role; the assumption of peri-
odic boundary conditions in simulations of cloud evolution
might therefore neglect important aspects. The importance of
boundary effects was first pointed out by Bastien (1983), who
studied the collapse of cylindrical clouds. Finally, we also
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speculate on a possible way of relating turbulent structure and
initial mass functions.

2. MOTIVATION

HBBO1 argued that molecular clouds in the solar neigh-
borhood are mostly formed as a result of large-scale flows,
which pile up atomic gas until sufficient column densities are
accumulated to shield the gas from the interstellar ultraviolet
radiation field and allow molecules to form. The flows are
presumed to be driven by stellar energy input, principally
supernovae. The resulting clouds are then formed as wall
sections of “bubbles” (e.g., Vazquez-Semadeni et al. 1995;
Passot et al. 1995; de Avillez & Mac Low 2001; Wada &
Norman 2001; HBBO1 and references therein).

The simplest abstraction of this picture of cloud formation
(which is also consistent with cloud formation behind a shock
front, such as in a spiral density wave) is a flat uniform sheet
of finite dimensions. While real clouds formed by flows ob-
viously will not be perfectly flat or have uniform surface
densities initially, it seems appropriate to make an initial ex-
ploration to isolate the effects of gravity on sheets with finite
structure. To further simplify the analysis we assume isother-
mality and consider sheets that either are static or have simple,
smooth velocity fields. Even with these restrictive assump-
tions, a wide variety of behavior results, which may have more
general implications.

Before presenting the simulations, it is instructive to start by
considering some analytic results and approximations that il-
lustrate some basic properties. We start with the simple case of
a static, isothermal, infinite, infinitely thin sheet with an ini-
tially constant surface mass density Y. In this case the dis-
persion relation is (Larson 1985)

I'? = 2nGYok — 2k, (1)

where ' is the exponential growth rate. There is a critical
wavenumber,

ke = 27G% /2, (2)

above which no exponential growth is possible; i.e., there is a
minimum wavelength (a Jeans length) for gravitational insta-
bility. Differentiating equation (1) with respect to k, one can
find the wavenumber at which the exponential growth is
fastest,

kp = nG%/c = k./2. (3)

This result suggests that the sheet will break up into fragments
of preferred mass

My ~ 735 = 4ct ) (G*S), (4)

where A, = 27/ky. Similar results hold for a self-gravitating
sheet of finite thickness in hydrostatic equilibrium with the
critical wavenumber reduced by a factor of 2. Fragmentation
of an infinite filament similarly occurs on some small multiple
of the thickness of the configuration (Larson 1985).

As pointed out by Larson (1985), although there is a critical
wavelength for gravitational collapse in a uniform density
medium (the Jeans length), it is difficult to fragment in such a
situation, for instance in a uniform density sphere, because the
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Fic. | —Gravitational acceleration for the uniform sheet (eq. [6]; solid line)
in units of 4G¥ vs. radial distance in units of total sheet radius »/R, along with
the acceleration for the uniform filament (eq. [10]; dotted line) in units of
Gp/5. Various linear terms are indicated by dashed lines (see text).

growth rate increases monotonically with increasing wave-
length (decreasing wavenumber); large-scale collapse tends to
overwhelm fragments (Tohline 1980). In contrast to the uni-
form sphere case, infinite sheet or filament models do exhibit a
characteristic scale of growth. However, these initial equilib-
rium states require an infinite extent of the sheet or filament,
and real clouds cannot be infinite. This leads to some important
changes in the sheet/filament picture of fragmentation.

The gravitational potential at a point » from the center of
an infinitely thin, uniform surface density sheet of radius R
is (Wyse & Mayall 1942)

® = —4GXRE(r/R), (5)

where X is the surface density and E is the second complete
elliptic integral. The gravitational acceleration toward the
center at 7 is

w2 ()R] o

where K is the first complete elliptic integral. The acceleration
goes to infinity at d = R, which would not occur in a sheet
with finite thickness; thus, we restrict use of this equation
to regions considerably more than a sheet thickness from the
edge.

Figure 1 shows the acceleration in units of 4GX as a
function of 7/R. The steep increase of inward acceleration as
r — R implies that the sheet, initially at rest, will immediately
proceed to collapse, with material piling up most rapidly at the
outer edge (limited by gas pressure gradients, which we ignore
here, i.e., we are assuming that the sheet contains many Jeans
masses).

It is useful to estimate the timescale of global collapse for
comparison with numerical results. Using the expansions of



290 BURKERT & HARTMANN

the K and F integrals (Abramowitz & Stegun 1972), equa-
tion (6) can be written as

_la? o 1+§(1)3+£(1>5+
=57 TR IRTS\R) T2 \R

Ignoring pressure support, a collapse timescale 7. can be es-
timated for a subregion of size év lying in the inner region of
the sheet of radius R. Integrating equation (7) using only the
linear term, starting from rest, and assuming that ¥ does not
change significantly within the inner region (see § 3.1), a
typical infall velocity of the subregion is

} (7)

=T @, (8)
and thus
R\ 12
(R o
v TGX

Note that ¢. is independent of the size of the region ér, a result
that is used in § 3.1. While this collapse timescale ignores the
nonlinear acceleration and thus does not describe the pile-up
of material at the edge, we find numerically that 7. is a good
estimate of the time it takes for the edge of the circular sheet
to fall to the center (§ 3.1).

Without rotation or some other motion, the ultimate fate of
this circular sheet is to collapse entirely to the center. The
dashed lines in Figure 1 show linear forms for a,; the middle
dashed line indicates the situation in which an outward ac-
celeration is comparable to the first term in the expansion of
equation (7), which balances the inward gravitational acceler-
ation of the inner region. Solid-body rotation, with centripetal
acceleration a(c), = —O%r  r, where Q is a constant, could in
principle be such an example, preventing collapse in the inner
sheet regions. However, the nonlinear acceleration as » — R
shows that such rotation cannot stop the edge from collapsing
to a ring whose dimensions are set by angular momentum.
Moreover, the uniformly rotating sheet, whether in the non-
equilibrium case of constant surface density or in the equilib-
rium case of ¥ o [1 — (r/R)z]l/2 (Mestel 1963), is unstable to
large-scale perturbations (Hunter 1963) and generally results
in large-scale redistribution of material with a concentration
of mass to the center (see, e.g., Binney & Tremaine 1987,
pp. 374-375). Conversely, large rotation (such as indicated by
the upper dashed curve) could prevent the inner region from
collapsing but only at the expense of having the interior expand
and the edge collapse to an outer ring.

The finite filament exhibits similar behavior. For a uniform
cylindrical filament of radius /# and length 2/, the acceleration
toward the center at a point on the axis lying a distance z from
the center is

a. = ~2mGp{2z — [I* + U+ 27) P4 [ + (1~ 7] ),

(10)

where p is the density of the filament. When / > & and when
considering points away from the exact end of the filament,
l—z>h,

a. ~ —mGph*[(1+2) ' +( —2)7"]. (11)
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However, mph?> = m, the mass per unit length of the filament.
Using this relation and expanding the quantity in brackets, we
have

2z

Figure 1 also shows the acceleration of a thin filament in units
of Gp. Note that the acceleration of an infinitely thin filament
goes to infinity at its edge (eq. [11]), just as in the case of the
infinitely thin sheet, but this singularity disappears for finite
h (eq. [10]).

As in the case of the sheet, solid-body rotation of the fila-
ment (lower dashed curve) can help stabilize the collapse of
the inner regions but cannot prevent the ends of the filament
from collapsing initially. Alternatively, if one wants to prevent
the filament ends from collapsing, the solid-body rotation
would force the inner regions to expand away toward the ends
of the filament, resulting in concentrations at the endpoints.

These simple considerations illustrate the universal ten-
dency for material to pile up and concentrate at edges of finite
structures because of gravity. Whether the local sheet frag-
mentation can take place as envisaged by Larson (1985) de-
pends upon whether the global collapse overtakes or prevents
local collapse. This is investigated numerically in § 3.

3. NUMERICAL SIMULATIONS

The numerical calculations are performed on a two-dimensional
Eulerian, Cartesian grid. The full computational region with
dimension 2x L is represented by a grid composed of Nx N
grid cells equally spaced in both directions. Under the assump-
tion of isothermality, the relevant differential equations to be
integrated are the hydrodynamic continuity and momentum
equations:

ox

Ov VP
L VY =—— _V
8t+(v )v > D,

where X(x), P(x), and v(x) are the gas surface density, pres-
sure, and two-dimensional velocity vector at position x, re-
spectively. The gravitational potential ® is determined by
solving Poisson’s equation in the equatorial plane (Binney &
Tremaine 1987),

V20 = 471Gy, (14)

where G is the gravitational constant. The isothermal equa-
tion of state

P=cy (15)

determines the pressure for a given surface density > and
sound speed c;.

This set of equations is integrated numerically by means of
an explicit finite second-order van Leer difference scheme
including operator splitting and monotonic transport as tested
and described in detail in Burkert & Bodenheimer (1993,
1996). In order to suppress numerical instabilities, an artificial
viscosity of the type described by Colella & Woodward (1984)
is added (Burkert et al. 1997).
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Fig. 2.—Numerical simulation of the collapse of the finite two-dimensional sheet. In this calculation the initial sheet surface density is set to unity, G = 1, and the
sound speed is 0.1 in appropriate units (see text). In code units, the time at which the snapshot is taken in the left panel is 0.285; for the right panel # = 0.429. The
gaps in the outer ring on the x-axis and y-axis in the left panel are purely numerical and caused by the representation of the circular sheet by a Cartesian grid.

The Poisson equation is integrated on the grid under the
assumption that there is no matter outside of the computational
region. As we are focusing here on the gravitationally unstable
sheets that collapse toward the center of the region, outflow of
gas beyond the outer boundaries can be neglected. Therefore,
the outflow velocities at the outer boundary are set to zero and
a negligible pressure gradient is assumed. Most calculations
were typically performed with 1002 grid cells of size A =
2L/N and height A, where 2L is the largest dimension of the
rectangular computational region. Test calculations with N =
200 and 500 did not result in significant differences. In these
calculations the code units were set such that G = 1.

3.1. Static Circular Sheet

Figure 2 shows the evolution of a static sheet with initially
uniform surface density (in code units, > = 1), of circular
shape, R = 1, and with sound speed ¢, = 0.1 (inside a com-
putational region of L = 1.1). The mass of this sheet is thus
7XR? = 7 in code units. Larson (1985) notes that the Jeans
mass for circular modes in an infinite thin static sheet is

M, = 1.17¢4 /(G*2); (16)

thus, this sheet initially contains ~10* Jeans masses. As ex-
pected, material initially piles up at the edge (/eff). Note that
even at an early stage, collapse in the inner regions is no-
ticeable. The evolution of the sheet is simple; the edge grows
as it falls in, and the entire structure collapses (right).

We never found any evidence for gravitational growth of
fragments in the inner region, even for ¢; = 0. Some frag-
mentation is seen in the piled-up ring material, which is due to
the growth of initial numerical noise, especially on the x- and
y-axes, much of which is generated by the initial structure of
a circular edge approximated in a rectangular grid. More and
earlier fragmentation in the ring occurs as the sound speed is
decreased. The details of fragmentation in this and the further
simulations to be discussed should not be believed, as reso-
lution quickly becomes an issue; here we are concentrating on
global structure.

We ran a number of simulations for differing values of the
sound speed; as long as the initial sheet contained many Jeans
masses, i.e., the sheet was sufficiently cold, the results were
similar. For warm sheets of a few Jeans masses, fragmentation
due to numerical fluctuations in the edge ring was suppressed.
Finally, if the mass of the sheet was small, the sheet “bounced”
and then eventually adjusted to a static equilibrium.

Figure 3 shows the density and velocity structure of the
simulation shown in Figure 2. Note the pile-up of material and
also that infall develops rapidly in the inner regions as well,
as expected from the analytic results of § 2. The collapse time-
scale in the linear (inner sheet) regime, equation (9), is 7~'/? =
0.564 in code units. For the particular case described above,
the time taken for the edge to reach the center is approximately
ty~0.51, i.e., slightly shorter than the linear timescale.

The above result for the timescale of global versus local
collapse helps to explain why we never found any indication
of small-scale, linear perturbations becoming large before the
entire sheet collapsed. The infall, which develops rapidly in all
sheet regions, apparently invalidates the linear analysis of the
infinite, static sheet. Consider the following argument: The
most favorable location for a finite perturbation (larger than a
Jeans length) to grow before being overtaken by the general
collapse is at the center of the sheet, where the edge material
takes the longest time to arrive. We may use the result of equa-
tion (9) to evaluate the timescale of local collapse in the limit
of zero sound speed (negligible gas pressure), because this
term simply represents gravitational acceleration. Moreover, as
shown in Figure 3, even during the collapse the surface density
tends to remain uniform and the velocity gradient similar until
the infalling “edge” material overtakes it. Now, equation (9)
indicates that the timescale for collapse is independent of the
radius of the perturbed region; moreover, we find numerically
that the time for the edge material to reach the origin is slightly
less than this value. Thus, small perturbations cannot amplify
before being swept up by the overall collapse. Because the
collapse time in equation (9) is proportional to ©~'/2, only very
nonlinear perturbations have a chance to grow before being swal-
lowed up by the global collapse. The situation is analogous
to the collapse of a uniform sphere, for which all radii reach the
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Fic. 3.—Evolution of the density and velocity of the circular sheet collapse of Fig. 2. The snapshots are taken at times # = 0.09, 0.25, 0.41, and 0.49 (outer solid,
dashed, dotted, and inner solid curves, respectively). Note the flat density distribution and the linear velocity gradient in the inner regions, as expected from the
result in eq. (8), until late in the evolution, when inner material begins to fall outward because of the gravity of the infalling edge.

center at the same time, preventing effective fragmentation
from small perturbations (Larson 1985).

Even fairly large perturbations have difficulty growing be-
fore overall collapse of the edge wins. This is shown in Figure 4,
in which we show the evolution of an initial 10% ringlike per-
turbation as a function of time. The surface density of the per-
turbation grows linearly with time but never outruns the edge,
the latter eventually overtaking it.

3.2. Static Ellipse

Figure 5 shows the evolution of an elliptical sheet with an
initial ellipticity of e = 0.6. Again we assume ¢; = 0.1. As in
the case of the circular sheet, material piles up at the edge as the
entire configuration collapses. However, a new feature arises:
specifically, “focal points” appear where gravity acts on the

].5III|III
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curvature of the sheet edge to produce large, dense mass con-
centrations close to or outside of the foci of the initial elliptical
structure (fop right). These mass concentrations grow with re-
spect to the rest of the edge material by gravitationally attract-
ing neighboring material to fall into them (bottom left). Finally,
the sheet collapses into a filamentary structure with large mass
concentrations at both ends.

The geometry leading to focal points is indicated schemat-
ically in Figure 6. Any sheet edge that locally has a smaller
radius of curvature than the larger-scale sheet geometry will
yield a local focus for gravitationally collapsing material.

As before, our limited resolution prohibits any quantitative
analysis of the number, masses, and sizes of fragments that
eventually condense along the filament. The inhomogeneities
present along the filament are the result of numerical noise and
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X

Fic. 4—Evolution of the uniform circular sheet with a ringlike perturbation of excess surface density at times # = 0.15, 0.21, and 0.26 (outer solid, dashed, and
inner solid curves, respectively). The perturbation grows as the sheet collapses, but not nonlinearly, and is eventually overtaken by the collapse of the edge (see text).
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Fic. 5.—Collapse of a static elliptical sheet. Top left: At t = 0.23. Material piles up at the edge as the sheet collapses. Top right: At t = 0.33. Material accumulates
particularly at focal points at the ends of the ellipse. Bottom lefi: Att = 0.39. Focal points become more prominent. Bottom right: At t = 0.44. Collapse to a filament

has occurred, with major concentrations at the ends.

limited resolution (e.g., Truelove et al. 1997), which get am-
plified during collapse. Our main points are simply that the
elongated sheet tends to collapse to a filament and that focal
points develop, which results in larger concentrations of mass
at the filament ends, a result seen, for example, in simulations
of the collapse of elongated gas clouds (Bastien 1983; Bonnell
et al. 1991; Burkert & Bodenheimer 1993).

3.3. Sheets without Sharp Edges

The previous calculations assumed a sharp outer edge,
where the surface density decreases by 2 orders of magnitude.

Fic. 6.—Schematic geometry leading to mass concentration at a “focal
point” (see text).

It seems implausible that real sheetlike clouds should have
such sharp edges, so we investigate a case in which the tran-
sition at the cloud boundary is more gradual. Figure 7 shows
what happens when the density distribution of the elliptical
sheet falls off toward the edge. In this particular case the den-
sity is made to fall off smoothly to zero starting at 80% of the
distance to the elliptical boundary. As shown in Figure 7 (lef?),
an edge concentration still develops but in a smaller structure;
there is a modest amount of material outside this edge. Focal
points develop as before. Finally, as shown in Figure 7 (right),
collapse to a filament once again occurs, with mass concen-
trations near the end, but now lower density material extends
outside of the focal point concentrations. Note that Nelson &
Papaloizou (1993) found that spheroids did not necessarily
form concentrations at each end if the density distribution ta-
pered off sufficiently. Uniform-density spheroids tend to have
larger masses per unit lengths at their centers than the corre-
sponding uniform sheets, suggesting that the difference be-
tween two and three dimensions can be important.

3.4. Expanding Sheets

If sheets are made as parts of the walls of “bubbles” driven
by supernova explosions or stellar winds, they will generally
exhibit some expansion in the direction perpendicular to the
main flow. In our two-dimensional approximation, ignoring the
bubble wall curvature, we can introduce a similar effect by
putting in a linear expansion term. Figure 8 shows an expand-
ing case, which was designed such that gravity was not strong
enough to reverse the expansion in the inner region but was
still large enough to play a role at the outer edge. The initial
radial velocity was assumed to increase linearly with distance
from the center, and the surface density was constant. Note that
the entire region expands, but there is still a pile-up of material
at the edge and the formation of focal points. Thus, expansion
does not qualitatively change the mass concentration, although
it prevents the overall collapse of the sheet.
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Fic. 7.—Evolution of the static elliptical sheet with density decreasing to the edge. The main features of the uniform ellipse are retained: a pile-up of material still
occurs (although on a smaller scale), more material lags outside the edge (/eff), and the final filament formed shows mass concentrations somewhat interior to the

ends of the filamentary gas (right) (see text).

3.5. Rotating Sheets

In general, there can be some angular momentum present in
the plane of the sheet. Figure 9 shows the case of a uniformly
rotating elliptical sheet. Again, focal points form and collapse
to a filament, with larger mass concentrations at the ends
of the filament (see also earlier work by Bonnell et al. 1991;
Nelson & Papaloizou 1993; Monaghan 1994). The rotation
of the resulting filament (Fig. 10, /eff) is sufficient to slow
the overall collapse. Material along the filament starts to be
pulled in by the focal-point concentrations near the ends of the
filament.

We again emphasize that the number and properties of frag-
ments in the filament are not quantitatively reliable. (Note that
fragmentation of rotating filaments has also been found, e.g., by
Monaghan 1994.) Nevertheless, as a qualitative result it is in-
teresting to inquire what velocity structure would be seen by an
observer in the plane of the sheet (now the plane of the fila-
ment). Figure 10 (righf) shows a contour plot of surface density
integrated along the y-direction as a function of the velocity in
the x-direction, when the two edges have merged into the con-
necting filament. In addition to the evident overall rotation,
there are local velocity perturbations due to the gravitational
accelerations of the various mass concentrations (an effect ear-
lier seen in the simulations of fragmenting cylindrical clouds by
Bonnell & Bastien 1993; e.g., their Figs. 3-5). The original
total mass of the ellipse was 1.26 in code units, and the initial
major axis was unity, so one would expect gravitationally in-
duced velocities to be of order vgy, ~ (GM /R)l/ 2 & unity; the
overall velocity gradient in the line of sight is in agreement with
this estimate. The “turbulence” in the line of sight, i.e., local
fluctuations due to gravitational perturbations by local concen-
trations, is also of this order. The qualitative idea that differing
mass concentrations along a filament can (and must) induce
smaller scale velocity structure (“‘turbulence’) is worth noting.
Our results bear an interesting qualitative resemblance to the
velocity gradients seen in the 1*CO emission of the Orion A
cloud (Bally et al. 1987; see § 4.2).
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3.6. Ellipse with Surface Density Gradient

It would be surprising if sheetlike clouds in the interstellar
medium were uniform in surface density. We consider the next
most complicated case, that of a uniform linear surface density
gradient along the major axis of the elliptical sheet. Figure 11
shows what happens in the case in which the surface density
varies by a factor of 4 from one end of the ellipse to the other,
with 3 = 2 atthe right end and 3 = 0.5 at the left. The evolution
is basically the same as that of the uniform ellipse, except that the
dense edge and focal point develop only at the dense end.

3.7. “Ghosts”

It would be surprising if real clouds had perfectly smooth
boundaries of either circular or elliptical shape. As indicated
schematically in Figure 6, any irregularity with a small radius of
curvature will tend to produce a concentration. To explore the
qualitative nature of a complex boundary, in Figure 12 we show
the results of the collapse of a sheet with uniform initial surface
density but an arbitrary irregular boundary (the “ghost”). As
shown in the sequence offigures, pile-up of material occurs first
along the edge, as before; focal points develop soon after. As
collapse proceeds, more material is pulled into the focal con-
centrations, which fall in toward the origin. Near the end of the
calculation, most of the mass lies in concentrations, in numbers
initially reflecting the number of initial “nodes” in the original
boundary; merging and subsequent evolution probably occurs,
but we cannot follow it in detail with our resolution.

4. DISCUSSION
4.1. Initial Conditions

Our results show the powerful tendency of finite self-
gravitating sheets to develop structure as a result of gravita-
tional focusing. This immediately raises the question: how
relevant are these highly simplified calculations? Real clouds
are likely to have much more initial structure than what we
have imposed in our simulations; however, this should simply
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Fic. 8.—Results for an expanding elliptical sheet. Material moves outward from the origin to add to the edge, which still forms a concentration (/eft). Ultimately,
most of the mass ends up in the expanding edge, with fragments determined by numerical noise and resolution (right) (see text).
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rotational support against gravity (see text).

18.0

14.4

10.8

7.2

3.6

0.0

1.0

-1.0

50.0

33.3

25.0

16.7

8.3

0.0
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Fic. 10.—Left: Formation of a filament from the rotating ellipse simulation (Fig. 9). The size and number of subfragments are not quantitatively reliable. Right:
Contours of constant surface density integrated in the y-direction as a function of velocity in the x-direction (see text).
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Fic. 11.—Evolution of the static elliptical sheet with a linear surface density gradient along the major axis. The resulting evolution is similar to the uniform
ellipse, except that the dense edge and focal point concentration develop only at one end (see text).
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Fic. 12.—Collapse of the “ghost,” a sheet with a highly irregular boundary (see text).

generate more substructure due to local focusing effects. Simi-
larly, the overall tendency for a noncircular sheet to collapse to
a filament should also be robust; more initial substructure will
not stop the global collapse to a filament, although the detailed
structure could be much more complex.

Because a finite self-gravitating sheet will immediately start
to collapse at its edges, our assumption of static initial edge
structure is probably not very realistic. However, we think that
this complication does not matter very much. As real molecular
clouds are accumulated out of material in the diffuse interstel-
lar medium, collapse will start, leading to concentrations at
edges some time before the final cloud mass has been accreted;
but because this process is so rapid, it is not important whether
or not this is regarded as an initial condition or as an early
development. Perhaps our results for the sheet with a decline in
density near the outer edge (Fig. 11) can be thought of as indi-
cating the evolution in a case in which material is still being
accumulated in outer regions as the interior collapses. As dis-
cussed in the previous sections, such edge effects can only be
avoided by using substantial differential rotation or internal
pressure gradients in ways that are not clearly relevant to most
molecular clouds.

Of course, the formation of real clouds by flows will intro-
duce some density inhomogeneities and velocity perturbations.
Thus, one can expect the structure of real clouds to develop in a
much more complex way than considered here. But we sug-
gest, as demonstrated in § 4.2, that our results may be rele-
vant to the large-scale or overall morphology of at least some
molecular clouds, with significant substructure superimposed
by velocity and density perturbations.

Broadly speaking, our results are a simple case of the more
general proposition of Ballesteros-Paredes et al. (1999) that
molecular clouds cannot be in virial equilibrium. As a technical
matter, our calculations also suggest that the occasional prac-
tice in numerical simulations of “turning on” gravity after some
evolution is not appropriate; gravity has long-range effects that
must be considered. In addition, it seems clear that computa-
tional boxes with periodic boundary conditions will not cap-
ture potentially important evolution.

4.2. Cloud Morphologies

It is obvious that a huge variety of shapes and fragments can
result from sufficiently complicated initial conditions at sheet
edges or from a spectrum of density fluctuations within sheets.
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Fi. 13.—Large-scale distribution of integrated '>*CO emission in the region
of Orion shown as a function of Galactic longitude and latitude (from Wilson
2001). Positions of the Orion Nebula cluster and the young NGC 2024, 2068,
and 2071 clusters are marked by superposed circles (see text).

Taking the larger view, it is interesting to note that already the
second-simplest figure, an elliptical sheet, produces filaments
with larger mass concentrations at each end. This result sug-
gests that clouds initially are likely to be noncircular even if
sheetlike configurations of this type might be fairly common.
Here we briefly consider the morphology of some well-known
local star-forming regions in light of our simplified collapse
calculations.

Figure 13 shows the large-scale distribution of '>CO emis-
sion in the Orion A and B clouds (Wilson 2001). The overall
morphology of the clouds suggests part of an arc, such as might
be produced by an expanding, flow-driven bubble that accu-
mulates material far out of the Galactic plane (HBBO1). The
overall structure is highly filamentary, especially in the A cloud.
Strikingly, the massive Orion Nebula cluster (Hillenbrand 1997
and references therein) and the young, dense embedded clusters
NGC 2024, 2068, and 2071 (Lada 1992) lie preferentially at the
ends of the molecular gas distribution, just as would be pre-
dicted by the simplest version of sheet collapse in a noncircular
sheet. There are multiple condensations of molecular gas and
young stars in these clouds, not just one major cluster at each
end of each cloud, but such independent condensations would
occur as long as the initial cloud was not a perfectly smooth
ellipse.

Dense clusters and dense filamentary gas lie only at one end
of the Orion A cloud (e.g., Ali & Depoy 1995; Goldsmith
et al. 1997). The other (southern, higher Galactic longitude /)
end of the cloud appears to be much more diffuse and contains
only small groups of stars (e.g., Strom et al. 1989, 1993). We
speculate that this difference is due to initial conditions; the
cloud prior to collapse was initially much more diffuse at one
end than the other. The overall structure of the A cloud sug-
gests a V shape, with the dense, narrowest region at the north-
ern end (the region of the so-called integral-shaped filament;
see Bally et al. 1987). Now, prior to overall collapse to a fila-
ment, our calculations for initially elliptical sheets show sim-
ilar structure at each end; denser concentrations are formed at
the “tip” of the ellipse, with two filaments streaming out on
either side. We speculate that we are seeing a similar effect in
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Fic. 14.—Extinction map of the Ophiuchus region made by the COM-
PLETE project using 2MASS data (Goodman 2004). The major filamentary
structures of the cloud and the main concentration of dust (and gas) are evi-
dent (see text).

the A cloud; the southernmost parts have not collapsed as far as
the northern (lower /) region.

Figure 14® shows an extinction map of the Ophiuchus region,
which more or less indicates the large-scale morphology of the
molecular gas. The well-known filamentary structure extending
outward from the main concentration of gas and dust is evident.
Again, we speculate that the overall structure of this region
is due to a collapse similar to that shown at either end of our
elliptical sheet calculations, with a ““‘V”” of filaments extending
out from the main, dense collapse region. The structure is more
complex than that of our elliptical sheet simulations, but then
the initial conditions are unlikely to be as smooth and simple for
real clouds.

Figure 15 shows the distribution of young stars and ex-
tinction (which again traces the molecular gas fairly well) in
the Cha I cloud. Note how the cloud is filamentary and that
once again there are two clear concentrations of stars nearer to
the ends of the cloud.

Not all molecular clouds exhibit a simple global filament
structure with clusters at the ends. Figure 16 shows the posi-
tions of the young stars in the Taurus molecular cloud super-
posed on the '3CO integrated emission (Mizuno et al. 1995).
As noted before (e.g., Hartmann 2002 and references therein),
Taurus is composed of extended, roughly parallel bands or fil-
aments of both gas and stars; gravitational fragmentation into
several filaments may have occurred (Miyama et al. 1987a,
1987b; Nakajima & Hanawa 1996). There are no major clusters
of stars in Taurus (although there is a small double group of
stars in L1495; see Fig. 16). Taurus is one of the most dis-
persed, extended, and low-density clouds, much more ex-
tended than regions comparable in mass, such as Ophiuchus.
We suggest that the small-scale density and velocity fluctua-
tions inevitably present in any realistic scenario of cloud for-
mation play a much larger role in Taurus than in other regions;
the low surface density suggests that global gravitational col-
lapse may not dominate the structure imposed by initial in-
homogeneities, in contrast to higher surface density regions.

3 See http://cfa-www.harvard.edu/COMPLETE.
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FiG. 15.—Positions of young stellar members (/eff) and extinction contours
(right) for the Cha I star-forming region, modified from Carpenter et al. (2002)
(see text).

However, even in this case of Taurus there is some sug-
gestive substructure. For instance, the double group of L1495
seems to lie at the end of a filament and V-shaped structure
running from / ~166° to ~169°; this gas structure seems dis-
tinct from other regions, especially as the radial velocities of
the gas increase (to positive values) with increasing /, whereas
the overall trend in Taurus is increasing radial velocities with
decreasing / (e.g., Mizuno et al. 1995). Similarly, there is struc-
ture near [ ~174°, b ~ —13%5 (Heiles Cloud 2) that exhibits a
curious oval shape with an interior hole as seen in integrated
intensity; the young stars also lie along the edge of the oval,
suggesting fragmentation in a collapsing cloud edge.

It is worth noting that a number of molecular clouds show
a rotation or shear in the line of sight that is comparable to the
gravitational acceleration, such as the Orion complex (Bally
et al. 1987) and Taurus (e.g., Mizuno et al. 1995). As shown

—16 | * * 4
a 16 ) e * L * ﬁ
* § v
* *
*
_18 - -
%
—20 L 1 1 1 1 1
176 174 172 170 168 166

1

Fic. 16.—Positions of young stars and protostars superposed upon the
13CO integrated emission in Taurus, the latter taken from Mizuno et al. (1995)
(see text).

in the simulation of Figure 9, such rotation can slow or prevent
the overall collapse of the filament before fragmenting and pre-
sumably forming stars. A plausible scenario would be to assume
sheets with some angular momentum, insufficient to prevent
collapse to a filament but large enough that the resulting fila-
ment does not collapse completely. In this kind of picture, there
would be a tendency to form filaments with significant rota-
tional support; they would tend to shrink down until arriving at
the angular momentum “barrier.”

In summary, we find that several local cloud complexes have
morphologies suggestive of the simplest versions of global col-
lapse from a sheetlike configuration; i.e., roughly filamentary
cloud structure with concentrations of mass at the end(s) of the
clouds.

4.3. Cluster Formation

The simple simulations discussed here may also have par-
ticularly important implications for the formation and evolution
of star clusters. Many treatments of young clusters assume some-
thing like an initial equilibrium configuration and follow the
subsequent evolution. However, the simulations presented here
suggest that the accumulation of protocluster gas is often a
result of gravitational focusing; in other words, that the gas
forming the stars is initially collapsing. Formation in collapsing
media might result in violent relaxation determining the cluster
structure rather than two-body interactions, a result suggested
for the very young Orion Nebula cluster by Hillenbrand &
Hartmann (1998). Violent relaxation is not restricted to initially
highly gravitationally unstable conditions such as a collapsing
sheet. In the absence of periodic boundary conditions, initially
stabilized but efficiently dissipating turbulent clouds will evolve
into global gravitational collapse while fragmenting, with vio-
lent relaxation also playing some role in the late phases of
evolution (Bate et al. 2003; Bonnell et al. 2003).

In addition, the picture presented here of cluster formation
is consistent with the ideas of competitive accretion forming
massive stars at the bottoms of cluster gravitational potential
wells (Zinnecker 1982; Bonnell et al. 2001a, 2001b). It is worth
noting that global infall into focal points can result in the very
high local mass infall rates needed to form very massive stars in
short times. Alternative pictures in which high infall rates are
achieved in static clouds of order one Jeans mass by invoking a
high turbulent velocity to support the required high densities
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seem implausible. In our picture, global collapse could con-
stitute a substantial fraction of the observed ““turbulence” in
dense cores, with perhaps smaller scale structure generated by
attraction to local mass concentrations.

4.4. Kinematics

A further implication of the simulations is that the
“turbulent” motions of many star-forming structures are not
necessarily those of a Kolmogorov spectrum but those of grav-
itationally induced flows with substantially more power on
large scales. Another way of saying this is that a substantial
component of the observed supersonic line widths in star-
forming regions could be the result of collapse rather than
small-scale, random turbulent motions. Our simulations are not
ideal for exploring this possibility; by restricting the motion
to two dimensions and limiting the spatial resolution, we are
unable to follow details of the motion. Nevertheless, the idea of
global collapse as an important generator of supersonic “‘tur-
bulence” is very attractive in that some mechanism must be
invoked to make gas concentrations in the first place, and star
formation must involve gravitationally bound entities.

It is worth noting that, while our nonrotating and non-
expanding simulations result ultimately in collapse of all the
material to the origin, many real clouds exhibit large-scale
velocity gradients along their lengths (e.g., Bally et al. 1987) of
a magnitude comparable to that required to prevent total col-
lapse. Such velocity gradients must be the result of initial
conditions that generally provide molecular clouds with sig-
nificant angular momenta.

4.5. Implications for the Initial Mass Function

Our results suggest that there might be some relation be-
tween the boundary structure of molecular clouds and the mass
distributions of gravitationally focused concentrations, i.e.,
between cloud edges and stellar/cluster mass functions. Larson
(1992) suggested that fractal structure in clouds might be re-
lated to the stellar initial mass function; he speculated that the
observational indication of fractal projected cloud boundaries
(e.g., Falgarone et al. 1991) with fractal dimension D ~1.35
could be translated into a mass function dN/dlog M «x M,
with x ~2.35, consistent with the upper end of the stellar mass
function (see also Elmegreen 1997). Our simulations suggest
a physical mechanism, gravitational focusing, that can act di-
rectly on cloud boundaries to form mass concentrations with a
distribution that reflects the size distribution of irregularities at
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the cloud boundaries. This idea needs further exploration, as
subsequent fragmentation and/or competitive accretion could
easily modify the mass function resulting simply from edge
collapse.

5. CONCLUSIONS

Using numerical simulations of simple, isothermal, finite
sheets, we have shown that gravity acting on sheet edges can
produce a wide variety of structures that are likely to have
some relevance to observed star-forming structures in molec-
ular clouds. In particular, we have shown that a likely general
result of the collapse of a sheet formed by flows in the inter-
stellar medium is a filament with higher mass concentrations at
the ends of the filament. Any departure from circular symmetry
at the edge of gravitationally bound clouds will tend to produce
denser concentrations that may be the origin of star clusters.
Bastien (1983) found that elongated cylindrical clouds frag-
mented into two condensations, which he identified as an “end
effect” that results from a physical behavior similar to that of
collapsing finite sheets. We have shown that several nearby
clouds exhibit morphologies that are broadly consistent with
the simulations.

We have addressed the problem of finite self-gravitating
sheets in as simple a form as possible, limiting the motion to
two dimensions. Even with these restrictions, our results em-
phasize the long-range effects of gravity and the importance of
cloud boundaries in generating structure and turbulence. It is
likely that clouds are formed with much more structure than
assumed here; further steps needed include simulating the for-
mation of molecular clouds from the diffuse interstellar me-
dium to explore what initial density and velocity fluctuations
are present. The dynamic nature of even the simple simulations
presented here makes it likely that quasi-equilibrium treatments
of molecular cloud structure and star formation are unlikely to
be realistic. Our initial explorations emphasize the importance
of gravitational focusing in creating structure and turbulence
in (finite) molecular clouds, a viewpoint that may lead to new
observational and theoretical approaches to understanding star
formation.

Thanks to John Carpenter for providing a modified version
of the Cha I cloud results and to Alyssa Goodman for the
extinction map of Ophiuchus. This work was supported in part
by NASA grants NAG5-9670 and NAGS5-13210.
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