Brought to you by:

Widespread 54Cr Heterogeneity in the Inner Solar System

, , and

© 2007. The American Astronomical Society. All rights reserved. Printed in U.S.A.
, , Citation Anne Trinquier et al 2007 ApJ 655 1179 DOI 10.1086/510360

0004-637X/655/2/1179

Abstract

Short-lived radionuclides can be used as high-resolution chronometers for establishing timescales of planetary formation provided that they were homogeneously distributed in the accretion disk. However, isotopic anomalies observed in meteorites bear evidence of incomplete mixing in the early solar system. High-precision thermal ionization mass spectrometry (TIMS) now enables the determination of isotopic anomalies as small as 12 parts per million in the neutron-rich isotope 54Cr. Here, we report systematic deficits in 54Cr relative to Earth in differentiated molten planetesimals (the parent bodies of eucrites, diogenites, mesosiderites, pallasites, angrites, and Mars) and even in some chondritic material (ordinary chondrites). In combination with variable 54Cr excesses in the carbonaceous chondrites, this implies that at least two nebular reservoirs coexisted for differentiated and chondritic bodies. Preservation of the 54Cr heterogeneity in space and time (several million years) motivates us to speculate that late stellar input(s) could have been significant contributions to inner nebula Cr reservoirs or that the 54Cr cosmic memory was well preserved by the mineralogy of the carriers. The consequent spatial, dynamical, and temporal implications regarding solar system formation and dating models are explored further.

Export citation and abstract BibTeX RIS

Please wait… references are loading.
10.1086/510360