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ABSTRACT

The magnetorotational instability (MRI) is considered a key process for driving efficient angular momentum
transport in astrophysical disks. Understanding its nonlinear saturation constitutes a fundamental problem in modern
accretion disk theory. The large dynamical range in physical conditions in accretion disks makes it challenging to
address this problem only with numerical simulations. We analyze the concept that (secondary) parasitic instabilities
are responsible for the saturation of the MRI. Our approach enables us to explore dissipative regimes that are relevant
to astrophysical and laboratory conditions that lie beyond the regime accessible to current numerical simulations.
We calculate the spectrum and physical structure of parasitic modes that feed off the fastest, exact (primary) MRI
mode when its amplitude is such that the fastest parasitic mode grows as fast as the MRI. We argue that this
“saturation” amplitude provides an estimate of the magnetic field that can be generated by the MRI before the
secondary instabilities suppress its growth significantly. Recent works suggest that the saturation amplitude of the
MRI depends mainly on the magnetic Prandtl number. Our results suggest that, as long as viscous effects do not
dominate the fluid dynamics, the saturation level of the MRI depends only on the Elsasser number Λη. We calculate
the ratio between the stress and the magnetic energy density, αsatβsat, associated with the primary MRI mode. We find
that for Λη > 1 Kelvin–Helmholtz modes are responsible for saturation and αsatβsat = 0.4, while for Λη < 1 tearing
modes prevail and αsatβsat � 0.5 Λη. Several features of numerical simulations designed to address the saturation of
the MRI in accretion disks surrounding young stars and compact objects can be interpreted in terms of our findings.
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turbulence
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1. INTRODUCTION

The transport of mass and angular momentum in accretion
disks remains one of the least understood processes in mod-
ern astrophysics. The standard accretion disk model (Shakura
& Sunyaev 1973; Lynden-Bell & Pringle 1974; Frank et al.
2002) is based on the assumption that turbulence provides an
efficient mechanism for enabling accretion but magnetic fields,
thought to be crucial for driving the turbulence, do not play an
explicit role. It is currently believed that the magnetorotational
instability (MRI; Velikhov 1959; Chandrasekhar 1960; Balbus
& Hawley 1991, 1998) is responsible for driving the magneto-
hydrodynamic (MHD) turbulence required for efficient angular
momentum transport in astrophysical disks. However, at present,
there are no accretion disk models that incorporate the physics
driving angular momentum transport in a self-consistent way.

Since the appreciation of the relevance of the MRI to accretion
disks, significant progress has been made in understanding
the physics of the instability and characterizing the ensuing
turbulent state. A large set of numerical simulations (see, e.g.,
Hawley et al. 1995; Brandenburg et al. 1995; Miller & Stone
2000; Fleming et al. 2000; Sano & Inutsuka 2001; Sano et al.
1998, 2004; Turner et al. 2007; Fromang et al. 2007; Lesur
& Longaretti 2007; Obergaulinger et al. 2009) have provided
insight into the turbulent MHD flows under various physical
conditions. However, the fundamental processes that determine
the strength of the turbulence in the nonlinear regime are yet
to be deciphered. At present, there have only been a handful
of studies addressing the theoretical aspects of this problem
(see, e.g., Goodman & Xu 1994; Knobloch & Julien 2005;
Umurhan et al. 2007a, 2007b; Tatsuno & Dorland 2008; Jamroz

et al. 2008a, 2008b; Latter et al. 2009; Vishniac 2009; Pessah &
Goodman 2009). Thus, understanding the mechanisms that lead
to the saturation of the MRI constitutes a fundamental problem
in modern accretion physics.

Building models that capture the physics of the MRI and
its saturation is crucial for constructing angular momentum
transport models, and global disk models, beyond the standard
viscous accretion disk (see, e.g., Kato & Yoshizawa 1995;
Ogilvie 2003; Pessah et al. 2006b). The identification and
eventual understanding of correlations and scaling laws born out
of the synergy between numerical simulations, analytical, and
semianalytical work (Pessah et al. 2006a, 2007, 2008; Blackman
et al. 2008; Hubbard & Blackman 2008; Lesaffre et al. 2009)
provides important insight toward this goal. This could also
provide a fruitful approach toward building sub-grid models
for related microphysical processes which are unfeasible to
incorporate in global simulations in a direct way (see, e.g.,
Arnett et al. 2009).

Pessah & Goodman (2009) provided a summary of a para-
metric study of incompressible, MRI-parasitic instabilities in
dissipative regimes accessible to current numerical simula-
tions. They stated that the fastest growing modes are related to
Kelvin–Helmholtz and tearing mode instabilities. In this work,
we provide the details of the solutions to the differential equa-
tions involved and solve for the fastest growing modes in order
to provide support for these assertions. We identify the exis-
tence of a critical Elsasser number of order unity and show that
Kelvin–Helmholtz and tearing modes dominate in the quasi-
ideal and resistive MHD regimes, respectively. By means of
a systematic study of the parameter space involved, we reveal
scaling laws that describe the behavior of the fastest growing
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Figure 1. Three-dimensional representation of a primary MRI mode. The per-
turbations over the background Keplerian velocity and magnetic fields are given
by Δv = V0(cos θV, sin θV, 0) sin(Kz) and ΔB = B0(cos θB, sin θB, 0) cos(Kz),
respectively. For a given primary MRI mode with wavenumber K, the orienta-
tion of the planes containing Δv and ΔB and the ratio of the amplitudes V0/B0
are functions of the viscosity and resistivity. The wavevector kh characterizes
the horizontal wavelength of a given parasitic mode and θ denotes the angle
between this vector and the radial direction, see also Figure 2.

(A color version of this figure is available in the online journal.)

parasites in these limits. The joint analysis of the asymptotic be-
havior of the MRI and the parasitic modes provides insight into
the characteristics of a viable saturation mechanism in regimes
that are relevant to astrophysical (see, e.g., Jin 1996; Gammie
1996; Sano & Miyama 1999; Salmeron & Wardle 2005;
Brandenburg & Subramanian 2005; Balbus & Henri 2008) as
well as experimental environments (see, e.g., Ji et al. 2001;
Goodman & Ji 2002; Sisan et al. 2004; Liu et al. 2006; Rüdiger
et al. 2003).

2. GENERAL CONSIDERATIONS AND PRIMARY
MRI MODES

Consider a cylindrical background characterized by an angu-
lar velocity profile Ω = Ω(r) ž, threaded by a vertical magnetic
field B̄ = B̄z ž. We work in the incompressible limit which is
relevant when the magnetic fields involved are so weak that the
saturation of the MRI occurs at magnetic energies that are small
compared to the thermal energy. We consider non-ideal effects
due to a kinematic viscosity ν and resistivity η, both of which
are assumed to be constant. The equations governing the local
dynamics of this MHD fluid in the shearing-box approximation
are given by

∂v

∂t
+ (v · ∇) v = −2Ω0×v + qΩ2

0∇(r − r0)2

− 1

ρ
∇

(
P +

B2

8π

)
+

(B · ∇)B
4πρ

+ ν∇2v, (1)

∂ B
∂t

+ (v · ∇) B = (B · ∇) v + η∇2 B, (2)

where P is the pressure, ρ is the density, and the factor

q ≡ − d ln Ω
d ln r

∣∣∣∣
r0

, (3)

Figure 2. Two-dimensional representation of the projection of a primary
MRI mode onto the (ř , φ̌) plane. The vectors V 0 = V0(cos θV, sin θV, 0)
and B0 = B0(cos θB, sin θB, 0) represent the projection of the MRI velocity
and magnetic fields, with associated direction angles θV and θB. The versors
ǩh and ǩp characterize, respectively, the directions parallel and perpendicular
to the horizontal wavevector kh of a given parasitic mode.

(A color version of this figure is available in the online journal.)

parameterizes the magnitude of the local shear at the fiducial
radius r0. The continuity equation reduces to ∇ · v = 0 and
there is no need for an equation of state since the pressure can
be determined from this condition.

The set of Equations (1) and (2) has solutions of the form

v = −qΩ0(r − r0)φ̌ + V 0 sin(Kz) eΓt , (4)

B = B̄z ž + B0 cos(Kz) eΓt . (5)

For a given wavenumber K perpendicular to the disk mid-plane,
the growth rate Γ satisfies the dispersion relation(

K2v̄2
Az + ΓνΓη

)2
+ κ2

(
K2v̄2

Az + Γ2
η

) − 4K2v̄2
AzΩ

2
0 = 0, (6)

where Γν ≡ Γ + νK2, Γη ≡ Γ + ηK2, κ ≡ √
2(2 − q)Ω0

is the epicyclic frequency, v̄Az ≡ B̄z/
√

4πρ is the Alfvén
speed, and Ω0 is the local Keplerian frequency. The ratio of
the amplitudes V0/B0 of the vectors characterizing the MRI
velocity and magnetic fields,

V 0 ≡ V0 (cos θV, sin θV, 0), (7)

B0 ≡ B0 (cos θB, sin θB, 0), (8)

as well as their directions θV and θB (see Figures 1 and 2) are
known functions of (ν, η,K) (see Pessah & Chan 2008 for a
detailed discussion). The growth rate Γ has a unique maximum,
Γmax(ν, η), at K = Kmax(ν, η).

Unless otherwise mentioned, we work with dimensionless
variables defined in terms of the characteristic length and
timescales set by the background Alfvén speed and the local
angular frequency: L0 ≡ v̄Az/Ω0 and T0 ≡ 1/Ω0. We subsume
the effects related to viscosity and resistivity into the dimen-
sionless quantities

Λν ≡ v̄2
Az

νΩ0
, (9)

Λη ≡ v̄2
Az

ηΩ0
, (10)
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whose ratio is the magnetic Prandtl number, Pm ≡ ν/η ≡
Λη/Λν . The quantity Λη is known as the Elsasser number, while
its viscous counterpart Λν is related to the Reynolds number.
In our dimensionless variables, magnetic field strengths are
defined relative to the background field B̄z, while Λν ≡ ν−1

and Λη ≡ η−1.

3. STABILITY OF MRI MODES

The exact equations for the dynamical evolution of the veloc-
ity and magnetic fields corresponding to secondary instabilities
δv(x, t) and δB(x, t) affecting an MRI mode are obtained by
substituting in Equations (1) and (2) the ansatz

v = −qΩ0(r − r0)φ̌ + V 0 sin(Kz) eΓt + δv, (11)

B = B̄z ž + B0 cos(Kz) eΓt + δB. (12)

This procedure leads to a set of partial differential equations in
space and time whose solution is beyond the scope of the present
paper. It is possible, however, to gain insight into the growth
rates and physical properties of the secondary instabilities by
adopting some simplifying assumptions.

3.1. Assumptions

In order to make the problem of the stability of the non-ideal
MRI modes against parasitic instabilities more tractable, we
adopt the same set of assumptions and approximations stated in
Pessah & Goodman (2009; see also Latter et al. 2009), which
are the same as those adopted by Goodman & Xu (1994) for
ideal MHD. The central simplification reduces to assuming that
the exact (primary) MRI modes can be considered as a time-
independent background from which the (secondary) parasitic
modes feed off. Because the growth rates of the parasitic modes
increase as the amplitude of the primary mode increases, this
approximation is better satisfied when the amplitude of the MRI
modes is large compared to the background vertical field. In
this case, we can also neglect the influence of the weak vertical
background field, the Coriolis force, and the background shear
flow on the dynamics of the secondary modes.

There is a subtlety associated with this assumption that is
worth stating explicitly. The amplitude of the MRI cannot be
assumed to be arbitrarily large. If this were the case, the parasites
would drain an amount of energy comparable to the energy of
the primary mode exceedingly fast. This would call into question
whether the primary mode would have been able to reach the
assumed amplitude in the first place. There exists a regime in
which the amplitude of the primary modes is large enough that
they can be taken as time independent, but no so large that the
fast-growing secondaries would have prevented the MRI from
reaching the assumed amplitude.

Here, we are interested in estimating the amplitude to which
the MRI can grow to in order for the fastest parasitic modes
to have growth rates that are comparable to that of the primary
mode upon which they feed. The motivation to calculate this
“saturation” amplitude, i.e., Bsat

0 , is that the parasites will be
able to drain an amount of energy of order (Bsat

0 )2 from the
primary modes shortly after their growth rates are comparable
to that of the primary modes. We stress that the value of B0 at
which the amplitude of the parasites is similar to that of the
primary MRI mode upon which they feed, is estimated to be a
factor of a few larger that Bsat

0 ; see the discussion in Pessah &
Goodman (2009). Thus, it does not seem consistent to assume

ab initio that the MRI modes can reach amplitudes B0 � Bsat
0 .

The price that we pay for working in the regime B0 � Bsat
0 is that

the assumption of a stationary background is only marginally
satisfied.

3.2. Equations of Motion for the Parasites

Under the assumptions stated above, the equations governing
the dynamics of the secondary instabilities are

∂tδv + (Δv · ∇) δv + (δv · ∇) Δv = −∇(δP + ΔB · δB)

+ (ΔB · ∇)δB + (δB · ∇)ΔB + ν∇2δv, (13)

∂tδB + (Δv · ∇) δB + (δv · ∇) ΔB = (ΔB · ∇) δv

+ (δB · ∇) Δv + η∇2δB,

(14)

where ∇ · δv = ∇ · δB = 0, δP stands for the pressure pertur-
bation, and we have defined the time-independent amplitude of
an unstable MRI mode with wavenumber K as

Δv ≡ V 0 sin(Kz), (15)

ΔB ≡ B0 cos(Kz). (16)

We seek solutions to Equations (13) and (14) of the form

δv(x, t) = δv0(z) exp[st − ik · x], (17)

δB(x, t) = δB0(z) exp[st − ik · x]. (18)

Here, k = kh + kz ž, where kh ≡ kxx̌+kyy̌ ≡ kh(cos θ x̌+sin θ y̌)
is a horizontal wavevector (see Figures 1 and 2) and kz is a
parameter with 0 � kz/K � 1/2. The eigenvalue s determines
the temporal evolution of the parasitic mode and it must be
solved for together with the amplitudes δv0(z) and δB0(z),
which are 2π/K-periodic functions in z. The solutions (17)
and (18) are periodic if kz/K is a rational number.

The set of six differential Equations (13) and (14) can in
principle be solved for the secondary velocity and magnetic
fields (δP can be eliminated using ∇ · δv = 0) by requiring that
the “boundary conditions”

δv(x + 2π/K ž, t) = δv(x, t) exp(2πikz/K), (19)

δB(x + 2π/K ž, t) = δB(x, t) exp(2πikz/K), (20)

be satisfied for all z. We follow an alternative procedure that
leads to higher order differential equations for δvz and δBz.
Substituting expressions (17) and (18) into Equations (13) and
(14), using the divergenceless nature of the perturbed fields, and
eliminating the pressure perturbation between the horizontal and
vertical components of Equation (13) we obtain

(s + νQ)Qδvz − i(kh · Δv)(Q − K2)δvz

+ i(kh · ΔB)(Q − K2)δBz = 0, (21)

(s + ηQ)δBz + i(kh · ΔB)δvz − i(kh · Δv)δBz = 0. (22)

Here, we have used the explicit form of Δv and ΔB from
Equations (15) and (16), and defined the differential operator
Q = k2

h − ∂2
z . These correspond to the equations of motion for

the parasites presented in Pessah & Goodman (2009).
Thus, the assumptions stated at the beginning of this section

allows us to reduce the problem of analyzing the stability of
the exact MRI modes against secondary perturbations in terms
of a set of linear, ordinary differential equations with periodic
coefficients.
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3.3. The Eigenvalue Problem and Its Solution

The set of Equations (21) and (22) can in principle be in-
tegrated along the z-coordinate subject to the boundary condi-
tions (19) and (20). It is more convenient, however, to work
in Fourier space and transform the differential equations into
algebraic equations, by seeking solutions of the form

δvz(z; kz) =
∞∑

n=−∞
αne

−i(nK+kz)ze−ikh · x, (23)

δBz(z; kz) =
∞∑

n=−∞
βne

−i(nK+kz)ze−ikh · x . (24)

When the operatorQ acts on the Fourier series each individual
term incurs a factor Qn ≡ k2

h + (kz +nK)2. Thus, the differential
equations (21) and (22) lead to recursion relations for the Fourier
coefficients {αn} and {βn} of the form

0 = 2(s + νQn)Qnαn

− i (kh · B0)[(Qn−1 − K2)βn−1 + (Qn+1 − K2)βn+1]

− (kh · V 0)[(Qn−1 − K2)αn−1 − (Qn+1 − K2)αn+1],

(25)

0 = 2(s + ηQn)βn − i (kh · B0)(αn−1 + αn+1)

− (kh · V 0)(βn−1 − βn+1). (26)

It is convenient to use the natural scales provided by the
primary MRI mode and rescale the variables: Qn → Qn/K

2,
kh → kh/K , αn → αn/B0, βn → βn/B0. We thus obtain

s

KB0
αn = − νK2

KB0
Qnαn

+ i
(kh · B̌0)

2Qn

[(Qn−1 − 1)βn−1 + (Qn+1 − 1)βn+1]

+
(kh · V̌ 0)

2Qn

V0

B0
[(Qn−1 − 1)αn−1 − (Qn+1 − 1)αn+1],

(27)

s

KB0
βn = − ηK2

KB0
Qnβn + i

(kh · B̌0)

2
(αn−1 + αn+1)

+
(kh · V̌ 0)

2

V0

B0
(βn−1 − βn+1), (28)

where the versors V̌ 0 ≡ V 0/V0 and B̌0 ≡ B0/B0 provide the
direction of the MRI velocity and magnetic fields. Recall that
the ratio of the velocity to magnetic field amplitudes, V0/B0,
for the primary MRI mode is not an independent variable; it can
be calculated for each set of values (ν, η,K) (Pessah & Chan
2008). It is convenient to scale the Fourier coefficients using B0,
rather than V0, because the ratio V0/B0 is proportional to Λη for
Λη 	 1.

The system of coupled linear Equations (27) and (28), with
n = −∞, . . . ,∞, can be written in matrix form as Mq = sq,
where M is a band-diagonal, complex, non-Hermitian matrix
and the components of the eigenvector q are defined according
to qn = αn/2 for n = 2m and qn = βn/2+1 for n = 2m + 1.
Boundary conditions such that (αn, βn) → 0 must be imposed
on the eigenvectors in order to ensure that the Fourier series (23)
and (24) converge as |n| → ∞.

In practice, we set αN = βN = 0 for |N | � Nmax and di-
agonalize the 2(2Nmax + 1) × 2(2Nmax + 1) matrix M for a
given set of values (ν, η,K,B0, kz, θ, kh). The algorithm em-
ployed to diagonalize the matrix M is based on the LAPACK
routine ZGEEVX, using the option of applying a balancing
transformation to improve the conditioning of the eigenvalues
and eigenvectors. We solve for the finite set of 2(2Nmax + 1)
eigenvalues {s} and eigenvectors {q} (if needed), taking in-
creasingly large values of Nmax until convergence to the desired
accuracy is reached; Nmax = 30 seems to do a very good job
across the parameter space explored.

4. PARASITIC INSTABILITIES AND SATURATION OF
MRI MODES

It may seem that the large number of independent variables
involved could prevent us from obtaining a global understanding
of the saturation of the MRI across the parameter space. This
is not the case, however. We first present the results of a
systematic calculation of the saturation amplitude of the fastest
growing MRI modes, and their associated stresses, and show
that they exhibit simple behaviors. In Section 5, we provide an
explanation of these results by analyzing the behavior of the
primary MRI modes and the parasitic modes responsible for
their saturation in different regions of parameter space.

4.1. Parameter Space of Interest

Astrophysical disks, MRI laboratory experiments, and numer-
ical simulations span a wide range of values in the parameter
space defined by (Λν, Λη), or equivalently (Λν, Pm).

Astrophysical disks. The temperature and density in an accre-
tion disk vary by many orders of magnitude across its radius.
Thus, the kinematic viscosity, ν, and magnetic diffusivity, η, are
expected to span a wide range of values. In most astrophysical
environments, the kinematic viscosity is usually very small and
thus Λν � 1. For a protoplanetary disk Λη is a steep function
of radius with Λη � 5 × 10−11(B/0.1 G)2(R/AU)37/4, where R
is the distance to the central star; see Sano & Miyama (1999).
Balbus & Henri (2008) find that the magnetic Prandtl number
for accretion disks around black holes decreases monotonically
with increasing radius and lies in the range Pm ∼ 10−3–103 for
R/Rs � 3–103, where Rs is the Schwarzschild radius.

Laboratory experiments. Current Taylor–Couette experi-
ments using liquid metals to realize the MRI in laborato-
ries are characterized by physical parameters given by ν ∼
3 × 10−3 cm2 s−1, η ∼ 3 × 103 cm2 s−1, ρ ∼ 6 g cm−3,
Ω ∼ 10–40 Hz, and B̄z ∼ (1–4)×103 G (Nornberg et al. 2010).
The value of Λν can be varied by changing the strength of the
background magnetic field or the rotation rate; characteristic
values are of the order of Λν ∼ 105–106. The magnetic Prandtl
number is approximately constant with Pm ∼ 10−6.

Numerical simulations. There have been recent numerical
simulations of the nonlinear development of the MRI in the
shearing-box approximation exploring the effects of explicit vis-
cosity and resistivity. Using our definitions, the range of param-
eters explored corresponds to Λν ∼ 1–100 and Pm ∼ 0.1–10 in
the three-dimensional simulations in Lesur & Longaretti (2007)
and Λν ∼ 0.01–10 and Pm ∼ 10−3–104 in the axisymmetric
simulations in Masada & Sano (2008).

Motivated by previous studies that suggest that the saturation
amplitude of the MRI is sensitive to the magnetic Prandtl
number, see, e.g., Umurhan et al. (2007a, 2007b) and Lesur
& Longaretti (2007), we consider (Λν, Pm) as independent
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Figure 3. Magnetic energy density corresponding to the fastest growing
primary MRI mode when the growth rate of the fastest parasitic mode matches
Γmax(ν, η), i.e., B0 = Bsat

0 . For Λν � 10, there are two clear asymptotic regimes
that correspond to Pm Λν ≡ Λη larger or smaller than unity. The corresponding
modes are associated with Kelvin–Helmholtz and tearing modes, respectively,
see Section 5.

(A color version of this figure is available in the online journal.)

parameters. In order to explore in a systematic way the large
region of parameter space relevant to the various environments
mentioned above, we consider the range of parameters defined
by

Λν = {1, 10, . . . , 107}, (29)

Pm = {10−7, 10−6, . . . , 107}. (30)

This range of values is large enough to capture all the interesting
behaviors and allows us to derive asymptotic scalings that are
applicable outside this region of parameter space.

4.2. Magnetic Energy Density and MRI Stresses

For each pair of values (Λν, Pm), we analyze the stability of
the fastest growing primary MRI mode Kmax(ν, η) by solving
the system of Equations (27) and (28) as a function of the
variables (B0, kz, θ, kh). In order to explore the parameter space
thoroughly, and identify the fastest parasitic modes, we find
the growth rate of the secondary modes for a grid of values
given by kz = {0.0, 0.1, . . . , 0.5}, θ = {0◦, 5◦, . . . , 180◦}, and
kh = {0.0, 0.01, . . . , 1.0}.1 We find the fastest growing parasitic
mode for a fixed value of the primary MRI magnetic field B0 and
iterate this procedure increasing B0 until the fastest secondary
instability matches the growth rate of the fastest MRI mode, i.e.,
smax(ν, η,Kmax) = Γmax(ν, η). This corresponds to the value
Bsat

0 (ν, η) that we denominate the “saturation” amplitude of the
MRI magnetic field (Pessah & Goodman 2009), which is shown
in Figure 3.

For values Λν � 10, the amplitude Bsat
0 displays two clear

asymptotic behaviors, i.e., (Bsat
0 )2/2 � 7 and (Bsat

0 )2/2 � 12,
depending on the magnetic Prandtl number. The “critical” values
for this transition, Pmc, depend on Λν and satisfy

Pmc(Λν) Λν ≡ Λc
η � 1 for Λν � 10. (31)

1 The primary MRI modes seem to be always stable for kh > 1.

Therefore, for Λν � 10, there is a critical Elsasser number of
order unity that distinguishes two different regimes character-
ized by different saturation amplitudes, Bsat

0 . For Λν = {1, 10},
the MRI can reach amplitudes (Bsat

0 )2/2 � 40 for a wide range
of magnetic Prandtl numbers Pm � 1. This behavior is due to
the viscous quenching of Kelvin–Helmholtz modes discussed
in Pessah & Goodman (2009) for Pm � 1.

The saturation amplitude Bsat
0 varies roughly by only 1 order

of magnitude across the large parameter space that we consider
and is thus fairly insensitive to the value of the dissipation
coefficients. In particular, as resistivity increases, i.e., Λη � 1,
the magnetic field that can be generated by the MRI reaches an
asymptotic, constant value. The situation is quite different for
the stresses, however.

The dimensionless stress at saturation is given by αsat ≡
T̄ sat

rφ /(LzΩ0)2, where T̄ sat
rφ ≡ R̄sat

rφ − M̄sat
rφ , is the sum of the

Reynolds and Maxwell stresses

R̄sat
rφ ≡ 1

Lz

∫ Lz/2

−Lz/2
V sat

0,r (z)V sat
0,φ(z)dz, (32)

M̄sat
rφ ≡ 1

Lz

∫ Lz/2

−Lz/2
Bsat

0,r (z)Bsat
0,φ(z)dz. (33)

Integrating these expressions, we obtain the dimensionless stress
αsat in terms of the parameter2 β ≡ Ω2

0L
2
z/v̄

2
Az,

αsat = 1

2β

[(
V sat

0

)2
sin θV cos θV − (

Bsat
0

)2
sin θB cos θB

]
. (34)

We can obtain an expression for the ratio between the stress
and the magnetic energy density associated with the primary
MRI mode by relating the initial value of the β-parameter,
β ∝ 1/B̄2

z , with an estimate for its corresponding value at
saturation, i.e., βsat = β/B2

0 . This leads to

αsatβsat = 1

2

[(
V sat

0

Bsat
0

)2

sin θV cos θV − sin θB cos θB

]
.

(35)

The dependence of the product αsatβsat on Pm for different values
of Λν is shown in Figure 4. The existence of two different
asymptotic behaviors for Λν � 10 is evident:

αsatβsat � 0.4 for Pm Λν > 1, (36)

αsatβsat � 0.5 Pm Λν for Pm Λν < 1. (37)

The asymptotic behavior for Λν � 1 and Pm � 1 corre-
sponds to the ideal MHD limit with Λη � Λν � 1. It is worth
mentioning that numerical simulations of MRI driven turbu-
lence (with no explicit dissipation), carried out over a wide
range of physical conditions, lead to saturation values for the
parameters αsat and βsat that vary by several orders of magnitude
(see, e.g., Pessah et al. 2006a, and references there in). How-
ever, their product remains roughly constant with αsat βsat � 0.5
(Hawley et al. 1995; Sano et al. 2004). Despite the approxima-
tions that we adopted for calculating this quantity, the value in

2 Pessah & Goodman (2009) defined αsat ≡ T̄ sat
rφ /(SLz)2 and β ≡ S2L2

z/v̄
2
Az,

with S ≡ 3Ω0/2, in order to compare results with Lesur & Longaretti (2007).
The definitions adopted here do not affect the expression or the numerical
value for the product αβ.
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Figure 4. Predicted values for the product αsatβsat if saturation occurs when the
fastest parasitic and primary MRI growth rates match. In the limit, Λν , Pm � 1,
αsatβsat → 0.4. In the inviscid, resistive limit, i.e., Λν � 1 and Pm 	 1,
αsatβsat → 0.5 Pm Λν . Despite the fact that the magnetic field at saturation
asymptotes to a constant value (see Figure 3) the dimensionless stress decreases
linearly with Pm Λν ≡ Λη for Pm Λν ≡ Λη � 1.

(A color version of this figure is available in the online journal.)

Equation (36) is remarkably close to the results obtained in
numerical simulations. We note that Blackman et al. (2008)
provide independent arguments, involving turbulent eddies, to
support the idea that αsat and βsat should be anti-correlated.
They estimate that αsat βsat � 0.7, for an isothermal equation of
state.

The product αsatβsat presents a very different behavior below a
“critical” value, Pmc(Λν) Λν ≡ Λc

η � 1. In this regime, the stress
decreases linearly with both Pm and Λν for Pm Λν � 1. The
product Pm Λν corresponds of course to the Elsasser number, Λη.
We write the expression for Pm Λν in Equation (37) explicitly
because it is not a priori evident that the quantity αsatβsat should
scale linearly with both Pm and Λν . For instance, it could have
depended on some power of the magnetic Prandtl number, e.g.,
Pm1/2 with a weaker dependence on Λν . This is indeed the type
of dependence observed in the numerical simulations in Lesur
& Longaretti (2007), which address the regime Λν ∼ 1–100 and
Pm ∼ 0.1–10. However, in the regime Λν � 10, our calculations
lead to MRI stresses that depend only on the Elsasser number
Λη with T̄rφ ∝ Λη for Λη � 1.

The existence of a critical Elsasser number of order unity is
related to the fact that the fastest growing secondary modes are
associated with Kelvin–Helmholtz instabilities for Λη > 1 and
tearing instabilities for Λη < 1, provided that Λν � 10. In order
to provide support to these assertions, it is useful to examine the
behavior of the growth rates of the parasitic modes as a function
of the direction of the horizontal wavevector kh, i.e., the angle
θ , see Figures 1 and 2.

4.3. Kelvin–Helmholtz versus Tearing Modes

It is of particular interest to understand which type of
secondary modes are the first to reach growth rates that are
comparable to the growth rate of the MRI in different regions
of the parameter spaced spanned by the dissipation coefficients.

The upper and lower sets of panels in Figure 5 show the real
and imaginary parts of the eigenvalues, smax(ν, η,Kmax, kz, θ ),

corresponding to the fastest growing parasitic modes that
feed off the fastest primary MRI mode for B0 = Bsat

0 (ν, η).
The different panels in this figure correspond to Λη =
{0.1, 1, 101, 102}, from left to right, with Λν = 103. The vari-
ous curves in each panel correspond to different values of the
parameter kz. The vertical solid lines show the angles θV(ν, η)
and θB(ν, η) associated with the velocity and magnetic fields of
the fastest MRI mode, see Figures 1 and 2. The vertical dashed
lines in each panel show the directions perpendicular to θB (left)
and θV (right). The MRI velocity and magnetic fields are close
to orthogonal, except for Λη � 1, where the directions parallel
to θV and perpendicular to θB differ by a few degrees.

The fastest parasitic modes that determine the values of Bsat
0

shown in Figure 3 are non-axisymmetric (θmax 
= 0); their
horizontal wavevectors, kh,max, are nearly aligned with either
the velocity or the magnetic field of the primary mode. The
first type reach their maximum growth rates for θmax � θV, i.e.,
the direction of the MRI velocity field, ΔV . These correspond to
Kelvin–Helmholtz modes and dominate for Λη � 1. The second
type of modes grow the fastest along the direction θmax � θB, i.e.,
the direction of the MRI magnetic field, ΔB. These are tearing
modes enabled by resistive reconnection of the MRI magnetic
field. They dominate for Λη < 1 and become increasingly
relevant as Λη decreases.

Independently of the value of the dissipation coefficients, the
fastest growing Kelvin–Helmholtz and tearing modes have the
same vertical periodicity as the primary mode, i.e., kz = 0. As
illustrated in the lower panels of Figure 5, the fastest growing
Kelvin–Helmholtz modes have purely real growth rates for
kz � 0.25; while they have imaginary parts that are similar
to their real parts for kz � 0.25. The latter correspond to the
“Type-II” modes discussed in Goodman & Xu (1994), see also
Latter et al. (2009). These are clearly Kelvin–Helmholtz modes
since they present their maximum growth along the direction
of the MRI velocity field. These modes might be relevant in
axisymmetric simulations of viscous, resistive MRI because
they have growth rates that are comparable, or even larger,
than the axisymmetric modes with kz = 0. The fastest growing
tearing modes have zero, or very small, imaginary parts for
every value of kz.

It is clear from Figures 3–5 that there is a sharp transition in
behavior around a critical Elsasser number of order unity. Table 1
provides information concerning the growth rates and geometric
structure of both the fastest growing primary MRI mode and the
associated fastest parasitic mode for a range of Elsasser numbers
Λη = {10−3, . . . , 104}, with Λν = 103. Note that the horizontal
wavelength of the fastest growing modes, for both tearing and
Kelvin–Helmholtz modes, is roughly a factor of 2 larger than
the vertical wavelength of the primary mode upon which they
feed. Tearing modes and Kelvin–Helmholtz modes present the
fastest growth at low and high Elsasser numbers, respectively.
These two regimes are characterized by asymptotic behaviors
that are already evident for Λη � 10±2.

The existence of these scalings simplifies the characterization
of the physical nature of the parasitic modes in different regions
of parameter space. Thus, we first analyze the asymptotic
regimes at large and low Elsasser number and postpone the
explicit analysis of the physical structure of the eigenmodes
until Section 6. It will then be evident that it is only necessary
to understand the nature of the fastest modes with moderate
Elsasser number Λη � 1 and that the characteristics of the
modes for Λη 	 1 and Λη � 1 can be obtained using the
scaling relations derived next.
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Figure 5. Real and imaginary parts for the fastest parasitic instabilities normalized by the growth rate of the fastest MRI mode as a function of the orientation of the
horizontal wavevector kh with respect to the radial (θ = 0) direction. The panels correspond to Λη = {0.1, 1, 10, 102}, from left to right, with Λν � 1. The MRI
magnetic field B0 = Bsat

0 (ν, η) is such that the fastest parasitic growth rate, maximized over kh, θ , and kz, matches the growth rate of the fastest primary MRI mode,
Γmax(ν, η). The parasites present fastest growth along the directions θmax ≈ θV and θmax ≈ θB, shown as solid lines, and they are associated with Kelvin–Helmholtz
and tearing mode instabilities, respectively.

(A color version of this figure is available in the online journal.)

Table 1
Characterization of Fastest MRI and Parasitic Modes

Λη Γmax/Ω0, smax/Ω0 Kmax θV (◦) θB (◦) θmax (◦) kh,max/Kmax Bsat
0 /B̄z V0/B0 Type

1.E−03 7.50E−04 8.66E−04 0.0 90.1 90.0 0.48 4.9 0.0017 TM
1.E−02 7.50E−03 8.66E−03 0.0 90.6 90.0 0.48 4.9 0.0173 TM
1.E−01 7.39E−02 8.55E−02 3.5 95.6 95.0 0.48 4.9 0.1689 TM
1.E+00 4.28E−01 5.16E−01 22.1 119.7 30.0 0.59 4.5 0.7187 KH
1.E+01 6.96E−01 8.88E−01 40.6 132.9 40.0 0.59 3.8 0.7816 KH
1.E+02 7.44E−01 9.59E−01 44.5 134.7 45.0 0.59 3.8 0.7751 KH
1.E+03 7.49E−01 9.67E−01 45.0 135.0 45.0 0.59 3.8 0.7743 KH
1.E+04 7.50E−01 9.67E−01 45.0 135.0 45.0 0.59 3.8 0.7742 KH

Notes. Data corresponding to the fastest growing MRI modes and their associated fastest parasitic modes for Λν � 1. Note the asymptotic
behaviors at low and high Elsasser numbers and the sharp transition around Λη � 1. The resistive (Λη 	 1) and ideal (Λη � 1) MHD
regimes are dominated by tearing modes (TMs) and Kelvin–Helmholtz (KH) modes, respectively.

5. ASYMPTOTIC BEHAVIORS AND SCALING LAWS

The regime where viscosity plays an important role, i.e.,
Λν � 10, was explored in detail in Pessah & Goodman (2009).
Hereafter, we focus our attention on the regime where Λν � 102,
i.e., Λν � 1, which is relevant to astrophysical and experimental
environments. Here, we analyze the asymptotic behavior of both
primary MRI and secondary modes in this regime and provide
explanations for the behaviors observed in Figures 3 and 4.

5.1. Asymptotic Behavior of Primary MRI Modes

In order to better appreciate the asymptotic behavior of
the parasitic instabilities, we need to consider the asymptotic
behavior of the primary MRI modes. The quantities that define
the structure of these modes, as well as some relationships
between various timescales and amplitudes, are of particular

importance and we briefly summarize them here. We focus our
attention in the case of a Keplerian shear profile, i.e., q = 3/2.

In ideal MHD, i.e., Λν, Λη � 1, the maximum growth
achieved by the MRI is Γmax = (3/4) Ω0, and corresponds to the
mode with wavenumber Kmax = √

15/16 Ω0/v̄Az. The fastest
growth rate is related to the Alfvén frequency, ωAz = Kmax v̄Az,
associated with the background magnetic field B̄z, via Γmax =√

3/5 ωAz with ωAz = √
15/16 Ω0. The magnetic field and

velocity field amplitudes for the fastest primary MRI mode are
related via V0 = √

3/5 B0/
√

4πρ (Pessah et al. 2006a). The
angles characterizing the planes which contain the velocity and
magnetic fields of the fastest growing MRI mode are given by
sin θV = − cos θB = 1/

√
2.

In the inviscid, resistive MHD limit, i.e., Λν � 1 and Λη 	 1,
the fastest MRI growth rate Γmax = (3/4) Λη Ω0, corresponds
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Figure 6. Growth rates for the fastest growing parasitic instabilities as a function
of the amplitude of the MRI magnetic field B0. The values of Λη associated
with each set of data points are shown on the right. Open circles represent
Kelvin–Helmholtz modes, which exhibit the fastest growing rates for Λη � 1.
Filled circles represent tearing modes, which exhibit the fastest growing rates
for Λη < 1. In all cases, the data points are drawn for B0 � Bsat

0 (ν, η). The
dashed lines, proportional to B0, correspond to the analytical expressions in
Equations (38)–(40).

to the mode with wavenumber Kmax = √
3/4 Λη (Ω0/v̄Az). In

this case, the various relevant inverse timescales are related
via Γmax = √

3/4 ωAz = ωη, where ωAz = Kmax v̄Az =√
3/4 Λη Ω0 is the Alfvén frequency and ωη = ηK2

max =
(3/4) Λη Ω0 is the inverse of the resistive timescale across a
lengthscale of the order of the MRI wavelength, i.e., K−1

max.
The magnetic field and velocity field amplitudes for the fastest
primary MRI mode are related via V0 = √

3 Λη B0/
√

4πρ
(Pessah & Chan 2008), and thus V0/B0 → 0 in the limit Λη 	 1.
The planes containing the fastest growing MRI velocity and
magnetic fields are characterized by the angles sin θV = (5/8)Λη

and cos θB = −Λη.

5.2. Asymptotic Behavior of Parasitic Growth Rates

The dependence of the growth rate of the fastest para-
sitic modes on the amplitude of the primary MRI magnetic
field, B0, is shown in Figure 6. The open circles identify
Kelvin–Helmholtz modes that feed off the MRI velocity field at
θ � θV, which exhibit the fastest growing rates for Λη � 1. The
filled circles correspond to tearing modes that feed off the MRI
currents at θ � θB. These are the fastest growing secondary
instabilities for Λη < 1. The following equations,3 shown as
dashed lines in Figure 6, provide an excellent description of the
fastest growth rates associated with Kelvin–Helmholtz modes

smax = 0.20B0 for θ � θV, Λη > 1, (38)

smax = 0.10B0 for θ � θV, Λη = 1, (39)

while the growth rates of the tearing modes is described by

smax = 0.15B0Λη for θ � θB, Λη � 1. (40)

3 Although not shown in Figure 6, the growth rates of the (sub-dominant)
Kelvin–Helmholtz modes are given by smax = 0.37B0Λ2

η for θ � θV, Λη � 1.
There does not seem to be simple scaling relations for the (sub-dominant)
tearing modes in the regime Λν � 1 and Λη > 1 for θ � θB.

The critical value of the Elsasser number at which the fastest
growing tearing modes (along the direction θ � θB) grow faster
than the fastest growing Kelvin–Helmholtz modes (along the
direction θ � θV) is very close to (but slightly less than) unity,
i.e., Λc

η � 1, see Figure 5. The existence of a an order unity
critical Elsasser number that dictates the linear evolution of the
MRI has already been appreciated on both numerical (Sano
et al. 1998; Fleming et al. 2000) and analytical grounds (see,
e.g., Sano & Miyama 1999; Pessah & Chan 2008). Here, we
posit that this critical Elsasser number also distinguishes which
type of parasitic instability dominates the subsequent evolution
of the MRI. In the remainder of this section we argue, and
demonstrate in Section 6, that there are two regimes such that
the fastest growing parasitic modes correspond to

Λη > Λc
η � 1 → Kelvin–Helmholtz, (41)

Λη < Λc
η � 1 → Tearing modes. (42)

The linear dependence of the fastest parasitic growth rates on
the amplitude B0, or V0, when both viscous and resistive effects
are unimportant is to be expected, see Equations (27) and (28).
However, the linear dependence of the fastest growth rates on B0
and Λη for Λη � 1 is not a trivial result. These dependences are
responsible for the asymptotic behaviors described in Section 4.

5.2.1. Kelvin–Helmholtz Modes

For the fastest growing Kelvin–Helmholtz instabilities with
Λν � 1 and Λη > 1, the ratio of the horizontal parasitic
wavenumber to the wavenumber of the fastest growing primary
MRI mode depends very weakly on either Λν or Λη, see Table 1,
with

kh,max

Kmax
� 0.59 for Λν � 1, Λη > 1. (43)

Therefore, restoring the physical dimensions into Equation (38),
we obtain

smax � 0.44
ωKH,0 Ω0

ωAz

� 0.45 ωKH,0, (44)

where ωAz is the ideal Alfvén frequency and ωKH,0 ≡ kh V0,
which corresponds to the growth rate associated with a
Kelvin–Helmholtz instability feeding off a velocity field dis-
continuity of amplitude V0. Therefore, the amplitude of the
MRI magnetic field at which the growth rate of the parasites
matches the growth of the primary mode can be obtained using
Equation (38), which leads, in agreement with Figure 3, to

Bsat
0 � 3.8 for Λν � 1, Λη > 1. (45)

5.2.2. Tearing Modes

For the fastest growing tearing modes with Λν � 1 and
Λη < 1, the ratio of the horizontal parasitic wavenumber to the
wavenumber of the fastest growing primary MRI mode depends
very weakly on either Λν or Λη, see Table 1,

kh,max

Kmax
� 0.48 for Λν � 1, Λη < 1. (46)

Therefore, Equation (40) leads to

smax � 0.31
ωA0 ωAz

ωη

� 0.36 ωA0, (47)
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where we have defined ωA0 ≡ khB0/
√

4πρ, as the Alfvén
frequency associated with the horizontal MRI magnetic field B0
and used that ωη = √

3/4 ωAz. The amplitude of the magnetic
field that the MRI needs to grow to in order for the growth rate of
the parasites to be as large as that corresponding to the primary
mode is obtained using Equation (40). This leads, in agreement
with Figure 3, to

Bsat
0 � 5.0 for Λν � 1, Λη < 1. (48)

We can formulate a heuristic argument for the existence
of an asymptotic limit for the amplitude B0 in this regime.
The analysis of the classical tearing mode instability, where
B0 = B0 tanh(Kz), with K fixed, leads to growth rates γ ∼
(ηK2)α(KB0)1−α with α = 1/2 or α = 3/5 depending on
the details of how the problem is solved in the resistive layer
(see, e.g., Furth et al. 1963; Sturrock 1994). For η � 1 � ν,
there are only two characteristic scales in the problem, the
resistive timescale (ηK2)−1 and the Alfvén timescale (KB0)−1.
Therefore, the growth rate of the parasites must be s ∼
(ηK2)α(KB0)1−α = ηαK1+αB1−α

0 , with 0 � α � 1. At a fixed
scale K, the growth rate of the secondaries is proportional to a
positive power of the resistivity, s ∼ ηα . However, if the scale
K is given by the fastest growing MRI mode then K ∼ η−1 and
thus smax ∼ (B0)1−α/η. In this case, because Γmax ∼ η−1, the
amplitude B0 at which smax = Γmax must be independent of η,
i.e.,

smax � Γmax ∼
(

η
1

η2

)α (
B0

η

)1−α

∼ 1

η
. (49)

Therefore, B0 → const for Λη 	 1, i.e., the amplitude to
which the primary MRI magnetic field needs to grow to in order
for both growth rates to become comparable is independent
of the Elsasser number. This means that, as resistivity increases
the magnetic field that can be generated by the MRI before
the tearing modes become dynamically important reaches an
asymptotic, constant value. However, as we showed in Section 4,
the associated stress decreases with Pm Λν ≡ Λη for Λη 	 1.
This is because, in this limit, V0/B0 	 1 and the stress behaves
like T̄rφ ∼ B2

0 | sin θB cos θB| ∼ Pm Λν ≡ Λη, see Figure 7.

6. KELVIN–HELMHOLTZ AND TEARING EIGENMODES

Throughout this paper, we have stated that the fastest parasites
are related to Kelvin–Helmholtz and tearing mode instabilities
in the regimes Λη � 1 and Λη < 1, respectively. The reason to
delay presenting the rigorous evidence supporting these claims
up to this point is based on the existence of the asymptotic
regimes and scaling laws presented in Section 5. We can
now focus on the region of parameter space with “moderate”
Elsasser number, Λη � 1, where changes in Λη produce
non-trivial modifications to the parasitic mode structure. With
this knowledge, and the insight gained in Section 5, it is
straightforward to describe the structure of these modes in the
limits of large and small Elsasser numbers.

6.1. Physical Structure of Parasitic Modes

In order to understand the nature of the most relevant
secondary modes, we analyze the structure of their velocity
δv‖ and magnetic fields δB‖ along the directions associated
with their fastest growth, i.e., θ = θmax. For fixed values of
the dissipation coefficients, the growth rates of the secondary

Figure 7. Plot of the function | sin θB cos θB|, where θB corresponds to the angle
subtended by the magnetic field of the fastest MRI mode and the radial direction.
In the ideal limit, with Λη � Λν � 1, | sin θB cos θB| → 1/

√
2, while in the

inviscid, resistive limit, i.e., Λν � 1 and Λη 	 1, | sin θB cos θB| → Pm Λν ≡
Λη . Because Bsat

0 → const, the behavior of this function is responsible for the
decrease of the MRI stress shown in Figure 4.

(A color version of this figure is available in the online journal.)

instabilities peak around directions which are almost aligned
with either the velocity or magnetic fields of the primary MRI
mode, i.e., θmax � θV for Λη � 1 and θmax � θB for Λη 	 1,
see Figure 5. Motivated by the physical characteristics of the
Kelvin–Helmholtz and tearing modes, we calculate the vorticity
δω⊥ and current density δ j⊥ associated with the parasitic modes
in the directions that are perpendicular to the planes defined
by θ ≡ θmax. We also analyze the Lagrangian displacements
ξz induced by the secondary modes which provide useful
complementary information regarding the reconnection of the
magnetic field associated with the MRI.

Understanding the structure of the secondary modes requires
calculating δv(x, y, z) and δb(x, y, z). However, in the incom-
pressible limit we can calculate δv‖, δB‖, δω⊥, and δ j⊥ directly
in terms of the Fourier coefficients for δvz and δbz obtained from
Equations (27) and (28). In order to do this, it is useful to define
a new coordinate system (h, p, z) that is rotated with respect to
(x, y, z) about the ž-direction by θmax. We define the coordinates
h and p such that they increase along the direction of the versors4

ǩh and ǩp, respectively, with ǩh × ǩp = ž and ǩp× ž = ǩh, see
Figure 2.

6.1.1. Velocity and Magnetic Fields

In the new coordinate system, the velocity and magnetic fields
of the parasitic modes have components

δv = δvh ǩh + δvp ǩp + δvz ž, (50)

δB = δBh ǩh + δBp ǩp + δBz ž. (51)

Since kh · x ≡ khh, the secondary perturbations δvz and δBz in
Equations (23) and (24) become

δvz(h, z) =
∞∑

n=−∞
αne

−i(n+kz)ze−ikhh, (52)

4 In order to simplify notation, in this section we refer to the versor
associated with the direction of fastest growth, i.e. ǩh,max, simply as ǩh.
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δBz(h, z) =
∞∑

n=−∞
βne

−i(n+kz)ze−ikhh. (53)

Because we are considering an incompressible fluid, δv · ǩh =
∂zδvz/(ikh) and δB · ǩh = ∂zδBz/(ikh). We can thus calculate
the projection of the velocity and magnetic field of a given
parasitic mode onto the plane defined by (ǩh, ž), i.e.,

δv‖ = (δv · ǩh)ǩh + δvz ž, (54)

δB‖ = (δB · ǩh)ǩh + δBz ž, (55)

just in terms of the Fourier coefficients {αn} and {βn} as

δv‖(h, z) = 1

kh

∞∑
n=−∞

(n + kz)αne
−i(n+kz)ze−ikhh ǩh

+
∞∑

n=−∞
αne

−i(n+kz)ze−ikhh ž, (56)

δB‖(h, z) = 1

kh

∞∑
n=−∞

(n + kz)βne
−i(n+kz)ze−ikhh ǩh

+
∞∑

n=−∞
βne

−i(n+kz)ze−ikhh ž. (57)

Note that the components of the three-dimensional velocity
and magnetic fields that are orthogonal to these planes are
independent of the coordinate p. Thus, using the fact that
the divergence is invariant under rotations, we conclude that
the divergence of the two-dimensional vector fields that lie
on the plane (ǩh, ž) should vanish, i.e., ∇ · δv‖ = ∇ · δB‖ = 0.

6.1.2. Vorticity and Current Density

The components of the vorticity and current density perpen-
dicular to the plane defined by (ǩh, ž), i.e., δω⊥ = δω⊥ ǩp and
δ j⊥ = δj⊥ ǩp, are given by

δω⊥ = δω · ǩp = (∇ × δv) · ǩp = (∇ × δv‖) · ǩp, (58)

δj⊥ = δ j · ǩp = (∇ × δB) · ǩp = (∇ × δB‖) · ǩp, (59)

where the action of the curl operators is given by

∇ × δv‖ = (∂zδvh − ∂hδvz) ǩp, (60)

∇ × δ j‖ = (∂zδBh − ∂hδBz) ǩp. (61)

Therefore, using Equations (56) and (57), we obtain

δω⊥ = i ǩp

kh

∞∑
n=−∞

[
k2

h + (n + kz)
2
]
αne

−i(n+kz)ze−ikhh, (62)

δ j⊥ = i ǩp

kh

∞∑
n=−∞

[
k2

h + (n + kz)
2
]
βne

−i(n+kz)ze−ikhh. (63)

6.1.3. Lagrangian Displacement

The vertical Lagrangian displacement ξz provides useful
complementary information to help us identify the physical
nature of the eigenmodes. The rate of change in the Lagrangian
displacement ξ with respect to a point moving with velocity v
is given by

dξ

dt
≡ ∂ξ

∂t
+ (v · ∇)ξ = δv + ξ · ∇v. (64)

In the periodic background provided by the primary MRI
mode, the Lagrangian displacement is of the form ξ (x, t) =
ξ 0(z) exp[st − ik · x] with ξ 0(x + 2π/K ž) = ξ 0(x). Therefore,
considering the MRI velocity field, Δv = V 0 sin(Kz), as the
background velocity, we obtain ξz in terms of the vertical
Eulerian velocity δvz in Equation (52) as

ξz(h, z) = δvz(h, z)

s − ikh · Δv
. (65)

6.2. Parasitic Mode Identification

In Section 5, we showed that the eigenvalues corresponding
to the growth rates of the parasitic modes reached well defined
asymptotic regimes for Λη 	 1 and Λη � 1 in the limit
Λν � 1. This must also be true for the eigenmodes. It is then
only necessary to explore in detail the behavior of the modes
for moderate values of Λη. We thus focus our attention in the
region of parameter space spanned by Λη = {0.1, 1, 10, 102}.
The structures of the fastest parasitic modes are shown in
Figure 8, from left to tight. The projections of the velocity
and magnetic fields onto the planes defined by (ǩh, ž), i.e.,
δv‖(h, z) and δB‖(h, z), are shown with white arrows in the
upper and lower panels, respectively. The color contours show
the projection of the vorticity and current density along the
direction ǩp (perpendicular to the page), i.e., δω⊥ and δ j⊥.
The red and blue colors correspond to the maximum positive
and minimum negative values associated with the vorticity and
current density of each mode.

6.2.1. Tearing Modes

For the Elsasser number Λη = 10−1, the versor characterizing
the direction of fastest growth, ǩh, points in the direction
θmax � θB, see Figure 5 and Table 1. This mode, shown in
the leftmost (upper and lower) panels of Figure 8, feeds off the
current density of the primary MRI mode. The corresponding
mode structure resembles closely the perturbations in the current
density and induced vorticity patterns expected in the analysis
of the stability of a set of equidistant current sheets distributed
along the ž-direction and alternating sense according to ±ǩp,
(see Figure 5.7 in Boyd & Sanderson 2003).

The current density of the secondary modes presents maxima
and minima along the planes Kz = ±nπ/2 where the mag-
netic field of the primary mode, ΔB = B0 cos(Kz), reverses
sign. Thus, the fluctuations induced by these fastest resistive
secondary modes tend to promote reconnection of the MRI
field. This can be better appreciated by analyzing the vertical
Lagrangian displacement shown in the leftmost panel of
Figure 9. There is another set of periodic maxima and minima in
the current density fluctuations that lie on planes Kz = 0,±nπ ;
these are the locations where the currents associated with
the MRI magnetic field vanish. Thus, these current density
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Figure 8. Physical structure of the fastest parasitic modes for Λη = {0.1, 1, 10, 102}, from left to right, with Λν � 1. The arrows in the upper and lower panels
correspond to the projections of the velocity, δv‖(h, z), and magnetic field, δB‖(h, z), of the parasitic modes onto the plane defined by the z-axis and the direction θmax.
The color contours correspond to the associated vorticity, δω⊥, and current density, δ j⊥, projected in the direction perpendicular to θmax, see Figures 1, 2, and 5. The
leftmost (upper and lower) panels show the vorticity and current density patterns characteristic of the tearing mode instability (see Figure 5.7 in Boyd & Sanderson
2003). The next set of three upper panels show clear signatures of the Kelvin–Helmholtz instability in the vorticity contours (see Figure 1.7.2 in Batchelor 2000). The
lower panels show the (less familiar) current density perturbations associated with these Kelvin–Helmholtz modes.

(A color version of this figure is available in the online journal.)

Figure 9. Vertical Lagrangian displacement ξz(h, z) corresponding to the fastest growing parasitic modes projected onto the plane defined by the z-axis and the
direction θmax. The panels correspond to Λη = {0.1, 1, 10, 102}, from left to right, with Λν � 1. The convergence of the displacement field toward the null surfaces
of the MRI magnetic field, ΔB ∝ cos(Kz), located at Kz = ±nπ/2, is evident in the leftmost panel. This feature is characteristic of a tearing mode; the associated
motions are ultimately responsible for reconnecting the MRI magnetic field and limiting its growth. The next three panels show the displacements associated with the
fastest Kelvin–Helmholtz modes, which mainly tend to bend the MRI magnetic field without directly promoting reconnection.

perturbations do not seem to be due to the unstable configu-
ration presented by the MRI currents themselves. They rather
seem to be needed to satisfy the periodic constraints on the scale
of the unstable MRI mode.

The observed mode structure is qualitatively insensitive to the
value of the Elsasser number as long as Λη < 1 and Λν � 1, the
growth rates and lengthscales associated with each value of Λη

change, of course, as discussed in Section 5. We thus conclude
that the fastest parasitic modes correspond to tearing modes
for Λη < 1. These parasitic modes are enabled by non-zero

resistivity and are thus absent in the ideal MHD regime studied
by Goodman & Xu (1994).

6.2.2. Kelvin–Helmholtz Modes

For the Elsasser numbers Λη = {1, 10, 102}, the versors
ǩh characterizing the direction of fastest growth point in the
direction θmax � θV for the three rightmost sets of panels in
Figure 5, see also Table 1. These modes, shown in the three
rightmost (upper and lower) panels of Figure 8, feed off the shear
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Figure 10. Physical structure of the fastest parasitic modes, including the velocity and magnetic fields of the primary MRI modes, for Λη = {0.1, 1, 10, 102}, from
left to right, with Λν � 1. The arrows in the upper and lower panels correspond, respectively, to the projections of the total (primary plus secondary) velocity,
ΔV ‖ + δv‖(h, z), and magnetic fields, ΔB‖ + δB‖(h, z), onto the plane defined by the z-axis and the direction θmax. The color contours correspond to the associated
total vorticity and total current density projected onto the direction perpendicular to θmax.

(A color version of this figure is available in the online journal.)

in the velocity field of the corresponding primary MRI modes.
The velocity and vorticity fields show a periodic structure similar
to what is expected from the stability analysis of a periodic set
of equidistant vortex sheets distributed along the ž-direction and
alternating sense according to ±ǩp.

The mode structure in the velocity and vorticity fields, as
well as the growth rates and lengthscales, associated with each
value of Λη are quantitatively insensitive to the value of the
Elsasser number as long as Λη � 1 and Λν � 1, as discussed
in Section 5. The structure of the current densities associated
with these modes show some evolution as a function of Λη > 1.
However, these modes are not intrinsically modified from pure
Kelvin–Helmholtz modes since the amplitude of the fluctuations
in the magnetic and current density fields is much smaller
than the fluctuations in the velocity and vorticity fields. We
thus conclude that the fastest parasitic modes correspond to
Kelvin–Helmholtz modes for Λη > 1. In the limit Λη � 1, these
correspond of course to the Kelvin–Helmholtz modes alluded
to in Goodman & Xu (1994).

The current density of the secondary modes vanishes along,
and also in the vicinity of, the planes Kz = ±nπ/2 where the
magnetic field of the primary mode, ΔB = B0 cos(Kz), changes
sign. The corresponding Lagrangian displacements associated
with these modes for Λη = {1, 10, 102} are shown in the three
rightmost panels in Figure 9, respectively. The fluctuations
induced by the fastest growing Kelvin–Helmholtz secondary
instabilities tend to bend the horizontal MRI magnetic field
without directly promoting their reconnection.

6.2.3. Inclusion of MRI-background Fields

The white arrows in the upper and lower panels of Figure 10
show the structure of the velocity and magnetic fields in Figure 8

when the background MRI fields are added to the secondary
modes. The projections of the total velocity and magnetic fields
onto the planes defined by (ǩh, ž), are given by ΔV ‖ + δv‖(h, z)
and ΔB‖ + δB‖(h, z), where

ΔV ‖ = V 0 sin(Kz) cos(θmax − θV), (66)

ΔB‖ = B0 cos(Kz) cos(θmax − θB). (67)

The color contours show the projection of the total vorticity
and current density along the direction ǩp (perpendicular to the
page), i.e., δω⊥,0 + δω⊥ and δ j⊥,0 + δ j⊥. The contributions of
the primary MRI mode are given by

δω0,⊥ = ∇ × ΔV ‖ = V0 cos(Kz) cos(θ − θV) ǩp, (68)

δ j0,⊥ = ∇ × ΔB‖ = − B0 sin(Kz) cos(θ − θB) ǩp. (69)

In all cases, the amplitude of the primary mode V0 and B0 is such
that the fastest secondary modes grow as fast as the primary MRI
mode, i.e., smax(ν, η,Kmax) = Γmax(ν, η).

The addition of the MRI fields facilitates the identification of
the velocity and magnetic fields that result from the influence
of the secondary instabilities with the more familiar structures
that are expected from Kelvin–Helmholtz and tearing mode
instabilities in periodic backgrounds. In particular, it highlights
the presence of “O” and “X” points in the case of the tearing
mode and the wave-like structure of the velocity field in the
cases associated with Kelvin–Helmholtz modes.
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7. DISCUSSION

7.1. This Work in Context

Understanding from first principles the saturation of MHD
turbulence, and the associated angular momentum transport,
driven by the MRI in astrophysical disks surrounding young
stars and compact objects is a challenging endeavor. The large
dynamical range in temperatures, densities, and magnetic fields
in these accretion disks implies that the dimensionless variables
parameterizing dissipation span a wide range of values. Numer-
ical simulations are indispensable tools for understanding the
properties of MRI-driven turbulence in different environments.
However, most numerical studies to date have been carried out
either without physical dissipation or with dissipation coeffi-
cients that have a small overlap with the regions of parameter
space relevant to either astrophysical or experimental setups, see
Section 4.1. In order to gain physical insight into the regimes
of interest, it seems necessary to combine the results of numer-
ical simulations with analytical efforts aim at identifying the
essential processes at work.

The idea that secondary instabilities can limit the growth of
the MRI, and (more speculatively) play a role in the subsequent
turbulent state, was put forward by Goodman & Xu (1994) and
has been considered in more detail by a number of works more
recently (Sano 2007; Bodo et al. 2008; Obergaulinger et al. 2009;
Latter et al. 2009; Pessah & Goodman 2009; cf., Knobloch &
Julien 2005; Jamroz et al. 2008a, 2008b). In this paper, we
carried out a thorough study of the spectrum and physical
structure of parasitic modes that feed off exact MRI modes
when the amplitude of the magnetic field produced by the MRI
is such that the instantaneous growth rate of the fastest parasitic
mode matches that of the fastest primary mode. Following
Pessah & Goodman (2009), we argued that this “saturation”
amplitude provides an estimate of the magnetic field that can be
generated by the MRI before the secondary instabilities suppress
its growth significantly. While we invoked several assumptions
and approximations in order to make the problem tractable,
our approach enabled us to explore dissipative regimes that
are relevant to astrophysical and laboratory conditions that lie
beyond the regime accessible to current numerical simulations.

We mention two limitations imposed by our assumptions that
are worth emphasizing due to their potential significance (see
also the related discussion in Section 2.4 in Latter et al. 2009).
(1) we neglected the effects of shear on the dynamics of the
secondary modes. Non-axisymmetric parasitic modes will shear
linearly in time (Goodman & Xu 1994); therefore, assuming
fixed horizontal versors for the parasites is an approximation.
(2) We ignored the explicit coupling between the evolution
of the MRI modes and the secondary instabilities. As the
secondary modes grow they drain energy from the primary
modes; therefore their growth rates, which rely on the amplitude
of the MRI, could be affected. This approximation might also
affect the estimates of the saturation amplitude of the MRI
modes, since they provide the source of energy that feeds the
parasites. Thus, the extrapolation of the results presented here to
the nonlinear regime should be complemented with the pertinent
quota of skepticism. Having said this, at present, the properties
of parasitic modes described here provide valuable analytical
guidance and a basic framework to design and interpret tailored
numerical experiments in order to shed light into the nonlinear
saturation of the MRI.

We summarize here our results and explain how several
features of numerical simulations designed to address the

Figure 11. Predicted values for the ratio of stress to magnetic energy density,
i.e., the product αsatβsat, if saturation occurs when the fastest parasitic and
primary MRI growth rates match. For Λν � 10, Equations (70) and (71)
describe the results of the parasitic mode analysis remarkably well. In the
quasi-ideal MHD limit, applicable to the fully ionized regions of accretion
disks, αsatβsat = 0.4. In the inviscid, resistive limit, applicable to poorly ionized
regions of protoplanetary disks αsatβsat = 0.5 Λη . These results are consistent
with the numerical simulations shown in Figure 20 of Sano & Stone (2002), see
the discussion in the text for more details. The modes responsible for saturation
correspond to Kelvin–Helmholtz and tearing modes for Elsasser numbers Λη

larger and smaller than unity, respectively. The Elsasser number for current MRI
experiments is close to unity. In this regime, both types of modes present similar
growth rates.

(A color version of this figure is available in the online journal.)

saturation of the MRI in protoplanetary disks and accretion
disks surrounding compact objects can be interpreted in terms
of our findings.

7.2. Results, Scaling Laws, and Parasitic Mode Identification

When the magnetic fields involved are weak enough so that
the incompressible limit holds, the dynamics of the MRI and
the parasitic instabilities depend only on any two independent
dimensionless numbers that can be formed using the Elsasser
number, Λη ≡ v̄2

Az/(ηΩ0), and is its viscous counterpart,
Λν ≡ v̄2

Az/(νΩ0). Motivated by recent works that suggest that
the saturation amplitude of the MRI depends on the magnetic
Prandtl number (Umurhan et al. 2007a; Lesur & Longaretti
2007), we considered Λν and Pm ≡ Λη/Λν as independent
parameters.

We found, however, that the parameter driving the behavior
of the growth rates of the parasites and the MRI, and thus
the magnetic energy density and stresses at saturation, is the
Elsasser number Λη. In particular, we found that, as long as
viscous dissipation is small, i.e., Λν � 10, then there exists
two regimes (see Figure 11): (1) quasi-ideal MHD, where the
physical properties of the MRI and parasitic instabilities are
insensitive to dissipation. This holds as long as Λη > 1, which
is applicable to the fully ionized regions of accretion disks
around compact objects. (2) Inviscid, resistive MHD, where
all the relevant dependences on Λν and Pm are only through
the product Pm Λν , i.e., the Elsasser number Λη. This regime
corresponds to Λη < 1, and characterizes poorly ionized regions
of protoplanetary disks (Jin 1996; Sano & Miyama 1999). The
Elsasser number for current Taylor–Couette MRI experiments
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is close to unity (Nornberg et al. 2010). In this regime, both
types of modes present similar growth rates.

We estimated the amplitude of the magnetic fields and
stresses generated by the MRI when the secondary instabilities
become dynamically important. The saturation amplitude of
the magnetic fields is fairly insensitive to dissipation with
Bsat

0 /B̄z � 4–5. However, the stress behaves very differently. For
Λη > 1 the stress reaches an asymptotic value independent of the
dissipation coefficients, while for Λη < 1 the stress decreases
linearly with decreasing Elsasser number, i.e., T̄ sat

rφ ∝ Λη. This
result is consistent with the numerical simulations of resistive
MHD shearing boxes carried out by Fleming et al. (2000) and
Sano & Stone (2002) discussed below. We calculated the ratio
between the stress and the magnetic energy density associated
with the primary MRI mode in two regimes of interest and
obtained

αsatβsat � 0.4 for Λν � 1, Λη > 1, (70)

αsatβsat � 0.5 Λη for Λν � 1, Λη < 1. (71)

This anti-correlation between αsat and βsat is seen in the
numerical simulations of “ideal” MHD (i.e., without explicit
dissipation) in Hawley et al. (1995), as well as in the resistive
runs in Sano et al. (1998). We understood these results in terms
of the behavior of both primary and secondary modes.

We showed that important properties of the fastest secondary
instabilities found in Pessah & Goodman (2009) for the region
of parameter space accessible to current numerical simulations
are generic. The fastest parasitic modes are non-axisymmetric,
have purely real growth rates, have the same vertical periodicity
as the primary MRI mode, and horizontal wavelengths that are
roughly twice as long. Their wavevectors kh are nearly aligned
with either the velocity or the magnetic field of the primary
mode. The first type dominate for Λη � 1 and correspond
to Kelvin–Helmholtz modes that feed off the velocity shear
induced by the MRI and reach their maximum growth rates
along the direction of the MRI velocity field. The second type
dominate for Λη < 1 and are related to tearing modes that feed
off the MRI currents and grow the fastest along the direction of
the MRI magnetic field.

We emphasized the importance of understanding the structure
of the vorticity and current density patterns associated with
the secondary instabilities, as they provide a mean to confirm
their association with Kelvin–Helmholtz and tearing mode
instabilities. The analysis presented in Section 6 suggests a
strategy to recognize the presence of parasitic modes and attempt
to identify their nature: (1) evolve the simulation until the
breakdown of the initial exponential growth or subsequent peaks
in stress or magnetic energy, (2) dissect the simulation domain
in planes perpendicular to the mid-plane that contain the z-axis,
(3) project the velocity and magnetic field in these planes and
take the curls in order to obtain the corresponding vorticity
and current density, and (4) determine whether these resemble
what is expected from the Kelvin–Helmholtz or tearing mode
instabilities.

7.3. Connection to Previous Works

7.3.1. Evolution of MRI in Two and Three Dimensions, Extent of
Simulation Domains, and Aspect Ratios

Exploiting the numerical advantages of working with
two-dimensional, axisymmetric simulations, Masada & Sano

(2008) explored the effects of explicit viscosity with Λν =
{0.01, 0.1, 1, 10} (and no explicit resistivity) and explicit
resistivity with Λη = {0.1, 0.3, 1, 10, 100} (and no explicit
viscosity). The fact that the fastest secondary modes are
not axisymmetric suggests that the transition to turbulence, and
perhaps the subsequent nonlinear evolution, should be rather dif-
ferent in two-dimensional, axisymmetric and three-dimensional
numerical simulations, see e.g., Guan & Gammie (2008) and
Obergaulinger et al. (2009). Indeed, the viscous simulations
shown in Figures 4(a) and 7 in Masada & Sano (2008) do not
seem to reach saturation.

The wavelength of the fastest growing MRI mode increases
as viscosity and resistivity increase (Pessah & Chan 2008). If the
vertical extent of the simulation domain is not large enough, the
fastest growing mode, or even the smallest unstable mode, might
not fit in the domain. This might lead to spurious dependences of
the saturation on the dissipation coefficients (see below). Two-
and three-dimensional simulations with aspect ratios Lr/Lz = 1
seem to evolve differently than those with Lr/Lz � 2. This
has been seen in both types of setups by Obergaulinger et al.
(2009) and Bodo et al. (2008). This could be due the fact that
both axisymmetric and the fastest growing (non-axisymmetric)
parasitic modes have horizontal wavelengths larger than the
vertical wavelength of the primary MRI mode. However, once
the fastest parasites are allowed to evolve unimpeded, increasing
the aspect ratio further should not alter the results significantly.

Therefore, in order to reliably assess the dependence of the
saturation of the MRI on the value of the dissipation coefficients,
three-dimensional domains with Lz > λMRI ≡ 2π/Kmax(ν, η)
and Lr/Lz > 2 seem to be required.

7.3.2. Transition to Turbulence and Recurrence of Channels

As resistivity increases, the timescale for the MRI to grow
to amplitudes such that the parasites become dynamically
important also increases. This behavior is in agreement with
the results presented in Fleming et al. (2000). Their Figure 2
shows that the mechanism that disrupts the initial exponential
growth of the MRI (arguably related to the instabilities under
study) is sensitive to the values of microphysical dissipation,
with more resistive runs reaching higher amplitudes.

The ratio of the peak magnetic energy density between their
more resistive runs, corresponding to5 Λη � 1, and the least
resistive simulation, which behaves similarly to their simulation
without explicit dissipation, is about 10. This is in contrast to
our expectation that these saturation amplitudes should not differ
by more than a factor of 2, see Figure 3. Note, however, that
the fastest growing mode in their “ideal” run corresponds to
λMRI = Lz/2 while in the very resistive runs λMRI = Lz. This
means that the fastest parasites, which quite generically posses
horizontal wavelengths that are roughly a factor of 2 longer
than the fastest growing MRI mode, might be suppressed in the
more resistive simulations, which could account for the larger
amplitudes observed.

Fleming et al. (2000) and Sano & Inutsuka (2001) studied the
effects of resistivity in the subsequent recurrent emergence of
organized fluid motions with highly correlated magnetic fields
(so-called “channels”). The resistive simulations of Fleming
et al. (2000) show the same type of quasi-periodic variations
in the mean stress observed in “ideal” MHD simulations after
the break up of the initial exponential growth. The amplitude

5 Note that their definition of magnetic Reynolds number Rm is related to our
definition of Elsasser number via Λη ≡ 2Rm/β with β = 400.
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of the fluctuations around the mean and the timescales involved
increase as resistivity increases, see their Figure 2. This type
of fluctuations are known to be reduced significantly when the
aspect ratio Lr/Lz increases beyond a factor of 2 (Bodo et al.
2008). For the more resistive simulations, the wavelength of the
fastest MRI mode is λMRI = Lz. It is thus tempting to attribute
the persistence of these fluctuations to the suppression of the
fastest parasitic modes in the simulations with Lr/Lz = 1.

The parasitic instabilities limit the amount of energy that the
MRI can extract from the differential rotation. This suggests
that the larger peak amplitudes of the fluctuations in the more
resistive runs could be due to the fact that the timescale
for the MRI to grow to amplitudes such that the parasites
become dynamically important increases with resistivity. Once
the ordered motions of the primary modes are disrupted by
the fastest available parasitic modes, nonlinear interactions are
arguably responsible for the cascade of energy to smaller scales
where it dissipates. Since more magnetic energy needs to be
dissipated after the reconnection of recurrent fluctuations with
higher amplitudes, the longer timescales involved in the more
resistive runs seem natural.

The fact that the peak amplitude of the initial exponential
growth is larger than the subsequent fluctuations can be ex-
plained in terms of the corresponding amplitude of the seed
fluctuations that excite the parasites. The amplitude to which
the MRI can grow before the parasites reach similar ampli-
tudes is sensitive to the initial amplitude of the seed fluctuations
that excite the secondary instabilities. In the absence of explicit
perturbations to seed the secondary instabilities in the linear
regime of the MRI, the amplitude of the fastest growing MRI
mode could overshoot our estimates by a large factor, which de-
pends logarithmically on the amplitude of the seed fluctuations
(Pessah & Goodman 2009). The subsequent channels are emerg-
ing from a turbulent background where the seed fluctuations for
the parasites are larger. Therefore, these parasites will be able to
reach an amplitude similar to that of the dominant primary MRI
mode faster than the parasites responsible for halting the initial
exponential growth. This would result in smaller amplitudes for
the subsequent channels (cf. Latter et al. 2009, where it is sug-
gested that the smaller amplitude of the recurrent channels is
due to interactions between modes.)

There is numerical evidence that suggests that ohmic heating
due to the reconnection of MRI field lines is an important source
of energy in resistive MHD (Fleming et al. 2000; Sano &
Inutsuka 2001). Although this reconnection process has been
attributed to the ideal parasitic instabilities studied in Goodman
& Xu (1994), this is a clear signature of non-ideal MHD
effects. In allowing for non-zero resistivity and calculating the
currents associated with the secondary instabilities, we have
gone one step forward in establishing the chain of processes
that enable the conversion of gravitational energy into thermal
energy in differentially rotating, magnetized, non-ideal plasmas.
The properties of tearing modes discussed in Section 6 should
provide better guidance for interpreting these reconnection
events.

7.3.3. Dependence of Saturation on Dissipation Coefficients: Elsasser
Number versus Magnetic Prandtl Number

In the region of parameter space where our analysis overlaps
with the regime accessible to the numerical simulations of Lesur
& Longaretti (2007), the values of αsat are within factors of a few
of the values obtained in the turbulent regime. The dependence
on the stresses at saturation on the magnetic Prandtl number

in our calculations is less pronounced than what they report
and the predicted value of αsat is smaller, by a factor of 6
at Pm = 1. Part of these differences can be accounted for
with a more sensible operational definition of saturation. Pessah
& Goodman (2009) provide a way to estimate the amplitude
of the fields at saturation when primary and secondary modes
reach comparable amplitudes based on the values obtained when
they reach equal growth rates. They conclude that the overshoot
factor, which depends logarithmically on the initial amplitude of
the parasite, is likely between � 3 and � 10. These arguments
are applicable quite generically since they mainly rely on the
fact that the growth rate of the fastest secondary modes is linear
in the amplitude of the primary MRI mode, see Section 5.

We posit that it is then conceivable that Equations (70)
and (71) could provide, within factors of a few, a reasonable
description of the saturation level of the MRI in a wide region
of parameter space. Our results suggests that, as long as viscous
dissipation does not dominate the dynamics of the fluid, i.e.,
Λν � 10, which is the case in many astrophysical environments,
as well as in laboratory experiments (see Section 4) then the
angular momentum transport due to the MRI depends mainly
on the Elsasser number (see Figure 11). The numerical results
presented in Sano & Stone (2002) and Fleming et al. (2000)
seem to support this statement.

Sano & Stone (2002) carried out an extensive numerical study
of the saturation of the MRI considering ohmic dissipation and
Hall terms, with no explicit viscosity. They identify the existence
of a critical Elsasser number of order unity, Λc

η � 1, which
is independent of the strength and geometry of the magnetic
field or the magnitude of the Hall term. For Elsasser numbers
Λη > 1, the stress at saturation is rather insensitive to Λη.
However, for Λη < 1, they find that the mean value of the stress
decreases linearly with the Elsasser number, i.e., T̄ sat

rφ ∝ Λη,
see their Figure 20. This result describes numerical simulations
spanning a wide range of Elsasser numbers and magnetic field
configurations.6 The inclusion of Hall terms does not seem to
affect these results significantly. Even though the most resistive
simulations carried out in Fleming et al. (2000) correspond to
Elsasser numbers slightly larger than unity, their Table 1 shows
that the stress at saturation decreases linearly with increasing
Elsasser number.

Recent works investigating the effects of dissipation on the
saturation of the MRI suggest that the saturation amplitude
depends on viscosity and resistivity mainly through the mag-
netic Prandtl number, Pm ≡ Λη/Λν . Umurhan et al. (2007a)
performed a weakly nonlinear analysis of the viscous, resis-
tive MRI in the limit of small magnetic Prandtl number, i.e.,
Pm 	 1. They found that the saturation amplitude is propor-
tional to Pm1/2, while the associated momentum transport scales
as Re−1, where Re ≡ Ω0L

2/ν is the Reynolds number. Lesur
& Longaretti (2007) carried out a series of shearing-box simu-
lations in incompressible MHD with explicit dissipation. In the
range of parameters that they explored, i.e., 1 � Λν � 100
and 0.1 � Pm � 10, the stress decreases with decreasing
magnetic Prandtl number as Pmδ with δ � 0.25–0.5, with a
weak dependence on the Reynolds number. Although it must be

6 Note that the subset of simulations with vertical background fields in Sano
& Stone (2002), show a dependence with Λη that is steeper than linear. The
inspection of their Table 1 suggests that this could be due to (1) resolution
constrains, for the simulations where several fast-growing MRI modes fit
within the box, (2) aspect ratios constrains, for the simulations where the most
unstable mode is well resolved but its vertical wavelength is of the order of Lz,
or (3) because the most unstable mode does not fit within the box.
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noted that the two approaches (weakly non-linear analysis ver-
sus three-dimensional simulations) are indeed quite different,
Lesur & Longaretti (2007) suggest that the difference between
their findings and those of Umurhan et al. (2007a) could be
related to boundary conditions.

It seems reasonable to argue that the saturation of the MHD
turbulence driven by the MRI at large values of magnetic
Prandtl number with Λη > Λν � 1 should converge toward
an asymptotic value. This limit does not seem to have been
achieved in Figure 10 in Lesur & Longaretti (2007). Perhaps the
highest Reynolds and magnetic Prandtl numbers considered,
which correspond in our definitions to Λν � 102 and Pm � 10,
are not large enough to observe the asymptotic limit suggested
by our analysis (see also their discussion regarding the effects
of limited resolution for this case).

It is tempting to examine the seemingly discrepant depen-
dences of saturation on Elsasser and magnetic Prandtl number
for the most dissipative simulations in Fleming et al. (2000)
and Lesur & Longaretti (2007). Fleming et al. (2000) consid-
ered ohmic dissipation but not explicit viscosity and it is thus
hard to assign a well defined magnetic Prandtl number to their
simulations. However, simulations without explicit dissipation
seem to be characterized by an effective magnetic Prandtl num-
ber of order unity (Simon et al. 2009). We could speculate that
the simulations with explicit resistivity but no explicit viscosity
in Fleming et al. (2000) correspond to Λη < Λν , and thus the
regime Λη � 1 corresponds to Pm � 1. However, the most
inviscid and resistive simulations in Lesur & Longaretti (2007)
correspond to Λν � 102 and Pm � 0.1, i.e., Λη � 10. Thus,
even though the viscosity seems small in these simulations, the
Elsasser number does not seem to be low enough for the stress
to show the behavior T̄ sat

rφ ∝ Λη for Λη < 1 found in Sano &
Stone (2002).

Our results suggest that the Elsasser number dictates the sat-
uration level of the angular momentum transport driven by
MHD turbulence in astrophysical disks and experiments, see
Figure 11. Despite the inherent limitations of the parasitic
mode analysis presented here, this result seems to be supported
by numerical simulations of Fleming et al. (2000) and Sano
& Stone (2002). However, given the rather small dynamical
range of dissipation coefficients that can be currently explored,
these conclusions warrant further examination. Additional nu-
merical studies with explicit viscosity and resistivity in three-
dimensional domains (that can accommodate for the most rel-
evant MRI and parasitic modes) seem to be necessary to fully
address whether the main parameter determining the satura-
tion of the MRI is the Elsasser number or the magnetic Prandtl
number.
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