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ABSTRACT

Cosmic structure formation is characterized by the complex interplay between gravity, turbulence, and magnetic
fields. The processes by which gravitational energy is converted into turbulent and magnetic energies, however,
remain poorly understood. Here, we show with high-resolution, adaptive-mesh simulations that MHD turbulence
is efficiently driven by extracting energy from the gravitational potential during the collapse of a dense gas cloud.
Compressible motions generated during the contraction are converted into solenoidal, turbulent motions, leading
to a natural energy ratio of Esol/Etot ≈ 2/3. We find that the energy injection scale of gravity-driven turbulence is
close to the local Jeans scale. If small seeds of the magnetic field are present, they are amplified exponentially fast
via the small-scale dynamo process. The magnetic field grows most efficiently on the smallest scales, for which
the stretching, twisting, and folding of field lines, and the turbulent vortices are sufficiently resolved. We find
that this scale corresponds to about 30 grid cells in the simulations. We thus suggest a new minimum resolution
criterion of 30 cells per Jeans length in (magneto)hydrodynamical simulations of self-gravitating gas, in order to
resolve turbulence on the Jeans scale, and to capture minimum dynamo amplification of the magnetic field. Due to
numerical diffusion, however, any existing simulation today can at best provide lower limits on the physical growth
rates. We conclude that a small, initial magnetic field can grow to dynamically important strength on timescales
significantly shorter than the free-fall time of the cloud.
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1. INTRODUCTION

Astrophysical fluids on virtually all scales are characterized
by highly complex turbulent motions. Besides being turbulent,
we know from observations that the gas is magnetized be-
tween galaxies and inside galaxies, as well as in individual
star-forming molecular clouds, down to the protostellar accre-
tion disks, which naturally accompany the birth of stars and
planetary systems. However, not just the present-day universe
is characterized by turbulence and magnetic fields. With the ad-
vent of large-scale computer simulations, it became clear that
primordial gas becomes highly turbulent during the formation of
the first galaxies and stars as well (e.g., Abel et al. 2002; O’Shea
& Norman 2007; Wise & Abel 2007; Clark et al. 2008; Greif
et al. 2008), which has far-reaching consequences for all cos-
mic structure formation. This turbulence provides an extremely
efficient way to amplify primordial seeds of the magnetic field
(e.g., Biermann 1950; Kulsrud et al. 1997; Lazar et al. 2009;
Xu et al. 2009; Miniati & Bell 2011) by the turbulent dynamo
process (see the review by Brandenburg & Subramanian 2005)
already during the earliest phases of structure formation in the
universe (Ryu et al. 2008). Here, the amplification of the mag-
netic field arises from sequences of a “stretch, twist, and fold”
nature, until the magnetic field lines are so tightly packed that
the magnetic energy density becomes comparable to the kinetic
energy density. Strong magnetic fields close to equipartition
may have been reached in normal disk galaxies already at red-
shifts of z � 3 (Bernet et al. 2008; Arshakian et al. 2009, and
references therein), emphasizing the significance of the dynamo
action even in the early stages of galaxy evolution and star for-

mation. Thus, magnetic fields may not only have a significant
impact on the gas dynamics and fragmentation in present-day
star formation (Hennebelle & Teyssier 2008), but potentially
also in primordial star formation.

Despite its ubiquity and importance for star formation (Mac
Low & Klessen 2004; Elmegreen & Scalo 2004; McKee &
Ostriker 2007), only very little is known about the origin of as-
trophysical turbulence and magnetic fields. Recently, Klessen &
Hennebelle (2010), Elmegreen & Burkert (2010), and Vazquez-
Semadeni (2010) suggested that a universal source for driving
astrophysical turbulence everywhere from cosmic scales and
galaxies, over galactic clouds, down to individual protostellar
disks is the accretion from their environment, i.e., by gravity-
driven flows, on all scales (see also, Field et al. 2008). Similar
ideas existed earlier. In particular, Hoyle (1953) showed that
during the contraction of a slightly unstable, nearly isother-
mal gas cloud, internal random motions can be excited. Odgers
& Stewart (1958) suggested that even fully irrotational mo-
tions can give rise to turbulence due to the Reynolds stresses.
Hoyle’s idea of gravity-driven turbulence was later refined by
Scalo & Pumphrey (1982), which they called “turbulent viri-
alization.” Fleck (1983) suggested that the injection of turbu-
lence by gravitational contraction is important in the interstel-
lar medium, and Begelman & Shlosman (2009) conclude that
angular-momentum transport during the turbulent collapse of a
gaseous system may suppress fragmentation.

Here, we show with numerical simulations that turbulence
and magnetic field growth are indeed efficiently driven by the
gravitational energy released during the collapse of a dense gas
cloud. The connection between gravity-driven turbulence and
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magnetic field amplification has also been suggested recently in
a model by Schleicher et al. (2010) and confirmed numerically
in Sur et al. (2010). In this process, potential energy is converted
into turbulent motions, which in turn amplify the magnetic
energy via the turbulent dynamo. Thus, the driving of turbulence
and magnetic field growth by gravitational infall may be the
consequence of a self-regulating instability. At the bottom of
this cascade, close to the sonic scale (Federrath et al. 2010b),
gas is expected to become subsonic as a consequence of a steep
rise in the temperature when the gas becomes optically thick.
During this process, compressible modes will be converted into
solenoidal turbulent motions, until a natural energy ratio of
Esol/Etot ≈ 2/3 is reached (Elmegreen & Scalo 2004; Federrath
et al. 2008b).

In this paper, we first discuss the physics of magnetic field
amplification by gravity-driven turbulence and subsequently
derive a new resolution criterion required to resolve these
processes. We aim to address the following key questions. On
what scales does the magnetic field grow during the collapse
of a dense, magnetized gas cloud? What is the effective kinetic
energy injection scale of gravity-driven turbulence? How are
the compressible motions in a contracting system converted into
turbulent random motions, and what is the asymptotic fraction
of solenoidal motions generated during the contraction? After
presenting our methods in Section 2, we address these physical
questions in Section 3 with the use of magnetohydrodynamical
(MHD) simulations. We find that the magnetic field is most
efficiently amplified on the smallest resolvable scales in the
simulations and grows exponentially fast due to the small-scale
dynamo. The effective energy injection scale of gravity-driven
turbulence is close to the local Jeans scale during the contraction.
Finally, we show in Section 4.2 that about 2/3 of the total
kinetic energy released during the collapse is converted into
solenoidal, turbulent motions, efficiently driving magnetic field
amplification.

In the second part of the paper (Section 4), we discuss the
numerical resolution requirements for modeling turbulent, self-
gravitating systems and for minimum dynamo action to set in.
To study the resolution dependence of our results, we use a
sequence of simulations in which we resolve the Jeans length
with 8, 16, 32, 64, and 128 grid cells (see Sur et al. 2010,
hereafter Paper I). With a Fourier analysis of the magnetic
energy, we confirm our earlier findings in Paper I, showing
that 30 grid cells per Jeans length is the threshold resolution for
minimum dynamo amplification of the magnetic field to occur.
In addition, we show that a Jeans resolution of about 30 grid
cells is required to obtain converged values of the turbulent
energy, in particular of the solenoidal (rotational) component,
which drives dynamo amplification.

In contrast, we find that the turbulent energy density, i.e.,
the turbulent pressure on the Jeans scale is underestimated, if
the Jeans length is resolved with 16 grid cells or less during the
collapse. Apart from a few exceptions (e.g., Abel et al. 2002), the
Jeans length is resolved with less than 16 grid cells in almost all
numerical simulations today. We speculate that this is because
in the study by Truelove et al. (1997), it was found that only
four grid cells per Jeans length are enough to avoid artificial
fragmentation. An equivalent resolution criterion for the Jeans
mass in smoothed particle hydrodynamics (SPH) simulations
was found by Bate & Burkert (1997). Also, the computational
expenses increase strongly, if one aims to resolve the Jeans
length with more than a few cells (or few particles in SPH).
Thus, most existing hydrodynamical and MHD simulations of

self-gravitating media have typically used about 10 grid cells
per Jeans length or less. Some modification of this criterion was
recently also suggested by Gawryszczak et al. (2010) to better
resolve self-gravitating disks.

Here, we find that the turbulence and magnetic field structure
are underresolved, if the Jeans length is resolved with 16 cells or
less. Moreover, turbulent dynamo amplification of the magnetic
field is completely absent in this case. To avoid this problem,
we suggest a new resolution criterion for simulations of self-
gravitating gaseous media: in order to resolve turbulence on the
Jeans scale and to account for the turbulent pressure on that
scale, as well as to capture minimum dynamo action in MHD
simulations, 30 grid cells per Jeans length are required, which
is discussed in detail in Section 4.

2. METHOD

Gravitational collapse, turbulence, and magnetic field evo-
lution are—except for some idealized cases—difficult to study
analytically, because the system is highly nonlinear and nat-
urally three dimensional (3D). Thus, we study the processes
leading to turbulence and magnetic field amplification through
gravitational collapse in high-resolution MHD simulations.

2.1. Initial Conditions and Setup of Our MHD Simulations
of a Collapsing Dense Core

We present results of a numerical experiment with a col-
lapsing, magnetized, turbulent gas core (see Paper I). We fo-
cus on the gravitational collapse and magnetic field amplifi-
cation of a dense gas cloud, using a simplified setup, where
we assume an almost isothermal equation of state (effective
Γ = d log T/d log ρ + 1 = 1.1, with the temperature T and den-
sity ρ) and neglect non-ideal MHD effects (discussed below).
The numerical simulations presented here were performed with
the publicly available adaptive-mesh refinement (AMR) code,
FLASH2.5 (Fryxell et al. 2000). We solve the equations of ideal
MHD, including self-gravity with a refinement criterion guar-
anteeing that the Jeans length,

λJ =
(

π c2
s

Gρ

)1/2

, (1)

with the sound speed cs, gravitational constant G, and density ρ,
is always resolved with a user-defined number of cells. We use
the new HLL3R scheme for ideal MHD (Waagan et al. 2011),
which employs a three-wave approximate MHD Riemann solver
(Bouchut et al. 2007; Waagan 2009; Bouchut et al. 2010). This
MHD scheme is an extension of the hydrodynamical version
(Klingenberg et al. 2007), developed for FLASH that preserves
physical states (e.g., positivity of mass density and pressure) by
construction, and is highly efficient and accurate in modeling
astrophysical MHD problems involving turbulence and shocks
(Waagan et al. 2011).

The ionization degree is expected to be sufficiently high
in primordial clouds to ensure a strong coupling between
ions and neutrals to maintain flux-freezing (Maki & Susa
2004). However, non-ideal MHD effects may eventually become
important at very high densities, as suggested by simulations of
contemporary star formation (e.g., Hennebelle & Teyssier 2008;
Duffin & Pudritz 2009). These effects are not included in the
present calculations, but should be the subject of future studies.

The initial conditions for our numerical simulations were
motivated from large-scale cosmological models (e.g., Abel
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et al. 2002; Yoshida et al. 2008). However, for simplicity we use
a spherically symmetric initial density distribution, following a
super-critical Bonnor–Ebert profile (Ebert 1955; Bonnor 1956)
with a core density of ρBE = 4.68 × 10−20 g cm−3 at a
temperature of T = 300 K. We did not include any initial
rotation of the core. The Bonnor–Ebert sphere has a radius of
1.5 pc and a total mass of M = 1500 M�. The 3D Cartesian
computational domain has a volume of (3.9 pc)3. For a similar
approach see Clark et al. (2008, 2011)

Although the existence of magnetic fields on a wide range of
astrophysical scales is clear, their origin is still poorly under-
stood. Some mechanisms include the Biermann (1950) battery,
the Weibel instability (e.g., Lazar et al. 2009), the ejection of
magnetic fields from active galactic nuclei (e.g., Xu et al. 2009,
and references therein), production by cosmic rays (Miniati &
Bell 2011), and amplification by galaxy cluster mergers. Re-
cent lower limits of magnetic fields in the intergalactic medium
suggest Brms � 10−15 G (Tavecchio et al. 2010; Dolag et al.
2011). To keep our setup as simple and general as possible,
we add a small initial seed of the magnetic field and study
its self-consistent amplification during the collapse of a grav-
itationally unstable gas cloud in detail. In order to initialize
seeds of turbulence and magnetic field, we impose a random
initial velocity field with transonic velocity dispersion of am-
plitude 1.1 km s−1 (equal to the initial sound speed) and a
weak random magnetic field with Brms = 1 nG, without a
mean field component. This initial field strength corresponds
to a plasma beta (ratio of thermal to magnetic pressure) of
β ≈ 1010. Both, the turbulent velocity and magnetic field were
set up with the same power-law dependence in wavenumber
space, P (k) ∝ k−2, peaking on scales of about 0.8 pc, which
roughly corresponds to the initial Jeans length of the core. The
choice of the initial power spectrum is motivated by the finding
that turbulence develops a k−5/3 and k−2 velocity spectrum for
incompressible Kolmogorov (1941) and for shock-dominated
Burgers (1948) turbulence, respectively. Astrophysical systems
typically exhibit spectra of the turbulence in between these two
extremes. Since both Kolmogorov and Burgers turbulent spectra
are dominated by large-scale modes, i.e., small wavenumbers k,
our results are not expected to depend strongly on the particular
choice of the initial spectrum. However, varying parameters of
the initial conditions will be subject of a follow-up study. Af-
ter an initial transient phase, the turbulence develops its own
self-consistent spectrum, driven by the gravitational collapse.

We consider an isolated system for solving the Poisson
equation and use Neumann boundary conditions (zero-gradient)
for the MHD. Since the initial conditions for the magnetic field
were generated in Fourier space to obtain a divergence-free field,
the initial magnetic field is naturally periodic. This introduces
an inconsistency at the six boundaries of the simulation domain
and may cause some non-vanishing divergence there. However,
even the fastest MHD waves (the fast magnetosonic waves) have
a box-crossing time of about 3 × 106 yr, an order of magnitude
longer than the initial free-fall timescale of the system. Thus,
any potential perturbations produced at the boundaries can be
ignored in the dense core.

Consistent with previous works of Omukai et al. (2005)
and Glover & Savin (2009), we adopt an effective equation
of state with Γ = 1.1 for number densities in the range
n = 105–1010 cm−3. However, this kind of setup is sufficiently
general to allow us to investigate basic properties of turbulence
and magnetic field amplification in the context of collapsing
primordial as well as present-day gas clouds.

2.2. Five Simulations with Increasing Jeans Resolution

We note that the efficiency of the turbulent dynamo depends
on the kinematic Reynolds number, Re = �intσv/ν, with the
driving scale �int, turbulent velocity dispersion σv on that length
scale, and physical viscosity ν. Also note that previous studies
found a critical value of the magnetic Reynolds number, Rm =
�intσv/η, below which the small-scale dynamo is not excited
(Brandenburg & Subramanian 2005). In numerical simulations,
however, the viscosity, ν, and the magnetic diffusivity, η, are
typically determined by the numerical cutoff scale, as a result of
the discretization of the fluid variables on a computational grid
with finite resolution. The numerical values of Re and Rm are
thus related to the grid resolution and to how well the turbulent
motions are resolved (e.g., Haugen et al. 2004; Balsara et al.
2004; Schekochihin et al. 2004). Even if physical viscosity/
diffusivity is added as an extra term in the equations, it must be
guaranteed that it is at least as high as the numerical viscosity/
diffusivity. Typical Reynolds numbers reached in numerical
simulations of turbulence are of the order of a few hundred
(depending on what scales are estimated to be affected by
numerical viscosity, which varies among different codes, see
Kitsionas et al. 2009), which is usually orders of magnitude
below the physical Reynolds numbers in the systems that one
aims to study, but just large enough to excite the turbulent small-
scale dynamo. A strong resolution dependence of turbulent and
magnetic properties is thus expected, with higher resolution
resulting in smaller numerical viscosity and diffusivity, higher
Reynolds numbers, and thus yielding faster magnetic field
amplification. To demonstrate this effect, we perform five
numerical simulations, in which we resolve the Jeans length,
λJ with 8, 16, 32, 64, and 128 cells. In our highest-resolution
simulation with 128 cells per Jeans length, we use AMR with
19 levels of refinement by a factor of two. This results in an
effective resolution of 524 2883 grid cells by the time when we
have to stop the simulation, because it become computationally
prohibitive.

2.3. Analysis in the Collapsing Frame of Reference

To understand the behavior of the system quantitatively, we
need to follow its dynamical contraction in an appropriate frame
of reference. First, we note that the physical timescale becomes
progressively shorter during the collapse. We therefore define a
dimensionless time coordinate τ (see Paper I),

τ =
∫

1

tff(t)
dt , (2)

which is normalized in terms of the local free-fall time,

tff(t) =
(

3π

32 G〈ρ(t)〉
)1/2

, (3)

where 〈ρ(t)〉 is the mean density in the central Jeans volume,
VJ = 4π (λJ/2)3/3. If not otherwise stated, we obtain all
dynamical quantities of interest within this contracting Jeans
volume, which is centered on the position of the maximum
density. This approach enables us to study the turbulence and
magnetic field amplification in the collapsing frame of reference.
However, we also analyze radial profiles and magnetic field
spectra in the fixed frame of reference to study the global
evolution of the system.
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2.4. Fourier Analysis

To study the scale dependence of the magnetic field, we use
Fourier analysis and compute magnetic energy spectra, P (B),
defined as

P (B) dk = 1

2

∫
B̂ · B̂∗ 4πk2 dk , (4)

where B̂ denotes the Fourier transform of the magnetic field.
The spectral energy density is averaged over spherical shells
in Fourier space, such that the directional information of the
wavevector is integrated out and the pure scale dependence of the
field can be studied as a function of the norm of the wavevector,
k = |k|. Note that integrating P (B) over all wavenumbers yields
the total magnetic energy. Thus, P (B) dk is the magnetic energy
on scales between k and k + dk.

For computing the spectra inside the Jeans volume of the
core, we extract the AMR data inside a cube with length equal
to the local Jeans length of the core and interpolate all relevant
quantities for the analysis (density, velocity, and magnetic field
components) to a uniform grid with resolution equivalent to the
local Jeans resolution.

A problem in applying Fourier analysis to non-periodic data
sets is that the spectrum can be distorted by the fact that the data
is discontinuous at the boundary of the extracted cube. Methods
to avoid this include applying a spherical window function,
which smoothly approaches zero on all boundaries of the cube,
zero-padding around the boundaries, or mirroring the data set on
all sides. We compared spectra obtained by simply ignoring the
non-periodicity of the data with spectra obtained by windowing
with a spherical Hann window, by zero-padding (e.g., Brunt et al.
2003), or by mirroring the data set (e.g., Ossenkopf et al. 2008a).
We find that the spectra are very similar in all cases. They are
mostly affected at small scales (high-k) when different methods
are applied. Since this high-wavenumber range is also strongly
affected by numerical resolution, we simply ignore the non-
periodicity of the data and compute spectra as if the extracted
data were periodic. We also tried a wavelet transformation,
the Δ-variance technique (Stutzki et al. 1998; Ossenkopf et al.
2008a, 2008b) to compute the scale dependence of the magnetic
field, and found consistent results. However, since the direct
spectral method allows a decomposition of the turbulent velocity
field into solenoidal and compressible modes, and thus enables
us to study these components separately, we prefer the Fourier
analysis for the present purpose.

3. MAGNETIC FIELD AMPLIFICATION BY
GRAVITY-DRIVEN TURBULENCE

3.1. Time Evolution

The time evolution of the density, magnetic field strength,
and Mach number of the magnetized, turbulent collapse of our
Bonnor–Ebert sphere is discussed in detail in Paper I. In particu-
lar, we showed that the root-mean-squared (rms) magnetic field
increases rapidly from a small seed field of 10−9 G to the Milli-
Gauss level, i.e., over six orders of magnitude in our highest-
resolution run with 128 cells per Jeans length. We showed that
two orders of magnitude of this growth are due to twisting and
folding of magnetic field lines, i.e., due to the action of the turbu-
lent small-scale dynamo (Brandenburg & Subramanian 2005).
This is, however, a lower limit to the physical amplification by
the dynamo, as the dynamo growth rate depends strongly on the
Reynolds number and thus on numerical resolution (see, e.g.,

Haugen et al. 2004). If the Jeans length is resolved with 16 cells
or less (which is quite common in typical present-day grid sim-
ulations involving gravity, and correspondingly in simulations
with the SPH technique, see, e.g., Federrath et al. 2010a), no dy-
namo amplification is seen at all. Even in our highest-resolution
run, where we resolve the Jeans length with 128 cells, most of
the amplification is due to compression of magnetic field lines,
i.e., flux-freezing, and not due to the dynamo. The rather small
turbulent Reynolds numbers achievable in modern simulations
(of the order of a few hundred) do not allow for a more effi-
cient dynamo amplification in the simulations. However, since
the Reynolds numbers in real astrophysical systems are typi-
cally much higher (e.g., of the order of 107 in the interstellar
medium), dynamo amplification will eventually dominate over
compressional amplification.

3.2. Radial Profiles

Figure 1 shows the radial profiles of gas density, rms magnetic
field, radial infall velocity, vr and dispersion, σv,r , polar and
azimuthal velocity dispersions, σv,θ and σv,φ at τ = 8, 10,
and 12 in the collapse regime for our run with 128 cells per
Jeans length (note the definition of the dimensionless time
coordinate τ in Equation (2)). The density and radial velocity
profiles follow the typical collapse profiles of an unstable gas
cloud (see, e.g., Larson 1969; Penston 1969). The initial density
profile exhibits a short power law with exponent −2.2 for large
radii (Ebert 1955; Bonnor 1956), while the profiles at later
times are very well fit with a power law, ρ ∝ r−2.4. This
steepening of the profile during the collapse is a result of the
slight deviations from an isothermal equation of state (effective
Γ = 1.1 instead of 1). The turbulent velocity fluctuations,
measured in terms of the dispersions, σv,r , σv,θ , and σv,φ remain
subsonic inside the central Jeans volume for τ � 12, because the
sound speed increases during the collapse. The rms magnetic
field profile exhibits some similarities to the density profile,
however, the power-law exponent in the envelope is different.
For the 128 cell run, Brms ∝ r−2.0 outside the central Jeans
volume, which is significantly steeper than what is expected for
purely compressional amplification, i.e., flux-freezing during
the collapse (Brms ∝ r−4/3). The steepening is thus due to
dynamo amplification. However, since the turbulent dynamo
is highly resolution-dependent, the radial power-law exponent
is expected to depend on resolution, which we discuss next.

In Figure 2, we show the power-law part of the radial profiles
of the rms magnetic field, Brms for Jeans resolutions of 8, 16,
32, 64, and 128 cells at τ = 12. Both the 8 and 16 cell runs
are consistent with the radial exponent expected for pure flux-
freezing, Brms ∝ r−4/3. Only for the runs with 32, 64, and
128 cells, we see a steepening of the profiles, which is caused
by additional amplification of the field through the turbulent
dynamo, again showing that the Jeans length must be resolved
with significantly more than 16 cells (e.g., 32 grid cells) for
minimum dynamo action to occur. The radial exponent for the
128 cell runs is close to −2.0, however, the profile is expected to
steepen further with increasing Jeans resolution. The resolution
dependence of our results is discussed in detail in Section 4,
where we present evidence for the requirement of a new Jeans
resolution criterion in simulations of self-gravitating gas.

Combining the radial dependence of the density, ρ ∝ r−2.4,
and magnetic field, Brms ∝ r−2.0 in our 128 cell run, we
find Brms ∝ ρ0.83, which is expected to increase further at
higher Reynolds numbers (higher resolution). This is clearly
steeper than the pure flux-freezing case, Brms ∝ ρ2/3. Moreover,
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Figure 1. (a) Radial density profile of the collapsing, magnetized, turbulent
Bonnor–Ebert sphere at times τ = 8, 10, and 12. (b) Same as (a) but for the
rms magnetic field. (c) Same as (a) but for the infall velocity, −vr and the radial
velocity dispersion, σv,r . (d) and (e) Same as (a) but for the polar and azimuthal
velocity dispersions, σv,θ and σv,φ . The vertical lines extending through all
panels indicate the Jeans radius at τ = 8, 10, and 12, respectively. See Paper I
for the corresponding radial profiles of the rms velocity and Mach number.

(A color version of this figure is available in the online journal.)

Schleicher et al. (2009) showed that already a scaling of Brms ∝
ρ0.6 can lead to a significant change in the thermodynamics
of primordial gas, which we show here will have an even
stronger effect, when turbulent dynamo amplification is taken
into account.

The physical exponent of the radial distribution of the
magnetic field is set by the physical viscosity and magnetic
diffusivity. Since the physical viscosity and diffusivity can be
very small, resulting in Reynolds numbers orders of magnitude
higher than what we can model in a computer simulation, the
radial profile of the magnetic field is expected to be significantly
steeper than Brms ∝ r−2.0. This means that the potential
influence of the magnetic field can be significant not only inside
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Figure 2. Power-law part of the radial profiles of the rms magnetic field at τ = 12
for Jeans resolutions of 8, 16, 32, 64, and 128 cells. Power laws corresponding
to pure flux-freezing, Brms ∝ r−4/3, and a steeper, ∝ r−2.0 profile are drawn for
comparison.

(A color version of this figure is available in the online journal.)

the Jeans volume, but also on scales larger than the local Jeans
length, because of the strong amplification of the field when the
core went through the previous dynamo amplification on scales
outside the Jeans volume.

If the Reynolds numbers are sufficiently high inside the Jeans
core, we would expect that the magnetic field can increase
to about 10% of equipartition with the turbulent energy on
timescales much shorter than the free-fall timescale, boosting
the magnetic field to a dynamically significant level even
before the core has had time to contract much. In the saturated
phase, the radial dependence of the magnetic field is expected to
change. The saturation behavior, however, cannot be addressed
with the current simulations, because even at the last available
time step (after which the simulation becomes computationally
too expensive to advance any further), at τ = 12 in the 128
cell run, the ratio of magnetic to kinetic energy in the core
is Emag/Ekin ≈ 2.2 × 10−5, still far away from the expected
saturation level (Emag/Ekin ≈ 10%). Thus, the saturation
behavior needs to be investigated in a follow-up study with
initial field strengths closer to equipartition.

3.3. Turbulence and Magnetic Field Morphology

To visualize the structure of the density, magnetic field, and
turbulence, we show 3D renderings of the density, velocity,
magnetic field lines (volume-filling and individual ones), the
vorticity, |∇ × v|, and the divergence of the velocity, ∇ · v, in
Figure 3. The central Jeans volume is shown at τ = 12, i.e.,
far into the collapse regime, when—through dynamo action and
compression—the magnetic field has increased by six orders of
magnitude to approximately 1 mG. Density fluctuations inside
the Jeans volume (upper left panel) are rather weak (see also the
radial profiles in Figure 1) and are mostly correlated with
the divergence of the velocity field (lower right). Since the
surroundings of the core are subject to contraction, the velocity
field is dominated by regions of compression. Only some patchy,
cloud-like regions show expansion. The velocity field (upper
right) is turbulent, with the outer regions showing some traces of
inflow toward the center of the Jeans volume (see also the radial
velocity profiles of Figure 1). The vorticity contours (lower
left) are elongated filaments. Some of these filaments seem
to extend through the whole Jeans volume. They are folded

5



The Astrophysical Journal, 731:62 (16pp), 2011 April 10 Federrath et al.

Figure 3. (a) Spherical slice of the gas density inside the Jeans volume at τ = 12 for our run with 128 cells per Jeans length. (b) Velocity streamlines on a linear
color scale ranging from dark blue (0 km s−1) to light gray (5 km s−1). (c) Magnetic field lines, showing a highly tangled and twisted magnetic field structure typical
of the small-scale dynamo; yellow: 0.5 mG, red: 1 mG. (d) Four randomly chosen, individual field lines. The green one, in particular, is extremely tangled close to
the center of the Jeans volume. (e) Contours of the vorticity modulus, |∇ × v|, showing elongated, filamentary structures typically seen in subsonic turbulence (e.g.,
Frisch 1995). (f) Spherical slice of the divergence of the velocity field, ∇ · v; white: compression, red: expansion.

(A color version of this figure is available in the online journal.)
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and twisted several times, similar to the magnetic field lines
(middle panels). The magnetic field is extremely tangled, which
is typical of the small-scale dynamo. Since the magnetic field
is amplified most efficiently by winding-up and folding of the
field lines on scales of the smallest resolvable vortices, the field
is most strongly twisted on these smallest scales. In the next
section, we investigate the scale dependence of the magnetic
field quantitatively by means of magnetic and turbulent energy
spectra.

3.4. Magnetic Field Spectra inside the Core

In a proof-of-concept study, we suggested in Paper I that a
small seed magnetic field can be amplified significantly by the
small-scale dynamo during the collapse of a dense gas cloud.
Here, we provide a more quantitative analysis by investigating
Fourier spectra to study the scale dependence of the turbulence
and magnetic field. First, we restrict the analysis to Fourier
spectra computed in the collapsing frame of reference. We
therefore extract a Cartesian box centered on the maximum
density in the core with side length equal to the Jeans length at
each time frame (see Section 2.4).

Figure 4 shows the magnetic energy spectra as a func-
tion of wavenumber k/kJ, i.e., normalized to the local Jeans
wavenumber, kJ, for our highest-resolution run (128 cells per
Jeans length). We actually used a three times larger extraction
volume to include at least some information from outside the
core, such that all spectra were computed on a uniform grid with
3843 grid cells. We did not extract a larger volume, because the
data are given on an adaptively refined grid, which only contains
the fluid variables resolved to the highest level inside the Jeans
volume. Interpolating the simulation data to significantly larger
grids would introduce artifacts. The chosen volume for extrac-
tion onto the highest resolution is thus a reasonable compromise
to obtain reliable spatial information for both the interior of the
core and its closest surroundings.

An important consistency check for the extraction procedure
and spectral method is to investigate the initial conditions first.
Figure 4 includes the magnetic energy spectrum at τ = 0, which
shows that our initial power-law dependence, P (B) ∝ k−2, is
reproduced on scales below the peak. Slight deviations from
this power law are due to the extraction procedure and Fourier
analysis of a non-periodic volume (see Section 2.4). Strictly
speaking, the discrete Fourier analysis implies a periodic data
set, however, the deviations introduced by simply ignoring this
are negligible for the present data set. In addition to the power-
law scaling, also the peak position must be reproduced, which
we set to 0.8 pc in the initial conditions (see Paper I). With the
initial Jeans length of 1.15 pc, this leads to an expected peak
position of k/kJ = 1.4, in very good agreement with the peak
position measured in the spectrum at τ = 0.

The peak of the initial magnetic spectrum at about k/kJ = 1.4
quickly shifts to smaller scales and stays roughly constant at
k/kJ ≈ 4–6 for τ � 4. The initial shift of the peak within τ � 2
means that the magnetic field grows faster on smaller scales,
as expected from the small-scale dynamo theory. However, the
peak does not shift further to smaller scales than k/kJ ≈ 4–6,
which corresponds to about 21–32 grid cells, because vortices,
which drive the dynamo, are underresolved on scales smaller
than 30 grid cells (Federrath et al. 2010b). The resolution
dependence is discussed in detail in Section 4.

On scales smaller than the Jeans scale and larger than the peak,
the magnetic field spectra are consistent with the theoretical
prediction of a k3/2 Kazantsev spectrum (Kazantsev 1968;
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Figure 4. Time evolution of the magnetic field spectra for the run with 128 cells
per Jeans length as a function of wavenumber, normalized to the local Jeans
wavenumber, i.e., the magnetic field inside the dense core is shown for each time
step, in the collapsing frame of reference. The initial magnetic field spectrum
(τ = 0) follows the initial power law, P (B) ∝ k−2 on scales smaller than the
peak scale at k/kJ ≈ 1.4. Within the regime of turbulent decay (0 < τ < 4),
the peak shifts to k/kJ ≈ 5–6 due to dynamo amplification, which is most
efficient on small scales (discussed further in Section 4.1). The magnetic field
spectra are consistent with the generic k3/2 Kazantsev spectrum (Kazantsev
1968; Brandenburg & Subramanian 2005) on scales smaller than the Jeans
length and larger than the peak. Within the collapse regime, the magnetic energy
grows exponentially on all scales within the core.

(A color version of this figure is available in the online journal.)

Brandenburg & Subramanian 2005) in the kinematic regime
(i.e., the regime in which the magnetic energy is much smaller
than the kinetic energy). Indications of the Kazantsev spectrum
are also found in simulations of the intra-galaxy cluster medium
by Xu et al. (2009, 2010). However, in both their simulations
and in ours, the scaling range for measuring the slope is too
narrow to draw final conclusions. It is not clear whether the
k3/2-power law would persist at higher resolution. In turbulence-
in-a-box simulations with external forcing by Haugen et al.
(2004) with up to 5123 grid cells, there is strong indication that
the magnetic energy spectra indeed converge to the Kazantsev
slope with increasing resolution. As in previous turbulence-in-
box calculations with external forcing (e.g., Cho et al. 2009),
we find that the magnetic energy grows exponentially on all
scales, which is a typical feature of the small-scale dynamo
(Brandenburg & Subramanian 2005), but has (to the best of our
knowledge) not been shown before in a gravity-driven turbulent
gas core. We also measure the exponential growth rates of the
magnetic field as a function of Jeans resolution in Section 4
below.

3.5. Magnetic Field Spectra in the Fixed Fame of Reference

The magnetic energy spectra in Figure 4 suggest that the
spectra fall off more steeply than the k3/2 Kazantsev law toward
large scales, outside the Jeans volume (see also the spectra in
Xu et al. 2010). In order to clarify this and to investigate the
field structure outside the Jeans volume, we introduce and ap-
ply a new method to infer the spectrum over more than four
orders of magnitude in length scales. Since we aim to inves-
tigate the field structure in the fixed frame of reference at the
largest available scales in the simulation, but at the same time
would like to include spectral information on the very smallest
scales, we apply a two-step approach. First, we re-normalize the
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Figure 5. Magnetic energy spectra in the fixed frame of reference, i.e., the
spectra are normalized to the initial Jeans wavenumber, kJ0. The time evolution
in the collapse regime shows that the magnetic field is basically frozen-in on
large scales, while the turbulent dynamo keeps amplifying the field on smaller
and smaller scales as the collapse proceeds.

(A color version of this figure is available in the online journal.)

high-resolution spectra obtained inside the Jeans volume (Fig-
ure 4), by shifting them to the correct position with respect to
the fixed frame of reference. However, the spectra at late times
during the collapse, obtained with this method, do not contain
any information on scales far outside the Jeans volume. Thus,
in the second step, we add spectral information on large scales,
by gradually extracting larger boxes, centered on the core at a
fixed grid resolution. Using this method, we can test the spec-
tral energy scale-by-scale. We call this method “scale-by-scale
extraction.”

The result of this two-step approach is shown in Figure 5,
where we plot the spectra of magnetic energy in the fixed frame
of reference, i.e., as a function of the initial (at τ = 0) Jeans
wavenumber, kJ0, of the collapsing system. The first thing to
note is that the spectra on large scales obtained with the scale-
by-scale extraction method connect reasonably well with the
spectra computed inside the Jeans volume and re-normalized to
match the fixed frame of reference. Some deviation is seen
only at k/kJ0 ≈ 300 for the spectrum at τ = 12, which
can be taken as a measure of the uncertainty in the spectra
obtained with our scale-by-scale extraction method. Given the
total range of scales that we aim to probe here, the difference in
the spectra obtained with our two-step approach is acceptable.
We also tested whether extending the scale-by-scale extraction
to smaller scales (inside the Jeans volume) matches the high-
resolution spectra of step one. We found that they do within an
uncertainty of about 25%, i.e., the slopes and peak positions are
reproduced reasonably well with the scale-by-scale extraction
method. However, the high-resolution spectra inside the Jeans
volume are more accurate, and we thus prefer the two-step
approach described above.

Three main results can be extracted from Figure 5. First, the
magnetic field always grows fastest on the smallest available
scales in the simulation, with the peak located at around 30 grid
cells. Second, as the collapse proceeds, the field is amplified on
small scales inside the core, but is essentially frozen-in on large
scales. Third, the large-scale spectra follow a power law close
to k3.0. This particular exponent for the power law is consistent
with the radial dependence of the field (see Figures 1 and 2) and

depends strongly on resolution. The magnetic energy on scales
outside the core is

B2
rms ∝

∫
P (B) dk ∝ k4.0 . (5)

From this, it follows that Brms ∝ k2.0 ∝ r−2.0 outside the Jeans
volume, which is consistent with the power-law behavior of the
radial profile of Brms in Figure 1. It should be re-emphasized,
however, that the exact exponent of this power law is essentially
meaningless, as it depends on the numerical Jeans resolution.
Higher resolution will lead to a steeper increase of P (B) toward
small scales (see Figure 2). In reality, the magnetic field will
grow much more strongly due to dynamo action than what we
can resolve in the present calculation with 128 cells per Jeans
length, and thus, our amplification rate is a lower limit (discussed
further in Section 4).

3.6. Probability Distribution Function of the Gas Density

The probability distribution function (PDF) of the gas density
is a useful measure of the turbulence in any turbulent system
exhibiting density fluctuations. Moreover, the PDF is an es-
sential ingredient for models of star formation (e.g., Padoan
& Nordlund 2002; Krumholz & McKee 2005; Hennebelle &
Chabrier 2008, 2009) and the gas distribution in galaxies (e.g.,
Tassis 2007; Krumholz et al. 2009). The density PDF has been
studied in some detail in non-self-gravitating, turbulent systems
(e.g., Vázquez-Semadeni 1994; Padoan et al. 1997; Passot &
Vázquez-Semadeni 1998; Lemaster & Stone 2008; Federrath
et al. 2008b; Price & Federrath 2010) and in turbulent sys-
tems including self-gravity (e.g., Klessen 2000; Federrath et al.
2008a; Kainulainen et al. 2009; Cho & Kim 2011; Kritsuk et al.
2011). However, it has not been analyzed yet in a collapsing
system, in which turbulence is replenished by the gravitational
collapse of a dense core.

Figure 6 shows the time evolution of the PDFs of the
logarithmic density:

s ≡ ln

(
ρ

〈ρ〉
)

, (6)

where 〈ρ〉 denotes the mean density in the core, i.e., inside
the Jeans volume. The PDF at τ = 0 is purely a result of the
initial, radial density distribution, following a Bonnor–Ebert
profile. This profile exhibits a flat inner core for radii smaller
than the Jeans radius and can be approximated with a power
law of the form ρ ∝ r−α with α ≈ 2.2 at large radii (Ebert
1955; Bonnor 1956). Using the derived relation between a
power-law radial distribution and the corresponding density
PDF (see Appendix A), we can estimate the power-law exponent
of the density PDF from the power-law exponent of the radial
distribution, α. Thus, the PDF of the logarithmic density,
s, follows a power law for small logarithmic densities with
exponent −3/α and falls off more steeply toward higher
densities, due to the flattening of the Bonnor–Ebert profile in
the center of the core (see Figure 1).

Both in the regime of turbulent decay (τ � 4) and in the
collapse regime (τ � 4), the volume-weighted PDF develops a
log-normal form:

ps(s) ds = 1√
2πσ 2

s,turb

exp

[
− (s − 〈s〉)2

2σ 2
s,turb

]
ds , (7)
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Figure 6. Time evolution of the probability distribution functions (PDFs) of the
logarithmic gas density, s ≡ ln(ρ/〈ρ〉), inside the collapsing core. The initial
density PDF is characterized by the asymptotic radial profile of a Bonnor–Ebert
sphere at low densities, ρ ∝ r−2.2, while at higher densities, it turns into a
steeper PDF due to the flat inner core. The PDFs in the turbulent decay regime
(τ � 4) are convolutions of the PDF of the initial density distribution and log-
normal distributions typical of turbulence. In the collapse regime (τ � 4), the
PDFs are close to log-normal distributions, with some modification due to the
radial density distribution (see Figure 1). The dotted curve shows a log-normal
fit using Equation (7) with the imposed condition, Equation (8) at τ = 10.

(A color version of this figure is available in the online journal.)

where 〈s〉 and σs,turb denote the mean logarithmic density
and standard deviation, respectively. This PDF is typical of
compressible, nearly isothermal, turbulent flows, which has been
motivated with the central limit theorem (Vázquez-Semadeni
1994). Note that the mean is related to the standard deviation by

〈s〉 = −1

2
σ 2

s,turb , (8)

because the mean density inside the Jeans volume must be
recovered by integration of the PDF, weighted by gas density,
〈ρ〉 = ∫

ρ ps ds (Vázquez-Semadeni 1994; Federrath et al.
2008b, 2010b). The measured PDFs in Figure 6, however,
exhibit significant deviations from the log-normal function due
to intermittency (Kritsuk et al. 2007; Schmidt et al. 2009;
Federrath et al. 2010b) and the convolution with the radial
density distribution inside the Jeans radius of the collapsing
Bonnor–Ebert sphere. Note that we do not see the typical power-
law PDFs observed in self-gravitating systems (Klessen 2000;
Federrath et al. 2008a; Kainulainen et al. 2009; Cho & Kim
2011; Kritsuk et al. 2011) during the collapse, because here we
always compute PDFs in the collapsing frame of reference, thus
ignoring the gas outside the Jeans volume, which has a clear
power-law PDF.

In order to compare the PDFs obtained in our collapsing
system with results on the PDF reported in the literature,
we compute the standard deviations of the PDFs below. The
standard deviations of the density PDF are σs = 0.225, 0.429,
0.353, and 0.290 for τ = 0, 1, 2, and 3 in the turbulent decay
regime. It is important to note that the initial dispersion at
τ = 0 has nothing to do with turbulence. It is purely due
to the initial, radial density distribution of the Bonnor–Ebert
sphere. In order to separate the standard deviation caused by
turbulent compression from the standard deviation due to the
radial density distribution inside the Jeans volume, we subtract
the initial density dispersion caused by the Bonnor–Ebert
profile: σ 2

s,turb = σ 2
s (τ ) − σ 2

s (0). The standard deviations of the

turbulence, σs,turb, can then be compared to analytic estimates
based on the rms Mach number,M (Padoan et al. 1997; Passot &
Vázquez-Semadeni 1998; Federrath et al. 2008b, 2010b; Price
et al. 2011):

σ 2
s,turb = ln(1 + b2M2) . (9)

The parameter b in this equation is of order unity and depends
on the way of turbulent energy injection (Schmidt et al. 2009).
It can vary by a factor of three, from b ≈ 1/3 for turbulence
excited by solenoidal (rotational) modes to b ≈ 1 for turbulence
excited by purely compressive modes (Federrath et al. 2008b).
Moreover, b increases smoothly from 1/3 to 1, when the mixture
of modes for the turbulence driving is smoothly varied from
fully solenoidal to fully compressive (Federrath et al. 2010b).
Given the rms Mach numbers of order unity (see Paper I),
we obtain b ≈ 0.42, 0.40, and 0.33 for τ = 1, 2, and 3,
respectively, with an uncertainty of ±0.05 each. The values
at early times (τ = 1 and 2) fit the expected value (b ≈ 0.4)
for a natural mixture—which were our initial conditions—very
well (Federrath et al. 2010b). The further evolution indicates a
transition to a more solenoidal behavior of the turbulence. This
is reasonable, as M decreases from unity to about 0.5–0.6 at
τ = 3, which means that shocks are basically absent at this
stage. Some caution should be exercised in deriving b for the
subsonic regime, although Equation (9) seems to hold in both the
subsonic and transsonic regimes (Passot & Vázquez-Semadeni
1998) as well as in the highly supersonic regime of turbulence
(Price et al. 2011).

In the collapse regime (τ � 4), it becomes increasingly
difficult to separate the density dispersion caused by the infall
profile and caused by the turbulence that is generated during the
collapse. The density PDFs are close to log-normal distributions
in the collapse regime, with some modifications due to the infall
profile. As an example, we show a log-normal fit to the data at
τ = 10 in Figure 6 as the dotted line labeled p(s). Using the total
standard deviations, σs , and the Mach numbers in the collapse
regime, we derive b ≈ 0.65, 0.48, and 0.37 for τ = 8, 10, and 12,
respectively, again with an uncertainty of about ±0.05. These
values are upper limits because of the additional dispersion
from the radial density distribution, which is, however, quite
small inside the Jeans volume (see Figure 1). These results for
the collapse regime are indicative of a time evolution of b from
a state, when compressive modes are more important (at τ ≈ 8)
to values close to equipartition at later times, which is confirmed
with a spectral decomposition into solenoidal and compressible
modes of the velocity field in Section 4.2 below.

3.7. The Driving Scale and Spectrum of Gravity-driven
Turbulence

As discussed in the introduction, the driving of turbulence by
extracting potential energy from the gravitational field of a gas
cloud has been suggested in several studies since Hoyle (1953).
But what is the characteristic driving scale of gravity-driven
turbulence? Answering this question is important, because
the injection scale of turbulence may determine the mode of
star formation in molecular clouds, isolated versus clustered
(Klessen et al. 2000; Heitsch et al. 2001; Klessen 2001).
Moreover, kinetic energy injected on large scales can produce
large-scale coherent gas compressions, promoting the formation
of condensations, while turbulence driven on small scales acts to
inhibit star formation. Over the last 30 years, it has become clear
that the turbulence in present-day molecular clouds contains
most of the energy on large scales (Larson 1981; Solomon et al.
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(A color version of this figure is available in the online journal.)

1987; Ossenkopf & Mac Low 2002; Heyer & Brunt 2004),
i.e., it is driven on large scales (Brunt et al. 2009, and references
therein). The most important drivers of galactic-scale turbulence
are the expansion waves produced by supernova explosions and
expanding H ii regions around massive star clusters (Mac Low
& Klessen 2004; Schneider et al. 2010) and the galactic spiral
shock, producing large-scale converging flows (Vishniac 1994;
Walder & Folini 1996; Vázquez-Semadeni et al. 2006; Heitsch
et al. 2006; Hennebelle et al. 2008; Banerjee et al. 2009; Folini
et al. 2010). The power of jets and outflows from low-mass
stars is also enormous and thus may contribute to the turbulence
driving on intermediate and small scales (e.g., Tan & Blackman
2004; Nakamura & Li 2008; Li et al. 2010; Carroll et al. 2010).

To investigate the driving scale and scale dependence of
our gravity-driven turbulent core, we compute velocity spectra
inside the Jeans volume of our 128 cell run, defined in analogy
to the magnetic field spectra above (e.g., Frisch 1995) as

P (v) dk = 1

2

∫
v̂ · v̂∗ 4πk2 dk , (10)

where v̂ denotes the Fourier transform of the velocity field. The
total Fourier spectrum can be separated into transverse (k ⊥ v̂)
and longitudinal (k ‖ v̂) parts by applying a Helmholtz de-
composition. Note that integrating the transverse velocity spec-
trum yields the specific kinetic energy in transverse (rotational)
modes, while integrating the longitudinal velocity spectrum
yields the specific kinetic energy in longitudinal (compress-

ible) modes. We will use this decomposition in Section 4.2 to
investigate the relative mixture of modes in the turbulence spec-
trum. First however, we concentrate on the total (transverse +
longitudinal) velocity spectrum.

Figure 7 shows the velocity Fourier spectra, defined in
Equation (10). In the upper panel, we show the spectra for the
full velocity field, while the bottom panel shows the spectra,
where we subtracted the radial infall profile (see Figure 1)
from the velocity field before computing the spectra. In this
way, we obtain the pure spectrum of turbulence without direct
contributions from infall. As for the magnetic field spectra, the
initial velocity power spectrum is reproduced with our Fourier
analysis. While the turbulence is decaying (τ � 4), the initial
spectrum following k−2 flattens slightly and turns into the
Kolmogorov (1941) spectrum, P (k) ∝ k−5/3, consistent with
the expectation for subsonic, hydrodynamic turbulence (e.g.,
Frisch 1995). For MHD turbulence, a similar scaling exponent
is found (e.g., Cho & Vishniac 2000; Cho et al. 2009). Since the
turbulence inside the Jeans volume remains subsonic for τ � 12
(see Paper I), the Kolmogorov scaling persists until the end of
the simulation. The scaling range, however, only extends over
the interval 2 � k/kJ � 5, because of the rather low resolution
inside the Jeans volume (128 cells). Measuring the power-law
exponent of the turbulence accurately would require at least 512
cells inside the Jeans volume as expected from pure turbulence
simulations in a periodic box (Federrath et al. 2010b; Price &
Federrath 2010).

In the collapse regime, the spectra retain their overall shape,
but shift upward with increasing time, which means that the
specific turbulent energy, and thus the velocity dispersion
increase in the collapse regime (see Figure 1). The infall-
subtracted spectra (bottom panel of Figure 7) become quite flat
around the Jeans scale, which indicates that the turbulence inside
the core is driven from the outside with an effective driving
scale, �int, approximately on the Jeans scale, λJ. Since the Jeans
scale continuously decreases during the collapse, gravity-driven
turbulence does not have a fixed driving scale.

This confirms the assumption in Schleicher et al. (2010) that
the integral scale of the turbulence is a fraction of the Jeans scale
in their model of dynamo-driven magnetic field amplification
during the formation of the first stars and galaxies. They assumed
�int = 0.1λJ, while we find in the present numerical experiment
that the effective turbulence driving scale is somewhat closer to
the Jeans scale, �int � λJ.

4. A NEW JEANS RESOLUTION CRITERION FOR (M)HD
SIMULATIONS OF SELF-GRAVITATING GAS

In this section, we analyze the resolution dependence of the
turbulence and magnetic field growth inside the Jeans volume
of our collapsing, magnetized core in more detail. We show
that a Jeans resolution of 16 cells is clearly insufficient to
obtain dynamo amplification of the magnetic field. Only with
a Jeans resolution of 32 cells, we see dynamo amplification,
which we explain with the fact that rotational motions of the
turbulence (e.g., vortices) are not well resolved, if the Jeans
length is resolved with 16 cells or less. In contrast, if the Jeans
length is resolved with 32 cells and more, the turbulent energy
in the core is converged with resolution. We thus conclude that
a minimum Jeans resolution of about 30 grid cells (depending
on the particular numerical scheme, see Kitsionas et al. 2009)
is required to sufficiently resolve the turbulent energy, and thus
the turbulent pressure, and to obtain minimum turbulent dynamo
action close to the resolution limit. We emphasize that—apart

10



The Astrophysical Journal, 731:62 (16pp), 2011 April 10 Federrath et al.

10-2

10-1

100

101

102

103

104

105

106

107

 1  10

P
(B

)

k / kJ

k3/2

128 cells
64 cells
32 cells
16 cells
8 cells
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from a few exceptions—almost all present-day simulations of
self-gravitating magnetized and non-magnetized gas use a Jeans
resolution criterion significantly below our threshold value of
30 cells (e.g., Truelove et al. 1997).

4.1. Resolution Dependence of the Turbulent Dynamo

The time evolution of the rms magnetic field in Paper I and the
radial magnetic field profiles of Figure 2 demonstrate a strong
resolution dependence of the turbulent dynamo. In this section,
we explain the resolution threshold for dynamo action, which
we find is about 30 grid cells per Jeans length (see also Paper I).
Figure 8 shows the resolution dependence of the magnetic field
spectra at τ = 12. Our five runs, in which we resolved the
Jeans length with 8, 16, 32, 64, and 128 grid cells are compared.
The runs with 32, 64, and 128 cells show a clear maximum of
the magnetic energy density on scales below the Jeans scale,
i.e., inside the core region, while the 8 and 16 cell runs do
not exhibit such a peak. The peak shifts to smaller scales with
increasing Jeans resolution: it is located at k/kJ ≈ 1–2 for 32
cells, k/kJ ≈ 2–4 for 64 cells, and k/kJ ≈ 4–6 for 128 cells.
The peak in P (B) thus always appears close to the resolution
limit, on scales of about 20–30 grid cells, which means that
the dynamo amplification of the magnetic field is strongest on
these scales. This result taken together with the absence of a
peak for the run with Jeans resolution of 8 and 16 cells suggests
that a Jeans resolution of at least 30 grid cells is required for
the dynamo to work in a grid simulation. This is significantly
more than the resolution criterion of four grid cells per Jeans
length to avoid artificial fragmentation found by Truelove
et al. (1997) and frequently applied in simulations involving
self-gravity with grid codes (e.g., Krumholz et al. 2004) and
correspondingly with particle codes (e.g., Bate et al. 1995; Price
& Bate 2007; Federrath et al. 2010a, and references therein).
The explanation for this is that magnetic field amplification
by the turbulent dynamo is most efficient on the smallest
scales due to the fast eddy turnover times on the smallest
scales (e.g., Brandenburg & Subramanian 2005, for a review on
turbulent dynamo amplification). However, the dynamo feeds
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Jeans resolution, where we divided out the effect of pure flux freezing, which
can provide a maximum possible field amplification by ρ2/3 inside the core. The
remaining amplification is thus due to the small-scale dynamo. The number on
each curve indicates the growth rate, Ω, in the expression Brms/ρ

2/3 ∝ exp(Ωτ ),
measured in the interval τ = [8, τend].

(A color version of this figure is available in the online journal.)

from the transverse, solenoidal turbulent motions, which—due
to the discretization of the fluid variables—are only resolved,
if they have at least 30 grid cells across. This is consistent
with the spectral analysis of high-resolution (10243) fixed-grid
simulations of driven, supersonic turbulence in Federrath et al.
(2010b), where a clear deficit of rotational turbulent energy was
detected below 30 grid cells.

Figure 9 shows the time evolution of the magnetic field for
different Jeans resolutions. The plot shows Brms/ρ

2/3, i.e., we
divided out the maximum possible amplification by pure flux-
freezing in spherical symmetry. In this representation, we can
measure the field growth caused by the turbulent dynamo (see
Paper I). The growth rate, Ω, in the expression Brms/ρ

2/3 ∝
exp (Ωτ ), is indicated as a label on each curve. For 8 and 16
cells, no clear dynamo amplification occurs, while the growth
rate increases discontinuously to Ω = 0.29 for a Jeans resolution
of 32 cells, marking the onset of dynamo action.

We note that the initial decrease of Brms/ρ
2/3 for the runs

with 8 and 16 cells for τ � 6 is mostly due to the turbulent
decay and not strongly affected by numerical diffusion of the
magnetic field. We estimate the effects of numerical diffusion
in Appendix C, which may account for a deviation from ideal
MHD by ε < 0.005 in B ∝ ρ2/3−ε for any of the runs. The 8
and 16 cell runs show a significantly lower level of turbulence
than all the other runs (see Paper I, Figure 3(e)), because the
turbulent energy is not sufficiently resolved in those runs, which
is discussed in detail in Section 4.2.

To see the discontinuous increase of the growth rates with
threshold resolution of about 30 cells more clearly, we plot the
growth rates as a function of Reynolds number in Figure 10.
For computing the Reynolds number, we assumed that the
most dissipative wavenumber in the simulation, kη = N/2,
corresponding to two grid cells (similar to Haugen et al. 2004)

Rm ≡
(

kη

kJ

)4/3

∝ N4/3 , (11)

with the number of grid cells per Jeans length N. Note the strong
increase in the growth rate for Rm � 40 in Figure 10. For
Rm � 40, the increase in the growth rate can be approximated
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Figure 10. Dynamo growth rate, Ω, measured in Figure 9 as a function of
Reynolds number. Note the strong increase in the growth rate for Rm � 40,
which corresponds to a Jeans resolution of about 30 grid cells.

(A color version of this figure is available in the online journal.)

with a power law, Ω ∝ Rm0.3, slightly shallower than the
theoretical dependence on Reynolds number (Ω ∝ Rm0.5, see
Appendix B). In turbulence-in-a-box studies without gravity, a
critical Reynolds number of about 35 was found for the onset
of dynamo action (Haugen et al. 2004), in excellent agreement
with the present study of a gravity-driven turbulent core.

4.2. The Mixture and Resolution Dependence of Turbulent
Compressible and Solenoidal Modes

In Figures 2, 8, and 9, we showed that the small-scale turbulent
dynamo only starts to operate, if the Jeans length is resolved with
about 30 grid cells. Why is there such a threshold resolution? In
this section, we show that the solenoidal (rotational) turbulent
motions which drive the dynamo are severely underresolved, if
the Jeans length during the collapse is resolved with 16 cells
or less. On the other hand, the solenoidal turbulent energy
converges for 32 cells per Jeans length and higher resolution,
indicating a threshold resolution between 16 and 32 cells per
Jeans length for the dynamo to operate.

First, we plot the resolution dependence of the infall-
subtracted velocity spectra (equation 10) in Figure 11. These
spectra are not converged. Although the 128 cell run seems
consistent with the expected Kolmogorov (1941) scaling for
subsonic turbulence on some length scales, there is no true in-
ertial scaling range. This is not surprising, given that previous
turbulence-in-a-box simulations of driven turbulence showed
that inertial range scaling requires at least 512 cells (e.g.,
Haugen et al. 2004; Kritsuk et al. 2007; Schmidt et al. 2009;
Federrath et al. 2010b). Although the spectral form is clearly
not converged at a Jeans resolution of 128 cells, the integral
over the velocity spectrum, i.e., the turbulent energy or turbu-
lent pressure shows indeed convergence for a Jeans resolution
of 32 cells and higher.

Figure 12 (top panel) shows the solenoidal ratio inside the
gravity-driven turbulent core. We define the solenoidal ratio
as the specific kinetic energy in rotational turbulent motions
divided by the total specific kinetic energy on scales smaller
than the Jeans scale:

χ ≡ Esol

Etot
=

∫ ∞
kJ

Psol(v)dk∫ ∞
kJ

P (v)dk
. (12)
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Figure 11. Resolution dependence of the velocity spectra at τ = 12. The spectra
do not show convergence, even with a Jeans resolution of 128 cells. We expect
that a resolution of 5123 grid cells inside the Jeans volume is required to obtain
an inertial range. The expected Kolmogorov (1941) scaling of the turbulence
in the inertial range is shown only for comparison. The total turbulent energy,
i.e., the integral over the spectra, however, indicates convergence for a Jeans
resolution of 32 cells and more (see Figure 12).

(A color version of this figure is available in the online journal.)

The solenoidal ratio at τ = 0 is χ = 2/3, which is the
natural mixture (Elmegreen & Scalo 2004; Federrath et al.
2008b), imposed as an initial condition. About 20% of the
initial compressible modes are dissipated very quickly, because
the turbulence is decaying, and thus χ increases from 2/3
to about 0.8 in the turbulent decay regime, τ � 4. In the
first stages of the collapse regime (4 � τ � 7), χ drops to
about 40%–50%. Within the collapse phase, the kinetic energy
provided by the gravitational collapse is gradually converted
into rotational motions, which drive dynamo amplification of
the magnetic field. For τ � 12, the solenoidal ratio seems to
approach 2/3, which corresponds to the natural ratio in 3D
turbulence (Federrath et al. 2008b). This natural ratio is most
easily pictured by recalling the number of spatial directions in
which a longitudinal wave can compress the gas in a 3D system.
It is one out of three, which leaves 2/3 for rotational motions.

Gravity-driven turbulence inside galactic disks in two-
dimensional (2D), high-resolution simulations by Wada et al.
(2002) show comparable values of χ ≈ 1/2 to what we find
here. In 2D, χ is indeed expected to be 1/2 from the dimen-
sional arguments above. However, 2D turbulence is different
from 3D turbulence, as there is an inverse cascade in 2D, i.e.,
vortices merge to form larger vortices instead of breaking up
into smaller vortices as in the 3D case. Thus, the turbulent dy-
namo is expected to behave (if at all present) very differently
from the 3D case studied here.

The evolution of the solenoidal ratio toward more solenoidal
turbulence for τ � 7 explains that the growth rates in Figure 9
increase after τ = 7, showing a steepening of Brms/ρ

2/3 with
time for τ ≈ 7–11, which correlates with the increase in the
solenoidal ratio. This is because the dynamo feeds from the
solenoidal modes of the turbulence, which increase between
τ = 7 and 11. Since the solenoidal ratio varies strongly with
time in the early phases of the collapse, we had to choose a rather
late time within the collapse regime to measure the growth rates
of the magnetic field, i.e., we estimated the growth rates in
the interval τ = [8, τend] in Figure 9. Ideally, we would like to
measure the growth rates after the solenoidal ratio has converged
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(A color version of this figure is available in the online journal.)

to χ = 2/3, but due to the computational expense, we could not
follow the high-resolution simulations (64 and 128 cells) far into
this regime. The 32 cell run, however, does show a convergence
of χ toward 2/3.

Both the solenoidal ratio and the absolute specific kinetic
energy in rotational motions, Esol, shown in Figure 12, indicate
convergence for a Jeans resolution of 32 cells and higher. Using
8 and 16 cells to resolve the Jeans length is clearly insufficient
to resolve rotational motions. We conclude that at least 30 grid
cells per Jeans length must be used in (M)HD simulations of
self-gravitating gas to resolve the turbulent energy, and thus the
turbulent pressure, and to obtain minimal dynamo amplification
of the magnetic field on the Jeans scale.

5. CONCLUSIONS AND IMPLICATIONS

We presented high-resolution MHD simulations of the col-
lapse of a dense, magnetized gas cloud (see also Paper I). Dur-
ing the collapse of the cloud, gravitational, potential energy
is converted into turbulent motions, which in turn amplify the
magnetic field exponentially fast by the turbulent dynamo pro-
cess. The exponential amplification is driven by the stretching,
twisting, and folding of the small-scale magnetic field lines
(Figure 3). At sufficiently high Reynolds numbers, even ex-
tremely small initial seeds of the magnetic field are expected to

be amplified to dynamically important magnetic field strengths
on timescales much shorter than the collapse timescales. We
conclude that magnetic fields should not be neglected in both
primordial and contemporary studies of star formation.

We investigated the scale dependence of the turbulence and
magnetic field by means of Fourier analysis in the collapsing
frame of reference (Figure 4), showing some indication of the
Kazantsev spectrum of turbulent dynamo amplification, and in
the fixed frame of reference over more than four orders of
magnitude in spatial scale (Figure 5). We find that the effective
kinetic energy injection scale of gravity-driven turbulence is
close to the Jeans length (Figure 7).

Our Fourier analysis of the magnetic field shows that the
dynamo is only excited if the Jeans length is sufficiently resolved
(Figure 8). The radial dependence of the magnetic field is
significantly steeper than what is expected from purely dragged-
in magnetic field lines, i.e., flux-freezing (Brms ∝ r−4/3). For
a Jeans resolution of 128 cells, we obtained Brms ∝ r−2.0,
which is expected to steepen further with increasing Jeans
resolution (Figure 2). We find that at least 30 grid cells per
Jeans length are required for minimum dynamo action to occur
in collapse simulations, a resolution requirement, which is
not achieved in most current simulations. Here, we studied
dynamo amplification with a resolution up to 128 cells per
Jeans length, while usually less than 16 cells are used. The
amplification rate increases with resolution (Figure 9), which
renders any existing simulation of dynamo amplification of a
highly turbulent medium insufficiently resolved to determine
the physical growth rate of the magnetic field and can at best
provide lower limits on the physical growth rates.

We find that the PDF of the gas density inside the gravity-
driven, turbulent Jeans volume follows a log-normal distribution
(Figure 6). The standard deviations and Mach numbers inside the
core indicate that gravity-driven turbulence approaches a natural
mixture of solenoidal and compressible modes, Esol/Etot ≈ 2/3,
after a phase of more compressively driven turbulence, caused
by the global collapse of the system (Figure 12). The turbulent
energy (or turbulent pressure) converges only for a Jeans
resolution exceeding 30 grid cells. In contrast, the solenoidal
component of the turbulent energy is severely underestimated
if the Jeans length is resolved with 16 cells or less. Thus, we
suggest a new Jeans resolution criterion of 30 grid cells per Jeans
length to obtain converged results of the turbulent energy on the
Jeans scale and to capture minimum magnetic field amplification
by the turbulent dynamo process.

The importance of magnetic fields in present-day accretion
disks is generally accepted. However, since even small initial
seeds of the magnetic field are efficiently amplified by turbulent
dynamo action, it cannot be excluded that magnetic fields also
play an important role in primordial accretion disks. Simulations
of primordial gas show that it is highly turbulent (e.g., Abel
et al. 2002; O’Shea & Norman 2007; Wise & Abel 2007; Clark
et al. 2008; Greif et al. 2008), which suggests that there is
sufficient kinetic energy in rotational modes of the turbulence
(e.g., vorticity; see in particular, Wise & Abel 2007; Greif et al.
2008) to drive the small-scale dynamo also in primordial gas
clouds and accretion disks (see also Pudritz & Silk 1989).

Observed turbulent Mach numbers in, e.g., present-day proto-
planetary disks, are of the order of 0.1–0.5 (Hughes et al.
2011). It is typically believed that this disk turbulence is
driven by the magnetorotational instability (MRI; Balbus &
Hawley 1991). However, in particular in the early phases of star
formation, disk turbulence is possibly driven by the gravitational
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infall and accretion of gas from the envelope onto the disk
(Klessen & Hennebelle 2010). The interaction of the MRI
with self-gravitational instabilities may effectively decrease the
accretion rate and change the disk morphology (Fromang et al.
2004) also in the primordial case (Silk & Langer 2006). A
spectacular example of dynamically important magnetic fields
in the accretion disks of young stars is the generation of high-
speed, bipolar jets, which are launched by a tower of magnetic
pressure and/or by a centrifugal magnetic field (e.g., Blandford
& Payne 1982; Pudritz & Norman 1983; Contopoulos 1995;
Lynden-Bell 2003; Machida et al. 2006; Banerjee & Pudritz
2006, 2007; Duffin & Pudritz 2009, for theoretical work on jets
and outflows).5 However, even before that stage, the turbulent
dynamo may have amplified the magnetic field enough that it
could reduce or even suppress fragmentation (Machida et al.
2008; Hennebelle & Teyssier 2008; Bürzle et al. 2010; Peters
et al. 2011), thus potentially influencing the initial mass function
of stars in both primordial and contemporary star formation.
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APPENDIX A

POWER-LAW DENSITY PROBABILITY
DISTRIBUTION FUNCTIONS

Given a power-law, spherical density distribution with expo-
nent α,

ρ(r) = ρ0

(
r

r0

)−α

, (A1)

we can derive the power-law exponent of the probability
distribution function (PDF) of the density. The differential
volume of the spherical gas distribution is a shell with

dV = 4πr2dr. (A2)

5 See also Beuther et al. (2010) for a recent observational study on IRAS
18089–1732, in which—as in our simulations—the turbulent energies are still
dominating the magnetic energy inside the dense core.

The volume-weighted PDF of density, pρ is given by

pρ ∝ dV

dρ
= dV

dr

dr

dρ
∝

(
ρ

ρ0

)−( 3
α

+1)
. (A3)

The PDF, ps, of the logarithmic density, s ≡ ln (ρ/〈ρ〉), is related
to the PDF, pρ , of the linear density (see, e.g., Li et al. 2003;
Federrath et al. 2008b) by

ps = ρ pρ , (A4)

such that

ps ∝
(

ρ

ρ0

)− 3
α

∝ exp

(
−3s

α

)
. (A5)

APPENDIX B

REYNOLDS NUMBER DEPENDENCE OF THE DYNAMO
GROWTH RATE

In the regime of intermediate to large magnetic Prandtl
number, Pm = ν/η � 1, where ν is the kinematic viscosity
and η is the magnetic diffusivity, the dynamo growth rate, Ω is
determined by the vorticity, ω = |∇ × u| on small scales. We
thus make the ansatz

Ω = a ω , (B1)

with a numerical constant a of order unity, which is determined
by fitting the growth rate in a time evolution plot of the magnetic
field, from numerical experiments (see, e.g., Figure 9). From
νω2 = b2 σ 3

v /�int with another dimensionless constant b, the
integral scale �int of the turbulence and the velocity dispersion
σv on that scale, and Equation (B1), it follows that the growth
rate

Ω = a

√
b2σ 3

v

ν�int
= ab

σv

�int

√
Re = ab

2ted

√
Re , (B2)

with the eddy turnover time ted ≡ �int/2σv . This shows that the
growth rate for dynamo amplification is expected to increase
with the square root of the Reynolds number Re = σv�int/ν.
For magnetic Prandtl number, Pm = 1, the kinematic and
magnetic Reynolds numbers are the same: Re = Rm, such
that Ω ∝ Rm1/2 (see also, Haugen et al. 2004). Since both ν and
η are controlled by the numerical cutoff scale in our simulations
(see Section 2.2), Pm ≈ 1.

APPENDIX C

TEST ON THE NUMERICAL DIFFUSION OF THE HLL3R
IDEAL MHD SCHEME

Here, we test the numerical diffusion of the magnetic field in
the new HLL3R scheme for ideal MHD (Waagan et al. 2011),
implemented in the FLASH code. We use the same setup as in
Section 2, but set all initial velocities to zero. Unlike the turbulent
magnetic field structure in the production runs, we start with a
uniform magnetic field in z-direction with B = 10−9 G. The
magnetic field is dragged in and develops an hour-glass-shaped
magnetic field.

In Figure 13, we show the magnetic field strength divided by
ρ2/3 as a function of the density, measured within the collapsing,
central Jeans volume (see analysis described in Section 2.3).
The magnetic field grows with increasing density, but initially
it grows shallower than B ∝ ρ2/3 due to the geometry of the
field. Only for a fully isotropic field, B ∝ ρ2/3 for ideal MHD.
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Figure 13. Test on the numerical diffusion of the magnetic field in the HLL3R
scheme for ideal MHD (Waagan et al. 2011). Three runs with Jeans resolutions
of 8, 16, and 32 cells are shown. For clarity, the curves for 16 and 8 cells were
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due to the anisotropic geometry of the initial field structure. At late times during
the collapse, the field becomes approximately isotropic due to the bending of
the field lines to an hour-glass shape. In this regime, we can estimate upper
limits for the effects of numerical diffusion, indicated by the dashed lines for
ρ > 10−13 g cm−3.

(A color version of this figure is available in the online journal.)

Here, however, the magnetic field is initially very anisotropic
(containing a z-component only), and thus, the magnetic field
is initially only compressed along the x−, and y-directions,
while the density increases along all three axes. Due to the
bending of the field lines, the field becomes more isotropic in
the late stages of the collapse. Figure 13 indeed shows a clear
flattening of B/ρ2/3 at high densities, when due to the bending,
the magnetic field has developed roughly similar magnetic field
strengths in all three directions. Thus, only then, we expect
B ∝ ρ2/3 for ideal MHD. Power-law fits in this regime are
indicated in Figure 13. The curves are still falling with a roughly
constant dependence on density, giving an upper limit on the
effects of numerical diffusion. Three runs with Jeans resolutions
of 8, 16, 32 cells were analyzed in this diffusion test. We
find a departure from perfect flux-freezing, B ∝ ρ2/3−ε with
ε ≈ 0.005, 0.003, and 0.002 for a Jeans resolution of 8, 16, and
32 cells, respectively. Thus, the effects of numerical diffusion
are resolution-dependent, as expected, however, the level of
numerical diffusion of the magnetic field with respect to ideal
MHD is generally quite small.

In this simple test, we only studied a particular situation,
motivated by the density and magnetic field regimes analyzed
in the main part of the paper. It should be noted, however, that
the properties of numerical diffusion depend on the physical and
numerical parameters of the modeled system.
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