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ABSTRACT

We model the evolution of galaxy clustering through cosmic time to investigate the nature of the power-law shape
of ξ (r), the galaxy two-point correlation function. While ξ (r) at large scales is set by primordial fluctuations,
departures from a power law are governed by galaxy pair counts at small scales, subject to nonlinear dynamics. We
assume that galaxies reside within dark matter halos and subhalos. Therefore, the shape of the correlation function
at small scales depends on the amount of halo substructure. We use a semi-analytic substructure evolution model to
study subhalo populations within host halos. We find that tidal mass loss and, to a lesser extent, dynamical friction
dramatically deplete the number of subhalos within larger host halos over time, resulting in a ∼90% reduction by
z = 0 compared to the number of distinct mergers that occur during the assembly of a host halo. We show that these
nonlinear processes resulting in this depletion are essential for achieving a power law ξ (r). We investigate how the
shape of ξ (r) depends on subhalo mass (or luminosity) and redshift. We find that ξ (r) breaks from a power law at
high masses, implying that only galaxies of luminosities �L∗ should exhibit power-law clustering. Moreover, we
demonstrate that ξ (r) evolves from being far from a power law at high redshift, toward a near power-law shape at z
= 0. We argue that ξ (r) will once again evolve away from a power law in the future. This is in large part caused by
the evolving competition between the accretion and destruction rates of subhalos over time, which happen to strike
just the right balance at z ≈ 0. We then investigate the conditions required for ξ (r) to be a power law in a general
context. We use the halo model, along with simple parameterizations of the halo occupation distribution, to probe
galaxy occupation at various masses and redshifts. We show that the key ingredients determining the shape of ξ (r)
are the fraction of galaxies that are satellites, the relative difference in mass between the halos of isolated galaxies
and halos that contain a single satellite on average, and the rareness of halos that host galaxies. These pieces are
intertwined and we find no simple, universal rule for which a power law ξ (r) will occur. However, we do show that
the physics responsible for setting the galaxy content of halos do not care about the conditions needed to achieve
a power law ξ (r) and that these conditions are met only in a narrow mass and redshift range. We conclude that the
power-law nature of ξ (r) for L∗ and fainter galaxy samples at low redshift is a cosmic coincidence.
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1. INTRODUCTION

The two-point correlation function of galaxies was measured
four decades ago and found to be consistent with a ξ (r) ∝ r−2

power law (Totsuji & Kihara 1969; Peebles 1973, 1974; Hauser
& Peebles 1973; Peebles & Hauser 1974). Since that time,
successively larger galaxy redshift surveys (e.g., Huchra et al.
1983; da Costa et al. 1988; Santiago et al. 1995; Shectman
et al. 1996; Saunders et al. 2000; Colless et al. 2001; York
et al. 2000) have mapped the distribution of galaxies with
ever-increasing precision and confirmed correlation functions
consistent with power laws over a large range of scales (e.g., de
Lapparent et al. 1988; Marzke et al. 1995; Hermit et al. 1996;
Tucker et al. 1997; Jing et al. 1998, 2002; Norberg et al. 2002;
Zehavi et al. 2002). The scales on which a single power-law
description is valid span a range from large regions exhibiting
mild density fluctuations (r � 10 Mpc), through smaller regions
with large density fluctuations experiencing rapid nonlinear
evolution (r ∼ 1–10 Mpc), to collapsed and virialized galaxy
groups and clusters (r � 1 Mpc). It has long been noted that
the lack of any feature delineating the transitions among these
scales is surprising (e.g., Peebles 1974; Gott & Turner 1979;
Hamilton & Tegmark 2002; Masjedi et al. 2006; Li & White
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2009). This is especially true given that the matter correlation
function in the now well-established concordance cosmological
model differs significantly from a power law. In this paper, we
return to this long-standing problem and address the origin of
a power-law galaxy correlation function in the context of our
modern paradigm for the growth of cosmic structure.

This conundrum can be refined within the contemporary
framework in which galaxies live within virialized halos of
dark matter (White & Rees 1978; Blumenthal et al. 1984). In
such a model, galaxy clustering statistics can be modeled as a
combination of dark matter halo properties and a halo occu-
pation distribution (HOD) that specifies how galaxies occupy
their host halos (e.g., Peacock & Smith 2000; Scoccimarro et al.
2001; Berlind & Weinberg 2002; Cooray & Sheth 2002). In this
halo model approach, the galaxy correlation function is a sum
of two terms: at small scales, pairs of galaxies reside in the same
host dark matter halo (the “one-halo” term), whereas at large
scales, the individual galaxies of a pair reside in distinct halos
(the “two-halo” term). These two terms depend on the HOD in
different ways, requiring delicate tuning in order to spawn an
unbroken power law (e.g., Berlind & Weinberg 2002). Conse-
quently, a feature in ξ (r) at scales corresponding to the radii
of the typical, virialized halos that host luminous galaxies is
expected.
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In a dramatic success for the halo model, Zehavi et al. (2004)
first detected a statistically significant departure from a power
law due to the high precision measurements of the Sloan Digital
Sky Survey (SDSS), and demonstrated that the halo model
provides an acceptable fit to the data. Zehavi et al. (2005)
confirmed this result, adding that power-law departures grow
stronger with galaxy luminosity (see also Blake et al. 2008;
Ross et al. 2010). ξ (r) has since been shown to deviate from a
power law at high redshifts (Ouchi et al. 2005; Lee et al. 2006;
Coil et al. 2006; Wake et al. 2011). Nevertheless, it remains a fact
that deviations from a power law at low redshifts are small and
the galaxy correlation function is roughly a power law over an
enormous range of galaxy–galaxy separations. Deviations have
been revealed only through ambitious observational efforts.

Halos are known to be replete with self-bound structures,
dubbed “subhalos” (Ghigna et al. 1998; Klypin et al. 1999;
Moore et al. 1999), and both halos and subhalos are thought
to be the natural sites of galaxy formation. Subhalos were
isolated halos in their own right, hosting distinct galaxies before
merging into a larger group or cluster halo.4 Remarkably, the
clustering of host halos along with their associated subhalos is
very similar to that of observed galaxies (Kravtsov & Klypin
1999; Colı́n et al. 1999; Kravtsov et al. 2004a), suggesting a
simple correspondence of galaxies with host halos and subhalos.
This was clearly demonstrated by Conroy et al. (2006), who
compared the correlation functions of hosts and subhalos to
that of galaxies over a broad range of luminosities and redshifts
(z ∼ 0–4), finding excellent agreement. These results indicate
that an understanding of the physics governing the subhalo
populations within host halos may provide insights into the
physics of galaxy clustering and the near power-law form of the
galaxy two-point correlation function.

In this paper, we examine the causes of the observed power-
law correlation function by studying the mergers, survival, and/
or destruction of dark matter subhalos. Our focus in this paper
is on the gross features of the galaxy two-point function and
not on detailed comparisons to specific data sets. We explore
more sophisticated galaxy–halo assignments and statistical
comparisons with data in a forthcoming follow-up study (D. F.
Watson et al. 2011, in preparation).

We argue that the nearly power-law, low-redshift galaxy
correlation function is a coincidence. The correlation function of
common L � L∗ galaxies evolves from relatively strong small-
scale clustering at early times, through a power law at the present
epoch, and most likely toward relatively weak small-scale
clustering in the future. The origin of the present-day power law,
in turn, relies on the tuning of several disconnected ingredients,
at least three of which are the normalization of primordial
density fluctuations determined by early universe physics; a halo
mass scale for efficient galaxy formation determined largely
by atomic physics, stellar physics, and the physics of compact
objects; and relative abundances of baryonic matter, dark matter,
and dark energy in the universe.

Our paper is organized as follows. In Section 2.1, we
review the halo model and restate the problem in terms of this
framework. In Section 3, we give an overview of our primary
modeling technique. In Section 4, we investigate the individual
roles of merging, dynamical friction, and mass loss in shaping
the halo occupation statistics of subhalos, as well as the resulting
halo correlation function. In Section 5, we show how ξ (r)

4 Satellites or subhalos are used throughout the paper to refer to self-bound
entities lying within the virial radius of a larger halo. Those that do not lie
within a larger system are designated as centrals, host halos, or simply hosts.
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Figure 1. Correlation function of galaxies compared to dark matter. Points show
the correlation function of galaxies from the automated plate measurement
(APM) survey, estimated from deprojecting the angular correlation function
(Maddox et al. 1990; Baugh 1996). The curve shows the correlation function
of dark matter measured from the ΛCDM GIF simulation run by the Virgo
collaboration (Jenkins et al. 1998).

depends on host halo mass and redshift. In Section 6, we explore
a standard parameterization of the HOD to see what is required
to get a power law ξ (r), and predict the masses and redshifts
at which a power law ξ (r) can be constructed. In Section 7,
we give a summary of our results and our primary conclusions.
Throughout this paper, we work within the standard, vacuum-
dominated, cold dark matter (ΛCDM) cosmological model with
Ωm = 0.3, ΩΛ = 0.7, Ωb = 0.04, h0 = 0.7, σ8 = 0.9, and
ns = 1.0. These values differ slightly from the WMAP best-fit
values, but this has little effect on our general results and they
were chosen to enable comparison to previous work that used
similar cosmological models.

2. A MODERN RESTATEMENT OF THE PROBLEM IN
HALO MODEL LANGUAGE

Though the observed galaxy correlation function is nearly
a power law, the matter correlation function predicted by the
concordance cosmological model is not. This is evident in
Figure 1. On scales corresponding to collapsed objects, the dark
matter correlation function exceeds the values that would be
obtained by extrapolating the larger-scale power law to small
scales. However, galaxies are biased with respect to dark matter
in such a way as to counteract this excess. We can examine this
discrepancy in terms of the halo model. If the reader is familiar
with the halo model formalism, he or she may wish to skip to
Section 2.2.

2.1. Halo Model Basics

Assuming that all galaxies live within virialized dark matter
halos, the galaxies comprising any pair can come either from
within the same halo (the one-halo term) or from two separate
halos (the two-halo term). The correlation function is then given
as the sum of these two terms:

ξ (r) = ξ (r)1h + ξ (r)2h + 1 (1)

(e.g., Cooray & Sheth 2002; for this particular form of the
equation see Zheng 2004). The probability distribution P (N |M)

2



The Astrophysical Journal, 738:22 (17pp), 2011 September 1 Watson, Berlind, & Zentner

that a halo of mass M contains N galaxies, together with the
spatial distribution of galaxies within their host halos, constitute
the HOD. We denote the first and second moments of P (N |M)
at a specific mass M as 〈N〉M and 〈N (N − 1)〉M , respectively.
The one-halo term can be computed by counting the average
number of galaxy pairs of a given separation in a common halo
and averaging over all halos. We write the one-halo term as
(Berlind & Weinberg 2002)

1 + ξ (r)1h = 1

2πr2n̄2
g

∫
dM

dn

dM

〈N (N − 1)〉M
2

F (r|M), (2)

where dn/dM is the halo mass function, 〈N (N − 1)〉M/2 is
the mean number of galaxy pairs within a halo of mass M, and
F (r|M) is the distribution of separations between these pairs.5

If the average spatial distribution of galaxies within their host
halos is λ(r|M), then the pair separation distribution F (r|M)
is the convolution of λ(r|M) with itself. The quantity n̄g is the
mean density of galaxies in the universe:

n̄g =
∫

dM
dn

dM
〈N〉M. (3)

Motivated by theoretical considerations (e.g., Berlind et al.
2003; Kravtsov et al. 2004a; Zheng et al. 2005), the HOD of
galaxies is usually considered separately for central galaxies that
live near the centers of their host halos and satellite galaxies that
orbit within the host halo potential. Each halo above some mass
threshold should contain one central galaxy and possibly one or
more satellites, depending on the host mass and the HOD. In this
framework, it is useful to consider contributions to the one-halo
term separately for central–satellite and satellite–satellite pairs.
Therefore, we rewrite the one-halo term as (Berlind & Weinberg
2002)

1 + ξ (r)1h = 1

2πr2n̄2
g

∫
dM

dn

dM

[
〈NcenNsat〉MFcs(r|M)

+
〈Nsat(Nsat − 1)〉M

2
Fss(r|M)

]
, (4)

where 〈NcenNsat〉M and 〈Nsat(Nsat − 1)〉M/2 are the mean
number of central–satellite and satellite–satellite pairs in hosts
of mass M, and Fcs(r|M) and Fss(r|M) are the pair separation
distributions of central–satellite and satellite–satellite pairs,
respectively. If the central galaxies always reside very close
to the center of the host halo and the average distribution
of satellite positions within the host halo is λs(r|M), then
Fcs = λs(r|M) and Fss(r|M) is the convolution of λs(r|M)
with itself. In practical cases there is at most one central galaxy
and satellites are only present in halos with a central, so that
〈NcenNsat〉M = 〈Nsat〉M . The total fraction of galaxies that are
satellites in a sample is then

fsat = n̄−1
g

∫
dM

dn

dM
〈Nsat〉M

=
∫

dM dn
dM 〈Nsat〉M∫

dM dn
dM (〈Ncen〉M + 〈Nsat〉M )

. (5)

The satellite fraction, fsat, will prove an important quantity in
determining the shape of the galaxy correlation function.

5 This notation is slightly different from that used in Berlind & Weinberg
(2002), in which F (r) denoted the cumulative pair distribution.

On scales significantly larger than individual halos, the two-
halo term dominates the clustering strength. It is most simply
written in Fourier space as (Cooray & Sheth 2002; for this
particular form of the equation see Tinker et al. 2005)

P 2h(k) = Pm(k)

[
n̄−1

g

∫
dM

dn

dM
〈N〉M bh(M, r)λ̃(k|M)

]2

,

(6)

where Pm(k) is the matter power spectrum, bh(M, r) is a
(possibly scale-dependent) halo bias function, and λ̃(k|M) is
the Fourier transform of the spatial number density of galaxies
within their host halos. We can invert the Fourier transform of
the two-halo power spectrum to recover the two-halo term of the
correlation function. In the limit that the galaxy pair separation
is larger than any halo of interest, the two-halo term becomes

ξ 2h(r) 	
[
n̄−1

g

∫
bh(M, r)〈N〉M dn

dM
dM

]2

ξm = b2
g ξm,

(7)

where ξm(r) is the matter correlation function. Equation (7)
explicitly shows that the large-scale galaxy correlation function
is essentially the halo correlation function, except that halos
of different masses are weighted by 〈N〉M . The galaxy bias
describing the relative clustering of galaxies to dark matter
bg = √

ξ/ξm is the quantity in square brackets in Equation (7).

2.2. The Battle of the One-halo and Two-halo Terms

Berlind & Weinberg (2002) showed that maintaining a power-
law correlation function requires a careful balance between the
one-halo and two-halo terms and is thus quite difficult to achieve.
This is because the one-halo term generally changes by a larger
amount than the two-halo term in response to changes to the
HOD. A close examination of Equations (3), (4), (6), and (7)
reveals why this is the case.

Consider first the two-halo term, as it is the simplest. At
large scales, the two-halo term is just a weighted average
of the clustering of host halos. For simplicity, assume (albeit
incorrectly) the halo bias to be a constant function of halo mass.
Increasing 〈N〉M increases both the number of two-halo pairs
at a given separation (the square of the integral in Equations (6)
and (7)) and the number of random pairs n̄2

g/2, by the same
amount. The reason the two-halo term is at all sensitive to the
HOD is that the bias of halos does depend on mass and so
changing the relative number of galaxies in high-mass versus
low-mass halos changes the weight in the average of the halo
bias in Equation (7). For example, assigning a large number
of satellite galaxies to high-mass halos increases ξ 2h(r) by
weighting highly biased, high-mass halos more heavily. The
possible range in the amplitude of the two-halo term is limited
by the variation of the halo bias function bh(M), within the
mass range relevant to galaxies, 1011 � M/M� � 1015. At low
masses, the halo bias is bh ∼ 0.65, while in the cluster regime
(M ∼ 1014 h−1 M�) it grows to values of bh ∼ 2 (Tinker et al.
2005). Bias continues to grow with mass, but more massive halos
are rare and do not contribute much to the weighted average
because dn/dM is miniscule. The two-halo term scales like the
square of the average bias bg in Equation (7), so the possible
dynamic range ξ 2h can display is, at most, a factor of ∼9 and
is usually significantly smaller. Simply put, the two-halo term
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depends weakly on the HOD because at large scales it is not
possible to make galaxies significantly more or less clustered
than the host halos they occupy.

At small scales, the one-halo term dominates and the situation
is different. The number of galaxy pairs within an individual
halo scales with 〈N (N − 1)〉M , while the number of random
pairs scales with n̄2

g, or 〈N〉2
M . It is instructive to break the

HOD into central and satellite galaxies. In the regime where
there is one central galaxy per halo, the mean number of
central–satellite pairs is 〈NcenNsat〉M = 〈Nsat〉M , whereas the
mean number of satellite–satellite pairs is 〈Nsat(Nsat − 1)〉M/2.
Assuming a Poisson distribution for the number of satellite
galaxies (Kravtsov et al. 2004a), 〈Nsat(Nsat − 1)〉M = 〈Nsat〉2

M .
The mean number of random pairs scales like (1 + 〈Nsat〉)2

M . In
the limit 〈Nsat〉M � 1, the number of satellite–satellite pairs
dominates the number of central–satellite pairs, but in this limit
both the number of one-halo pairs and the square of the mean
galaxy number density scale as 〈Nsat〉2

M , so the one-halo term
saturates to a maximum value and is insensitive to the number
of satellite galaxies per halo.

In most practical cases, the fraction of satellite galaxies in
an observational sample is fsat � 0.25, so samples tend to
be dominated by halos with satellite galaxy populations in the
opposite limit, 〈Nsat〉M  1. This is due to the fact that very
massive host halos are rare, so halos with 〈Nsat〉M > 1 are
rare. With 〈Nsat〉M  1, the central–satellite term dominates
and the number of such pairs scales as 〈Nsat〉M , while the mean
number density n̄g is approximately constant. Examination of
Equations (4) and (5) reveals that in this regime ξ 1h scales in
proportion to the fraction of satellite galaxies and in inverse
proportion to the number of host halos. Host halo mass is
largely fixed by requiring the galaxies in any sample to have an
appropriate average number density (this is why rare galaxies
exhibit strong small-scale clustering). Therefore, the one-halo
term describing any given sample varies approximately linearly
with 〈Nsat〉M until 〈Nsat〉 > 1, at which point it saturates. It
is interesting that nearly all the sensitivity of the correlation
function to the HOD comes from central–satellite galaxy pairs
in host halos where satellite galaxies are uncommon!

In this paper, we aim to understand the origin of the nearly
power-law galaxy correlation function. The relevant question is
why is it that the number of galaxies (or satellite galaxies to be
more specific) per halo is set just so that the one-halo and two-
halo terms in the galaxy correlation function match smoothly,
leaving only small deviations from a single power law over
several orders of magnitude in scale? We confront this problem
by studying the properties and evolution of subhalo populations.
We now turn to some of the details of our modeling methods.

3. OVERVIEW OF HALO SUBSTRUCTURE MODELING

Our approach is to study the evolution of subhalos within
virialized host halos as a method to understand satellite galaxies
and, in turn, the evolution of galaxy clustering. We focus our
attention on the relative strengths of small-scale and large-scale
clustering. We study subhalo populations using the approximate
semi-analytic model of Zentner et al. (2005, hereafter Z05).
In this section, we briefly review the fundamental aspects of
the model that are of immediate relevance and we refer the
reader to Z05 for details and validation. The subhalo model
is based on Zentner & Bullock (2003) and is similar to the
independent models of Taylor & Babul (2004, 2005a, 2005b)

and Peñarrubia & Benson (2005), while sharing many features
with other approximate treatments of halo substructure (Oguri &
Lee 2004; van den Bosch et al. 2005; Faltenbacher & Mathews
2005; Purcell et al. 2007; Giocoli et al. 2008, 2009).

Semi-analytic models are an approximation to the calcula-
tions of large N-body simulations, yet such models offer many
advantages: (1) semi-analytic calculations are computationally
inexpensive; (2) they have no inherent resolution limits; (3)
they enable the statistical study of subhalos within very large
numbers of host halos; (4) they allow the growth and mass-loss
histories of particular subhalos to be tracked without significant
post-processing and analysis; (5) they make studies of model
parameter space tractable; and (6) semi-analytic models facil-
itate parsing complex physical phenomena so that the relative
importance of different physical effects may be understood. Our
goal is to quantify the relative importance of merging, which in-
creases subhalo abundances, and dynamical friction and mass
loss, which decrease subhalo abundances. We also aim to ex-
plore predictions for subhalo populations and galaxy correlation
functions from high redshift to several Hubble times in the fu-
ture. Z05 extensively tested the model we use in this paper and
showed that the model produces subhalo mass functions, occu-
pation statistics, and radial distributions within hosts that are in
good agreement with a number of high-resolution N-body sim-
ulations (see the recent comparison in Koushiappas et al. 2010,
as well).

The analytic model proceeds in several steps. For a host halo
of a given mass M, observed at a given redshift z, we generate
a halo merger tree using the mass-conserving implementation
of the excursion set formalism (Bond et al. 1991; Lacey &
Cole 1993, 1994) developed by Somerville & Kolatt (1999,
see Zentner 2007 for a review). This yields a complete history
of the masses and redshifts of all halos that merged to form
the final, target halo of mass M at redshift z. The host halo
is the largest halo at each point in the merger tree. We model
the density distributions of all halos as Navarro et al. (1997,
hereafter NFW) profiles with concentrations determined by
their merger histories according to Wechsler et al. (2002).
At the time of each merger, we assign the subhalo initial
orbital parameters drawn from distributions measured in N-body
simulations (Z05, see Benson 2005 for similar formalisms).
We then integrate each subhalo orbit within the host halo
gravitational field, taking into account dynamical friction and
mass loss. We estimate dynamical friction with an updated form
of the Chandrasekhar (1943) approximation (Hashimoto et al.
2003; Zentner & Bullock 2003), account for internal heating
so that scaling relations describing the internal structures of
subhalos are obeyed (Hayashi et al. 2003; Kazantzidis et al.
2004; Kravtsov et al. 2004b), and allow for the loss of material
beyond the tidal radius at a timescale comparable to the local
dynamical time. The details of each ingredient are given in Z05.

The correlation function of halos and subhalos and their
associated galaxies is sensitive to the abundance of subhalos
that survive possible mergers with the central, host galaxy due to
dynamical friction, as well as mass loss, and thus remain distinct
objects in orbit within their host halos with their galaxies intact.
Therefore, it is necessary to specify conditions under which
the galaxy within a subhalo may be “destroyed” and removed
from our samples. In this paper, we consider the clustering of
mass-threshold samples of halos and subhalos as a proxy for
luminosity-threshold samples of galaxies, so significant mass
loss will lead to a galaxy that is either destroyed or drops out
of our sample. We assume such a scaling between halo mass
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and galaxy luminosity solely for the sake of simplicity. Our
primary points are qualitative in nature, but we note that this is
similar to other schemes that have described data successfully
(e.g., Kravtsov & Klypin 1999; Colı́n et al. 1999; Kravtsov
et al. 2004a; Tasitsiomi et al. 2004; Conroy et al. 2006) and our
calculations with similar, but more sophisticated, assignments
do not alter any of our basic results or conclusions. In rare
cases, subhalos may survive close encounters with the center
of their host halo potentials. We remove all subhalos that
have orbital apocenters rapo < 5 kpc. This choice is physically
motivated because the galaxies within such subhalos would
likely have merged with the central galaxy, or are at least
observationally indistinguishable from the central galaxy. This
choice is relatively conservative in that galaxies on larger orbits
would also likely be influenced and it only affects the results
of calculations in which tidal mass loss is not permitted (see
below). The net result of evolving orbits for each subhalo in the
merger tree is a catalog of all surviving subhalos in the final
host halo at the time of observation. In some cases, a halo that
merges into a larger host contains subhalos of its own. These
subs-of-subs are only abundant inside very large host masses
and are present in our model.

One of our aims is to study the individual roles of halo
merging, dynamical friction, and mass loss on the clustering
of halos. Therefore, we compute subhalo populations in four
different sets of circumstances.

No Effects. A “bare-bones” model that does not allow
satellite galaxies to be modified by dynamical friction or
mass loss. In this case, any infalling subhalo remains intact,
and we assume that this subhalo harbors a galaxy that
will survive forever. This is tantamount to assuming that
galaxies form in all sufficiently large peaks in the primordial
density field and survive until today.

Fric. Only. A model that only considers the effects of halo
merging and dynamical friction. Subhalos never lose mass
and can only be destroyed by sinking to the very center of
their hosts.

Strip. Only. A model that only considers halo merging and
mass loss and assumes no dynamical friction or central
merging. Subhalos can lose mass and drop out of a mass
threshold sample, but they cannot lose orbital energy and
sink to the center of the host potential.

Full. Our full model treating halo merging, dynamical
friction, and mass loss. This is the model that was developed
in Z05 and validated against N-body simulations.

We run our models for host masses6 in the range from
log(Mhost/ h−1 M�) = 11.0 to 15.0 in steps of Δ(logMhost) =
0.1. For each of these masses, we run 1000 statistical model re-
alizations representing different realizations of the local density
field and different halo merger histories. In this way, we sample
the statistical properties of subhalo populations over the entire
range of host halo masses relevant to galaxy–galaxy correla-
tions. We repeat this process for host masses at z = 0, as well
as two past redshifts, z = 3 and z = 1, and two future redshifts,
z = −0.6 and z = −0.9.

6 We note that we use the “virial” definition of a halo in which a halo is
defined as a spherical region of mean density equal to Δvir times the mean
background density. For our cosmological model, Δvir = 337 at z = 0 and
approaches 178 at high z.

4. EFFECTS OF SUBHALO DYNAMICS ON THE
GALAXY CORRELATION FUNCTION

4.1. Halo Occupation Distribution Statistics

The galaxy correlation function may be considered primarily
a function of the galaxy HOD (e.g., Berlind & Weinberg
2002). The prevailing cosmological model is now stringently
constrained and may be considered fixed for our purposes.
Moreover, theoretical predictions of the abundances, clustering,
and structures of host dark matter halos in the concordance
cosmology are now well established. Consequently, we focus
on the properties of the HOD and the manner in which the HOD
determines galaxy clustering.

We expect that each host halo of sufficient size contains one
dominant, central galaxy associated with the host itself, as well
as additional satellite galaxies that are associated with relatively
large subhalos. Thus, the HOD of galaxies should resemble the
HOD of all halos (hosts plus their subhalos), and such a model is
bolstered by significant empirical support (Kravtsov & Klypin
1999; Colı́n et al. 1999; Kravtsov et al. 2004a; Tasitsiomi et al.
2004; Conroy et al. 2006). As a result, we concentrate on the
insights that can be gleaned about the development of the HOD
of all halos, paying particular attention to the separate effects of
halo mergers, dynamical friction, and mass loss.

The left column of Figure 2 shows the mean occupation
number of host halos and subhalos as a function of host halo
mass 〈N〉M , at z = 0. The three panels give results for halo
samples defined by different mass thresholds. In the interest
of simplicity, we assume that all host halos and surviving
subhalos with masses M � Mmin harbor an observable galaxy.
This assignment is simpler than those supported by detailed
comparisons to data, which typically assume that all host halos
and surviving subhalos with masses M � Mmin (or some
maximum circular velocity) at the epoch of accretion harbor
an observable galaxy. We proceed in this manner because the
subtleties discussed in the aforementioned literature do not
influence our primary points and may serve to obscure them.
This is primarily because any mass threshold chosen at the
epoch of accretion will have a second “destruction” threshold
due to the finite resolution of a given N-body simulation.
This can alter clustering measurements, and since the aim of
this paper is to present the qualitative trends responsible for
the low-redshift correlation function, we use the simpler final
mass approximation. We have confirmed that using mass at
accretion with our model reproduces the same general results.
In a forthcoming paper we consider more sophisticated models
to compare with data. In the top, middle, and bottom panels we
show samples with log(Mmin/ h−1 M�) = 11.4, 11.7, and 12.3,
respectively. These particular mass thresholds result in average
galaxy number densities (see Equation (3)) equal to those in
observed SDSS samples with r-band luminosity thresholds of
Mr < −18.5, −19.5, and − 20.5 (Zehavi et al. 2005). The four
curves in each panel represent the four model modes described
in Section 3, and we calculate each curve from the mean of the
1000 model realizations.

First, the black dot-dashed curves represent the No Effects
model. As explained in Section 3, this model assumes that
any halo that merges into a larger host system (and becomes
a subhalo of that system) is thereafter unaltered by dynamical
effects in the host halo environment. Physically, this corresponds
to the simple (and observationally untenable) assumption that
each subhalo above Mmin brings with it an observable galaxy
upon merging into the host and that this galaxy is not destroyed
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Figure 2. Left panels: mean number of all halos (hosts plus subhalos) predicted by our subhalo model as a function of host halo mass, at redshift z = 0. The three panels
show results for three mass threshold values: log(Mmin/ h−1 M�) = 11.4, 11.7, and 12.3. The four curves in each panel correspond to the four models described in
Section 3: No Effects considers no gravitational effects on subhalos as they orbit inside their host halos (black dot-dashed curve); Fric. Only considers only the effects
of dynamical friction (green dashed curve); Strip. Only considers only the effects of mass loss (blue dotted curve); Full considers both dynamical friction and mass
loss (solid red curve). Right panels: the correlation function of all halos predicted by our subhalo model. ξ (r) is computed from the halo model using the occupation
statistics shown in the left panels. The figure shows that dynamical effects (especially mass loss) are needed in order to reduce the number of subhalos sufficiently and
produce a power-law correlation function.

(A color version of this figure is available in the online journal.)

or dimmed by dynamical evolution within the host halo. In
effect, each local peak of sufficient mass in the smoothed density
distribution forms a galaxy and the galaxy cannot be destroyed.
Of course, we expect the mean halo occupation in this model to
be high for all host masses as compared to the other models.

Next, we turn to the curves depicting the individual effects
of dynamical friction (Fric. Only, green dashed curves) and
mass loss (Strip. Only, blue dotted curves). These dynamical
mechanisms can destroy subhalos, but they cannot affect the
host halo or central galaxy. This is why all the curves converge
to the value 〈N〉M = 1 at low host masses. As a convenient
shorthand, we refer to any subhalo that fell into its host system
with a mass Msub � Mmin, but then merged with the central
host galaxy or lost sufficient mass to fall below this threshold,
as destroyed. This does not mean that the subhalo has become
unbound, but merely that it has either merged or no longer has
a bound mass above some minimum mass threshold.

Dynamical friction acting alone destroys subhalos by causing
them to sink to the center of their host and “merge” with it.
This mechanism alone causes a 20%–35% decrease in the mean

number of surviving satellites for all host masses as compared
to the No Effects model. The fractional decrease in subhalos
depends only weakly on host mass, but a comparison of the
different mass threshold panels shows a modest dependence on
subhalo mass, with smaller mass subhalos being depleted more.
These trends are counterintuitive because the dynamical friction
force is an increasing function of Msub/Mhost, the mass ratio
between the subhalo and its host (Binney & Tremaine 2008).
One might expect the depletion of subhalos to be larger for
smaller host masses at fixed subhalo mass or for larger subhalo
masses at fixed host mass. Our results differ from this expected
behavior for two reasons. First and foremost, low-mass-ratio
mergers tend to occur at higher redshifts than high-mass-ratio
mergers. At higher redshifts, host halos are significantly smaller
than they are at present, so high-redshift mergers probe only
the dense interiors of contemporary host halos and evolve
approximately according to the subhalo–host mass ratio at the
redshift of the merger. These early-merging subhalos also have
a longer period of time during which to evolve. Second, our
models include subhalos of subhalos. As we move to larger host
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masses at fixed subhalo mass or smaller subhalo masses at fixed
host mass, more subhalos are “subs of subs” that have much
higher mass ratios with their immediate hosts. These effects
result in the trends we see in Figure 2.

Mass loss is significantly more effective at “erasing” subhalos
than dynamical friction. Mass-loss processes can effectively
“destroy” subhalos because many lose sufficient mass to fall
below the threshold of a sample. This mechanism typically
drives an 80%–85% decrease in the number of objects above a
given mass threshold compared to the No Effects model. Again,
the fractional decrease in subhalos is nearly independent of host
mass, but shows a slight dependence on subhalo mass, with
smaller mass subhalos being destroyed more efficiently.

Finally, the Full model (red, solid curves) includes the effects
of both subhalo mass loss and orbital decay by dynamical
friction. These processes do not simply sum together. As
a subhalo sinks deeper into its host potential well due to
dynamical friction, it experiences a stronger tidal field and
is thus more efficiently stripped of its mass. Conversely, less
massive subhalos are less susceptible to orbital decay via
dynamical friction. A comparison of the Full model to the Strip.
Only model shows that including dynamical friction causes an
additional ∼15% depletion of substructure. Mass loss is by far
the dominant cause of subhalo destruction. Overall, Figure 2
shows that dynamical effects reduce the number of subhalos by
∼90% compared to the number of distinct mergers that occur
during the formation of a host halo.

4.2. Constructing the Correlation Function

We use the halo model outlined in Section 2.1 to compute the
correlation function predicted by our subhalo model. Specifi-
cally, we use the Jenkins et al. (2001) mass function and follow
Tinker et al. (2005) in using the Smith et al. (2003) formula
for the nonlinear matter power spectrum and the Tinker et al.
(2005) scale-dependent halo bias relative to the nonlinear power
spectrum. We derive HOD statistics from our subhalo models as
exemplified by the previous section, and compute the pair sep-
aration distributions by assuming that the radial distributions
of satellites follow an NFW profile for simplicity. In actuality,
the subhalo distributions in both our models and N-body sim-
ulations are slightly shallower than NFW (see Z05 for model
and simulation results). We adopt the NFW profile for analyt-
ical convenience as deviations from NFW are small and only
influence correlation functions notably on scales significantly
smaller than r ∼ 100 h−1 kpc (e.g., Z05; also see Watson et al.
2010 for a demonstration of this point regarding satellite galax-
ies).

The right column of Figure 2 shows the host+subhalo cor-
relation functions computed in this manner from the HODs
predicted by our subhalo model. In the No Effects case, where
no subhalos are destroyed, ξ (r) is very different from a power
law, having a one-halo term that is too large relative to the two-
halo term so that a distinct feature is present in ξ (r) at scales
r ∼ 2 Mpc. In fact, comparing this to Figure 1, we see that it
is very similar to the dark matter correlation function. This is
perhaps not surprising because subhalos in this model behave
as massive test particles that cannot be altered. As dynamical
effects are included and substructure is consequently depleted,
ξ (r) drops at all scales. Recall that only subhalos (hosting satel-
lite galaxies) can be destroyed and the number of host galaxies
remains unaltered. The fraction of all objects that are satel-
lites therefore decreases. As we discussed in Section 2.1, for a
fixed population of central galaxies the one-halo term drops in

approximate proportion to the number of satellite galaxies. So
as the number of satellites declines, so does the number of pairs
within halos relative to the total number of pairs and the one-halo
term declines.

Large-scale clustering is less sensitive to changes in the
satellite galaxy population. The two-halo term drops because
subhalos tend to populate more massive hosts (as in the left
column of Figure 2), so the average host halo mass of a sample
decreases as subhalos are depleted. The large-scale clustering
strength of halos increases with halo mass, so this depletion
results in weaker large-scale clustering. The variability of the
two-halo term is relatively mild because the halo bias is not a
rapidly varying function of halo mass near M ∼ Mmin (Tinker
et al. 2005).

With enough depletion of substructure, the one- and two-
halo terms align and result in a nearly power-law shape. This
is exactly what happens in Figure 2. In our Full subhalo
model the correlation function is roughly a power law. To
obtain a nearly power-law galaxy correlation function, it is
necessary that a majority of early galaxies and proto-galaxies
that merge to form a massive system at low redshift be
destroyed through either central mergers or mass loss. Our
results suggest that mass loss is mainly responsible for this
depletion, while dynamical friction and central galaxy mergers
play a comparably small, supporting role. Incidentally, this
picture implies that infalling satellite galaxies lose significant
stellar mass so that they provide an important source of the
diffuse intracluster light observed in galaxy groups and clusters
and this picture is consistent with observations (Purcell et al.
2007, 2008). Comparing our correlation function results for the
three different mass thresholds, we note that ξ (r) is closer to a
power law for lower-mass samples. We revisit this point in the
following section.

We now return to the mean occupation statistics shown in
the left panels of Figure 2. The so-called plateau region of the
HOD is the flat region at 〈N〉M = 1, where host halos are more
massive than Mmin, but not yet massive enough to host subhalos
above our mass threshold.7 As substructure is depleted, the
prominence of this plateau increases. The “length” of the plateau
in the HOD can be expressed as the ratio between the mass
of a halo that hosts a single satellite on average, M1, to the
minimum mass required to host a central galaxy, Mmin. Zehavi
et al. (2005) fit an HOD model to the measured correlation
function of SDSS galaxies and found that a ratio M1/Mmin ∼
23 is consistent with clustering data, nearly independent of
galaxy luminosity. In other words, a consistent picture is one
in which the entire HOD shifts to higher masses in a self-
similar manner, with M1/Mmin fixed, in order to accommodate
higher-luminosity samples. Remarkably, Kravtsov et al. (2004a)
studied this for subhalos in a high-resolution N-body simulation
and found that M1/Mmin ∼ 20, regardless of Mmin as well.
Meanwhile, Tinker et al. (2005) fit a slightly more complex
HOD model to the SDSS data and found that M1/Mmin ∼ 25
for galaxy samples with luminosities less than L∗, but decreases
to M1/Mmin � 5 to accommodate the highest-luminosity
samples (absolute r-band magnitudes Mr � −21). The new
analysis by Zehavi et al. (2010) also finds this trend with
M1/Mmin ∼ 17 for Mr � −20.5 and much lower values for
higher luminosity galaxies. For the purpose of comparison, the

7 Roughly speaking, the most massive subhalo within any host is a few
percent of the mass of the host halo (e.g., Z05). This is the case with, for
example, the Large Magellanic Cloud within the halo of the Milky Way
(Busha et al. 2010).
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Figure 3. Correlation function of all halos (hosts plus subhalos) predicted by
our subhalo model at redshift z = 0. The four curves show ξ (r) for four mass
threshold samples and the threshold values Mmin (in units of h−1 M�) are listed
in the panel. The figure shows that ξ (r) breaks more and more from a power law
for higher mass halo samples, which correspond to higher luminosity galaxy
samples.

Full subhalo model shown in Figure 2 predicts M1/Mmin ∼ 40
for the low-mass samples of log(Mmin/ h−1 M�) = 11.4 and
log(Mmin/ h−1 M�) = 11.7, and M1/Mmin ∼ 30 for the higher-
mass sample of log(Mmin/ h−1 M�) = 12.3.

These results suggest that getting the length of the HOD
plateau right may be a key ingredient needed to establish a
power-law correlation function and this has been part of the
interpretation in the literature. The importance of M1/Mmin
stems from the fact that most one-halo pairs reside in halos
with average satellite numbers 〈Ns〉M � 1, so modeling the
HOD at relatively low satellite occupation numbers is critical
(see Conroy et al. 2006). We investigate this further in Section 6.

5. MASS AND REDSHIFT DEPENDENCE OF THE
CORRELATION FUNCTION

5.1. Dependence on Mass

While dynamical processes act in a manner to deplete sub-
structure and push ξ (r) toward a power law at all mass thresh-
olds, it is evident that deviations from a power law are stronger
with increasing host mass. Figure 3 shows the correlation func-
tions predicted by our Full subhalo model for four different
mass thresholds, ranging from log(Mmin/ h−1 M�) = 13.5, cor-
responding to bright galaxies such as luminous red galaxies
(LRGs), down to log(Mmin/ h−1 M�) = 10.5, corresponding to
dwarf galaxies. While the correlation function of the “dwarf”
sample is a near power law, that of the “LRG” sample exhibits
strong departures from power-law behavior. This trend has been
detected with SDSS galaxies by Zehavi et al. (2005) who found
evidence that a power-law model provides a better fit to low-
luminosity galaxies than high-luminosity galaxies. Halo and
subhalo clustering exhibits the same trend. More massive ha-
los contain slightly more of their bound masses in substructure
relative to less massive halos, but this is a comparably small
effect (Z05) and drives only ∼30% of the mass dependence of

the one-halo term in Figure 3. At fixed redshift, the departure
from a power-law at high mass (high luminosity) is caused by
the relative rareness of high-mass host halos (see Section 2.1 for
interpretive discussion).

5.2. Dependence on Redshift

Substructure abundances vary with time. Infall of new subha-
los acts as a “source” of halo substructure. The rate of mergers of
halos into larger systems is a function of redshift that typically
peaks at redshifts z ∼ 1–3 in the halo mass range of interest and
declines thereafter (Z05; Zentner 2007). Once a subhalo merges
into a larger host halo, dynamical friction shrinks its orbit and
the subhalo loses mass. Given enough time, the subhalo will
eventually lose enough mass to fall below Mmin or merge with
the central galaxy and lose its identity. The balance between the
halo merger rate and the rates of destructive processes (which
occur on a halo dynamical time) determine the redshift depen-
dence of halo substructure.

Figure 4 shows the redshift evolution of the mean halo
occupation number and resulting correlation functions. The
layout of Figure 4 is similar to that of Figure 2, with 〈N〉M
shown in the left panels and ξ (r) shown in the right panels.
However, in Figure 4 all results are for the Full subhalo model,
and the various lines denote quantities evaluated at different
redshifts, z = 3, 1, 0, −0.6, and −0.9 (where negative
redshifts correspond to future epochs). Moreover, in each panel
the correlation functions are scaled by a power law to better
highlight departures from a power-law shape.

The left-hand panels of Figure 4 show that the average
number of subhalos within hosts of a given mass starts out
high at early times and begins to decrease after z = 3, as
merger rates decline. By the present epoch (z = 0), the number
of subhalos has dropped by ∼25%–30% relative to what it
was at z = 3. One Hubble time into the future (z = −0.6),
the abundance of substructure has dropped by ∼60%. This
is because the rate of merging as a source for new subhalos
declines rapidly. This decrease in the merger rate is dictated
in large part by the quenching of structure growth by the
cosmological constant (Carroll et al. 1992), but also because
most halos of interest are below the typical collapsing mass,
which approaches M∗ 	 1014 h−1 M� in the future (Zentner
2007). Meanwhile, destructive processes continue to operate
on orbiting halo substructure for several additional dynamical
times. Three Hubble times into the future (z = −0.9) the average
halo occupation has dropped by ∼90%. As with our previous
results, the fractional decrease in subhalo abundance appears to
be roughly independent of host mass, meaning that the slope
of the HOD in the high-〈N〉M limit is not significantly altered
by evolution. The amplitude of 〈N〉M declines considerably,
resulting in increasing M1/Mmin, or a “lengthening” of the HOD
plateau with time. This behavior is strikingly similar to that seen
in Figure 2 in the sense that turning on dynamical effects at
a fixed redshift has a qualitatively similar impact as evolving
forward in time, and the effects on the correlation function are
similar.

Turning to the right panels, ξ (r) is shown at each redshift
scaled by an r−1.7 power law in order to emphasize features
in the correlation function. Starting at z = 3 (long dashed
curves), ξ (r) is very far from a power law, with a slope that
is much steeper at small scales. At z = 1 (short dashed
curves) the break from a power law is less pronounced, but
it is still significant. These results are qualitatively consistent
with clustering measurements at high redshifts (Coil et al. 2006;
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Figure 4. Left panels: mean number of all halos (hosts plus subhalos) predicted by our Full subhalo model as a function of host halo mass, at five different redshifts.
The three panels show results for three mass threshold values: log(Mmin/ h−1 M�) = 11.4, 11.7, and 12.3. The five curves in each panel correspond to the redshifts
z = 3, 1, 0, −0.6, and − 0.9 (negative redshifts correspond to future epochs). Right panels: correlation functions corresponding to the halo samples shown in the left
panels. In each case, ξ (r) has been scaled by a power law in order to clearly show departures from a power-law shape. The figure shows that the number of subhalos
steadily decreases from high to low redshift, causing the correlation function to evolve from not being a power law at high redshift, toward having a nearly power-law
shape at the present epoch, and once again deviating from a power law at future epochs.

Ouchi et al. 2005; Lee et al. 2006). At z = 0 (solid curves), the
correlation function is approximately a power law, though there
is still a mild, discernible feature at the transition scale between
the one- and two-halo terms. In the future, ξ (r) once again
breaks from a power law. At z = −0.6 (dot-dashed curves),
departures from a power-law shape are about as strong as they
were at z = 1. Three Hubble times into the future, at z = −0.9
(dotted curves), the departures from a power law are significant
and represent a dramatic reduction in the relative contribution
of the one-halo term.

Figure 5 focuses on the log(Mmin/ h−1 M�) = 12.3 threshold
sample and shows the correlation function at four different
redshifts, while also showing the one- and two-halo terms
explicitly. Figure 5 clearly demonstrates how a delicate balance
is needed between the two terms in order for ξ (r) to achieve a
power-law shape. The two-halo term exhibits modest variations
from panel to panel, with a range of about a factor of ∼3.
The decreased large-scale clustering at z � 0 is due to the
linear growth of perturbations with time, but this is always
kept modest because the increasing bias of halos of fixed mass

with redshift (see Zentner 2007) compensates for large-scale
structure growth. At z < 0, the slight decrease in two-halo
clustering is due to the decay of halo bias once halo growth
slows (Fry 1996).

The variation in the one-halo term is significantly larger, as
our earlier discussions suggest, and changes by a factor of
∼45–150 (depending on scale), equivalent to ∼15–50 times
the variation in the two-halo term. At high redshift, the relative
rareness of host halos and the large amount of substructure
cause ξ (r) to be boosted significantly in the one-halo regime,
as shown in the z = 3 panel of Figure 5. At z = 0 just the
right amount of substructure has been depleted to strike a near
balance between the one-halo and two-halo contributions. In
the future, the continual destruction of subhalos suppresses the
one-halo term, driving ξ (r) away from a power law again. By
z = −0.9, the depression in small-scale clustering is striking.

Some of the evolution of ξ (r) on small scales comes from
the fact that halos large enough to host luminous galaxies be-
come increasingly rare as redshift increases. The characteristic
collapsing mass is a rapidly decreasing function of redshift and
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terms. The figure shows that the one-halo term evolves strongly with redshift
and only at z = 0 strikes the right balance with the two-halo term to result in a
power law.

is only M∗ ≈ 109 h−1 M� at z = 3. In the relevant regime, the
strength of the one-halo term grows in approximate proportion
to the number of satellite galaxies and in inverse proportion to
the number of host halos of appropriate size (see Section 2.1),
so the relative paucity of host halos at high redshift also drives
strong one-halo clustering because Figure 5 describes samples
of fixed absolute mass threshold. However, it is subhalo abun-
dance that has the larger influence on the redshift dependence of
clustering. We have computed the correlations of Figure 5 using
samples in which Mmin varies with redshift so as to maintain a
constant number density of halos. These samples are less sub-
ject to the gross evolution of the halo mass function. We find all
of the same qualitative results for this case, though the two-halo
term varies by a factor of ∼4, while the variation in the one-
halo term is limited to a factor of ∼12–80 (again, depending
on scale), resulting in a variation in the one-halo term that is
∼3–20 times larger than that of the two-halo term. Moreover,
we have re-computed correlation functions using a combination
of the predicted low-redshift HODs alongside the high-redshift
mass functions in order to isolate the contribution due to the
mass function and HOD evolution. The majority the redshift
dependence of ξ (r) at small scales is due to the evolution of
subhalo abundance. To maintain a power-law correlation func-
tion at high redshift would require fewer subhalos per host than
at z = 0 in order to compensate for the relative rareness of host
halos at high redshift. In fact, hosts at high redshift have a larger
number of subhalos of any given mass so these effects reinforce
one another, leading to a strong deviation from a power law ξ (r)
at high redshift.

We have already described the reasons that the one- and two-
halo terms behave so differently under changes in the HOD. To
reiterate, at large scales ξ (r) is essentially a weighted average of
the clustering of host halos, where 〈N〉M provides the weighting
(see the integral in Equations (6) and (7), note that λ̃(k,M) ≈ 1

for k < 1/Rvir). The possible variability in ξ (r) at large scales
is limited because it is always bound by the limited variation
in the clustering of host halos. As we discussed in Section 2.1,
the difference in the large-scale bias of the largest relative to the
smallest halos is at most a factor of ∼3 (e.g., Tinker et al. 2005).
Significant variations in large-scale clustering require dramatic
variations in the HOD at high mass, which are not expected on
theoretical grounds and are not mandated by data. However, at
scales smaller than the size of individual host halos, ξ (r) can
vary dramatically, depending on the HOD. For example, in the
extreme case of only one object per host halo, there will be zero
pairs within halos and the one-halo term will vanish. For large
numbers of satellites, the one-halo term will be significantly
larger than a power-law extrapolation of the two-halo term to
small scales.

The sensitivity of the one-halo term to the HOD, coupled
with the relative insensitivity of the two-halo term, means that
achieving a power-law correlation function requires fine-tuning
in the number of satellite galaxies per halo. The satellite galaxy
abundance naturally evolves with redshift, so ξ (r) can only be a
power law during those epochs when substructure has evolved
to join the one-halo term to the two-halo term. Of course, it may
be possible for features in the host halo mass function or bias
relations to conspire to compensate for substructure evolution,
but such features would somehow need to be coordinated with
low-redshift structure growth. A different way to state this is that
the halo mass function and halo bias depend on the statistics of
the linear density field, and do not “know” about the nonlinear
galaxy formation and gravitational processes that occur within
halos. It would be quite strange if their evolution were somehow
connected with the evolution of satellite galaxies in virialized
hosts. It seems to be a coincidence that the epoch of near power-
law clustering of typical galaxies lies near z = 0.

5.3. The Balance Between Accretion and Destruction

We have just seen how the depletion of substructure over
time leads to evolution in the correlation function such that
it becomes a power law at the present epoch. However, what
drives substructure depletion? We expect that most subhalos
will lose significant amounts of mass or merge with the central
galaxy given sufficient time. However, this will be compensated
to some degree by the infall of new subhalos. If the rate at which
satellites are accreted is greater than the rate at which they are
destroyed, then the net amount of substructure will grow with
time. The evolution in the number of subhalos (and hence the
correlation function) depends on the balance between accretion
and destruction. Z05 give a related discussion of accretion and
destruction in their Section 4.4 and the perspective we adopt
here complements Z05.

In Figure 6, we illustrate the competition between accretion
and destruction in host halos of mass M = 1013.4 h−1 M�. To
measure the accretion rate (dashed curve), we count all subhalos
with masses greater than 1011 h−1 M� that accrete onto these
hosts in finite time intervals. For the destruction rate (solid
curve), we count the number of these same subhalos that drop
below 1011 h−1 M� during the time intervals. The accretion rate
minus the destruction rate will then give us the net rate of change
in the number of subhalos per unit time.

Figure 6 shows that the accretion rate quickly grew and
reached a peak at z ∼ 2–3. Since this peak, the accretion rate has
been steadily declining and is close to zero at the present epoch.
The decline in merger rates is partly due to the shape of the power
spectrum (see Lacey & Cole 1993; Somerville & Kolatt 1999;
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Figure 6. Accretion vs. destruction rate of subhalos over cosmic time, as
predicted by our full subhalo model. The accretion rate shown is the number of
subhalos per Gyr that merge into a host halo of mass log(M/ h−1 M�) = 13.4.
The destruction rate is the number of these same subhalos per Gyr that are
destroyed (i.e., their mass drops below some threshold value). The two rates
equalized when the universe was ∼6 Gyr old (at z ∼ 1). Before z = 1, the net
number of subhalos increased with time, whereas at later times the net number
decreased with time. The figure shows how the balance between accretion and
destruction changes with redshift, which explains why the correlation function
can only be a power law at a single epoch.

(A color version of this figure is available in the online journal.)

Zentner 2007), but the driving force for the recent fast decline in
the merger rate of halos is the reduced rate of structure growth
caused by accelerated cosmic expansion. The destruction rate
also peaked at z ∼ 2–3 and lags the accretion rate because most
destruction happens over a period of several dynamical times.
Figure 6 clearly shows that the accretion rate has been dropping
faster than the destruction rate since their peaks, with accretion
and destruction roughly balancing just below z ∼ 1 (see also
Stewart et al. 2009). This means that the number of subhalos
in hosts that grow to a mass of M = 1013.4 h−1 M� by z = 0
increased until z ≈ 1 and has been declining ever since, despite
the fact that the virial masses of these halos have been growing.
The general trend toward reduced substructure at low redshift
explains the behavior exhibited in Figure 4. The correlation
function is close to a power law at the present epoch because
the balance between accretion and destruction over time has led
to the requisite abundance of substructure today.

6. ACHIEVING A POWER-LAW CORRELATION
FUNCTION

We now step back from making predictions using our spe-
cific subhalo model and undertake a general exploration of the
properties of the HOD that yield nearly power-law correlation
functions at different masses and redshifts. The HOD charac-
terizes the number and spatial distribution of galaxies within
dark matter halos. It is typically specified with a handful of pa-
rameters that are constrained using galaxy clustering measure-
ments (e.g., Magliocchetti & Porciani 2003; Zehavi et al. 2005;
Tinker et al. 2005; Zheng et al. 2007). We choose an HOD model
that is motivated by theoretical predictions from hydrodynamic
simulations, semi-analytic models, and high-resolution N-body
simulations (Berlind et al. 2003; Kravtsov et al. 2004a; Zheng
et al. 2005). According to this model, halos above some thresh-
old mass contain a single “central” galaxy plus a number of
“satellite” galaxies. The number of satellites in any given halo
is drawn from a Poisson distribution whose mean is a power-

law function of host halo mass. The central galaxy is placed at
the center of the host halo, while the satellites are spatially dis-
tributed according to an NFW density profile. Specifically, we
adopt an HOD parameterization that is similar to the one used
by Tinker et al. (2005). This is a simple, yet powerful, model
in which the number of central galaxies is modeled as a step
function,

Ncen =
{

1 if M � Mmin
0 if M < Mmin

, (8)

while the mean number of satellites follows a power-law with
an exponential cutoff at low mass,

〈Nsat〉M =
(

M

M1

)α

exp

(
−M0

M

)
. (9)

The parameters in the model are as follows.

1. Mmin is the minimum host halo mass to contain a central
galaxy.

2. M0 is the host halo mass below which satellite galaxies are
exponentially suppressed.

3. M1 is the host halo mass to contain, on average, one satellite
galaxy.

4. α is the index of the power-law relation between the mean
number of satellite galaxies and halo mass.

Previous studies have shown that the power-law index α ≈ 1
for subhalos and simulated galaxies (Kravtsov et al. 2004a;
Zheng et al. 2005; Zentner et al. 2005), as well as observed
galaxies dimmer than L∗ (Zehavi et al. 2005), leading Tinker
et al. (2005) to set α = 1 throughout their analysis. However, we
allow α to vary because the correlation function is sensitive to
it and, although it may be near unity when modeling observed
data, it may need to deviate from unity to yield a power-law
correlation function at high redshifts. On the other hand, ξ (r) is
not sensitive to M0 and consequently we fix its value by adopting
the Conroy et al. (2006) M0 − M1 relation,

log(M0/ h−1 M�) = 0.76 log(M1/ h−1 M�) + 2.3. (10)

The result is an HOD model with only three free parameters:
Mmin, M1, and α.

The two-halo term of ξ (r) depends on the mean occupation
〈N〉M = 〈Ncen + Nsat〉M , which is equal to 1 + 〈Nsat〉M for
M > Mmin. The one-halo term also requires the second
moment of the occupation distribution 〈Nsat(Nsat − 1)〉M , so
characterizing the mean occupation is not sufficient. We assume
that the number of satellites follows a Poisson distribution, for
which 〈Nsat(Nsat − 1)〉M ≡ 〈Nsat〉2

M . Our Full model deviates
mildly from a pure Poisson distribution (see Figure 7 of Z05,
and recent simulations of Boylan-Kolchin et al. 2010, that find
similar deviations from a Poisson distribution), but the effect
of this deviation on ξ (r) is minor (Figure 16 of Z05). We also
note that there are any number of possible parameterizations for
〈Nsat〉M to choose from besides that adopted here. We have found
that mildly different parameterizations that exhibit the same
basic features and are consistent with contemporary data (e.g.,
the one used by Zehavi et al. 2005) yield similar conclusions.

We consider the HOD parameter space that yields a power-
law correlation function for three galaxy samples of fixed
number density n̄g, at three different redshifts z = 0, 1, 3. Fixing
number density is a way to compare similar samples at different
redshifts, because the high-redshift sample is more likely to
represent the progenitors of the low-redshift sample than it
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Figure 7. Exploration of the HOD parameter space that yields a power law ξ (r), as a function of redshift and sample number density. Each column of panels shows
results for a different redshift (z = 0, 1, 3). Each row of panels shows results for a different sample number density (n̄g = 0.02, 0.01, 0.003 h3 Mpc−3). We adopt the
four-parameter HOD model shown in Equations (8), (9), and (10). Each panel shows the parameter space probed by α, the slope of the mean occupation number of
satellites, and M1, the halo mass that contains on average one satellite galaxy. For each pair of α and M1 values, we find the value of Mmin that yields the desired galaxy
number density. We then use the halo model to compute ξ (r) for that set of HOD parameters. We do this on a 50 × 50 grid of α–M1 parameter combinations. We fit
each correlation function to a power law, and the shaded contours represent the 68.3%, 95%, and 99.6% power-law likelihood (green, blue, and red contours). Also
shown are contours of constant satellite fraction (solid black curves). The red cross in each panel shows the HOD parameters predicted by our Full subhalo model. For
comparison, we also show results from HOD modeling of real galaxy samples from the SDSS at z = 0 (Zheng et al. 2007, T05—magenta boxes and gray asterisks);
and DEEP2 at z = 1 (Zheng et al. 2007—purple triangles). Finally, we show the simulation results of Conroy et al. (2006) that are designed to model SDSS, DEEP2,
and Lyman-break galaxies at z = 0, 1, and 3, respectively (cyan diamonds).

(A color version of this figure is available in the online journal.)

would in the case of mass threshold samples. We choose number
densities equal to n̄g = 0.02, 0.01, and 0.003 h3 Mpc−3, which
correspond to three z 	 0, volume-limited, r-band threshold
samples in the SDSS: Mr < −18.5, −19.5, and −20.5 (Zehavi
et al. 2005).

For a given number density and redshift combination (e.g.,
n̄g = 0.02 h3 Mpc−3 at z = 1), we create a 50 × 50 grid of
M1–α parameter combinations. For each pair of M1 and α on
this grid, we use Equation (3) to find the value of Mmin that is
needed to enforce the desired number density. In this manner,
the 2500 HOD models on the grid represent galaxy samples
with the same number densities, but different HODs. We then
compute the first and second moments of the mean galaxy
occupation using Equations (8) and (9), and use the halo model
described in Section 2.1 to construct ξ (r). We assign 10% errors
on all scales to ξ (r), as such errors are roughly consistent with
jackknife resampling errors in current clustering measurements
(Zehavi et al. 2005), and we fit a power-law function to all 2500
correlation functions. We perform our fits using a Markov Chain
Monte Carlo analysis in which we vary the slope and correlation
length of the fitted power law. We then find the minimum
χ2 value for a power-law fit to ξ (r) for any given M1–α
combination. This allows us to approximate the HOD parameter

space in which ξ (r) is consistent with a power law at a level
similar to contemporary observations. For two free parameters,
the 68.3% (1σ ), 95% (2σ ), and 99.6% (3σ ) likelihood regions
correspond to values of reduced χ2 � 1.15, 1.61, and 2.06,
respectively.

Figure 7 shows the contours generated from the aforemen-
tioned procedure. Each row in the figure represents a different
n̄g value and each column corresponds to a different redshift.
The “satellite fraction” (fsat, the fraction of all galaxies that
are satellites, see Equation (5)) is relevant to the shape of the
galaxy two-point correlation function. Therefore, over-plotted
in each panel are curves of constant fsat (the labeled, solid, black
curves). To compare these results with measurements from ob-
served galaxies, in each panel we also show best-fit M1 and
α values from published halo model fits to measurements of
ξ (r) using galaxy samples with the same number densities at
the same redshifts. Squares and triangles represent the best-fit
parameter values from Zheng et al. (2007) who fit SDSS (z = 0)
and DEEP2 (z = 1) data (ZSDSS, ZDEEP2) and asterisks repre-
sent the best-fit Tinker et al. (2005) values for SDSS data (T05).
Diamonds represent the Conroy et al. (2006) values for SDSS,
DEEP2, and the z = 3 Subaru data of Lyman-break galaxies
(C06).
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The best-fit parameter combinations should be regarded as
best-fit “regions,” because there are errors associated with the
derived parameters (e.g., the Zheng et al. (2007) SDSS α and
M1 errors at each luminosity are of order 10%). We note that
Tinker et al. (2005) considered several possible values of σ8,
but we show their results for σ8 = 0.9 to be consistent with
the cosmological model used in the other studies. Finally, in
each panel we show the HOD parameters predicted by our
Full subhalo model (marked by an “X”) for samples with mass
thresholds that yield the desired number density. The Full model
gives 〈Nsat〉M and we fit this with Equation (9) to obtain best-fit
values of M1 and α.

A number of interesting conclusions can be drawn from this
figure.

1. The region of HOD parameter space that yields a power law
ξ (r) drifts to lower values of both M1 and α with increasing
number density. These trends increase the satellite fraction
as number density increases to compensate for the relative
reduction in the one-halo term compared to the two-halo
term induced by moving to a lower-mass, more abundant
halo sample.

2. The values of α that result in the best power laws drift higher
with increasing redshift in an effort to boost the two-halo
term by placing galaxies in massive, highly biased halos.
In general, it is difficult to arrange a power law at z � 3 for
these three number densities.

3. As might be expected from our previous discussions, there
is a relatively narrow range of fsat for the best-fit power-
law space at each redshift. At z = 0, the space that is
consistent with a power-law with 10% errors on the data lie
near fsat ∼ 0.1–0.15. The direct fits to observational data
lie near fsat = 0.2–0.3. At z = 1, the power-law region
is shifted to fsat ∼ 0.05–0.1, while at z = 3 the power-
law region is even lower, fsat ∼ 0.01–0.02. Note that the
power-law regions are not precisely aligned along constant-
fsat contours, particularly at low redshift and low number
density, indicating that other factors, such as host halo
abundances and the physical sizes of host halos, contribute
to the power-law nature of ξ (r). However, at high redshift
and low number density, the power-law regions become
more nearly collinear with contours of constant fsat over a
range of α values.

4. The SDSS (z ∼ 0) best-fit points lie near the power-law
contours, but not within these likelihood regions. This is
not surprising as the SDSS measurement is more precise
over a wide range of scales than the ∼10% errors we have
assumed and the observed ξ (r) is now known to exhibit
very small, but statistically significant deviations from a
power law (Zehavi et al. 2004).

5. As predicted from Figure 3, the fits to observational data lie
further from the power-law regions as we move to lower n̄g
(higher luminosity) samples. At fixed redshift, this is driven
largely because the host halos of these galaxies become in-
creasingly rare. However, it is worth noting that the growth
of the one-halo term with increasing Mmin is reinforced
by an increase in satellite abundance at fixed scaled mass
Msub/Mhost as Mhost increases, accounting for ∼30% of
the rise. This increase satellite abundance with Mhost arises
because more massive host halos assemble more recently,
leaving less time for the evolution of substructure and less
satellite destruction (Z05). The relative time available for
satellite evolution is an important part of determining the
power-law nature of the correlation function.

6. The fits to observational data lie near the power-law regions
at z = 0, but grow more distinctly separated with increasing
redshift. This evolution is driven by satellite fractions at
high-z that are too large to be consistent with power-law
clustering. This supports our basic picture that satellite
destruction over cosmic time is needed to achieve a power
law ξ (r), and that the observed low-luminosity, low-redshift
ξ (r) is a coincidence.

7. The HOD values predicted by our Full subhalo model are
similar to all of the observed data fits at all redshifts.
This is a remarkable result considering our model treats
only subhalos and not galaxies explicitly. We explore more
complicated associations of galaxies and subhalos in a
follow-up study.

8. Our subhalos, as well as all observational data, reveal values
of α 	 1 for all redshifts, in accord with previous theoretical
results (Kravtsov et al. 2004a; Zheng et al. 2005; Zentner
et al. 2005; Conroy et al. 2006). Moreover, at each redshift,
they have fixed satellite fractions, independent of n̄g. At
z = 0, z = 1, and z = 3, our model and the observational
data cluster near fsat ≈ 0.25, fsat ≈ 0.2, and fsat ≈ 0.1,
respectively. We note that the lower satellite fractions at
high redshift are not due to HOD evolution. Figure 4 shows
that 〈Nsat〉 is higher at high z. Instead, satellite fractions
are lower at high z because all relevant host halos have
Mhost > M∗ and lie on the exponentially decreasing portion
of the halo mass function, so the relative number of M1-
mass host halos to Mmin-mass halos decreases with redshift.
Nevertheless, these satellite fractions at high redshift are too
high to support a power-law galaxy correlation function.

9. Figure 7 implies that the physical mechanisms that dictate
the HOD of galaxies operate to maintain α and fsat approx-
imately fixed and not to achieve a power-law correlation
function.

We have established that the observed power-law correlation
function at low masses and low redshifts should not persist
at higher masses or redshifts for simple, physical reasons.
However, exploring the HOD parameter space has not revealed
a single simple property that yields a power-law shape for ξ (r).
In an effort to better understand the factors that drive a power
law ξ (r) at high precision, we continue to explore the HOD
parameter space in a different way. Specifically, we investigate
the two mass scales in the standard HOD models, Mmin and
M1, relative to the characteristic nonlinear collapse mass, M∗.
To complement our previous analysis and to be consistent with
gross theoretical predictions, we fix α = 1 and take our two
parameters to be Mmin/M∗ and M1/Mmin. The first ratio specifies
roughly the host masses that galaxies occupy relative to the
exponential regime of the halo mass function, and the second
ratio sets the length of the “plateau” in the HOD.

Figure 8 probes the power-law ξ (r) space as a func-
tion of the ratios Mmin/M∗ and M1/Mmin. For this analy-
sis we switch from fixed number density samples to fixed
mass thresholds, and we choose four values of minimum
mass that correspond to a range of sub-L∗ galaxies (Mmin =
1010.0, 1010.5, 1011.0, 1011.5 h−1 M�), showing results for each
in a distinct panel. In each panel, we sample redshifts from
z = −0.9 to z = 2.9 in steps of Δz = 0.08 (labeled on the
right vertical axis). Each redshift value also corresponds to a
Mmin/M∗ ratio, which we label on the left vertical axis. At
each redshift, we also loop over M1/Mmin ratios from 1 to 100
in steps of Δ(M1/Mmin) = 2. For every pair of Mmin/M∗ and
M1/Mmin values, we compute ξ (r) using the halo model and fit a
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Figure 8. Exploration of the HOD parameter space that yields a power law
ξ (r). Each panel corresponds to a different mass threshold Mmin (in units of
h−1 M�). The y-axis shows redshift (right-hand side), which also corresponds
directly to the ratio Mmin/M∗ (left-hand side), since the characteristic nonlinear
mass M∗ depends directly on redshift. The horizontal axis shows the ratio
M1/Mmin. We fix the slope of the satellite mean occupation function to be
α = 1 and set the fourth HOD parameter M0 using Equation (10). Each point
on the horizontal axis therefore corresponds to a specific set of HOD parameters,
while moving along the vertical axis shifts the HOD to different redshifts. As
in Figure 7, shaded contours represent the 68.3%, 95%, and 99.6% power-
law likelihood spaces and thin solid curves show contours of constant satellite
fraction. The horizontal and vertical dotted lines correspond to fixed values of
Mmin/M∗ = 0.05 and M1/Mmin = 30, which bisect the best-fit power-law
space in all four panels. Solid black horizontal lines denote z = 0, below which
the parameter space corresponds to future epochs.

(A color version of this figure is available in the online journal.)

power-law function in the same fashion as described previously.
As before, we show the 68.3%, 95%, and 99.6% likelihood re-
gions of ξ (r) consistent with a power law (green, blue, and red
contours, respectively). Also, as before, we show contours of
constant satellite fraction, fsat (solid black curves). The thick
horizontal lines at z = 0 are meant to emphasize that the param-
eter space lying below these lines corresponds to future epochs.

We have repeated this analysis for higher mass thresholds
(values of Mmin = 1012.0, 1012.5, 1013.0, 1013.5 h−1 M�). How-
ever, we do not show those results because we found no parame-
ter combinations within the 99.6% power-law likelihood space.
Figure 7 showed that the power-law parameter space drifted to
higher values of α for lower number density (and hence higher
mass) samples in an effort to drive up the two-halo term to meet
the enhanced one-halo term. Therefore, it is not surprising that
we do not find this space when we restrict the slope to be α = 1.

Many interesting results can be drawn from Figure 8. Again,
we itemize them for the sake of clarity.

1. In order for ξ (r) to have a shape consistent with a power law
assuming ∼10% measurement errors, it appears necessary
for the “plateau” in the HOD to be sufficiently long. At
all masses and redshifts, M1/Mmin needs to be at least
∼20, otherwise the large satellite fraction drives a one-
halo term that is too large relative to the two-halo term.
Moreover, for past epochs, z > 0, the maximum plateau
length is M1/Mmin � 40. Higher values of M1/Mmin yield
a one-halo term that is too weak. In fact, M1/Mmin ∼ 30
seems to be the preferred value to yield a nearly power-law
correlation function at all masses so long as z > 0. This
value is denoted by the vertical dotted lines in all the panels.

2. For z � 0, a near power law ξ (r) seems to require
a restricted range of Mmin/M∗. Interestingly, the value
Mmin/M∗ ∼ 0.05 can yield a power-law correlation func-
tion at all masses for appropriate choices of redshift. This
value is denoted by the horizontal dotted lines in all the
panels. This restriction on Mmin/M∗ means that higher red-
shift samples (when M∗ is significantly smaller than today)
can only exhibit power-law behavior if the relevant host
halos are significantly smaller. This possibility becomes
irrelevant in a practical sense because star formation is in-
efficient in small halos (M  1011 h−1 M�, e.g., Conroy
& Wechsler 2009; Behroozi et al. 2010; Guo et al. 2010),
so they cannot host galaxies that are easily observable at
high redshift. Figure 8 shows that the lowest-mass samples
that we consider (top two panels) have a nearly power law
ξ (r) at 1 � z � 2, whereas the highest-mass samples have
a nearly power law ξ (r) only at low redshift.

3. At sufficiently high redshift, near power-law clustering is no
longer achievable at any mass threshold corresponding to
relatively bright galaxies. Our results generally indicate that
power-law clustering at high redshift can only be achieved
if galaxies at high redshift occupy halos in a markedly
different and more complicated manner than their low-z
counterparts.

4. For future epochs these broad results no longer hold. A
broader range of M1/Mmin values can be made approx-
imately consistent with a power law at low values of
Mmin/M∗, or low/negative redshifts. For the lowest Mmin
samples the power-law likelihood space is clearly bimodal,
with possible ways to achieve a power law both at high
redshifts and at low/future redshifts.

5. At all masses and redshifts we find that the power-law
likelihood parameter space has satellite fractions in the
range fsat ∼ 0.1–0.25, with the fsat = 0.15 contour slicing
through all of the 1σ regions. fsat is naturally strongly
dependent on both M1/Mmin and Mmin/M∗. Increasing the
length of the HOD plateau at fixed Mmin and redshift makes
fsat decrease, as does boosting Mmin/M∗ while keeping
Mmin and the plateau fixed. If we keep both ratios fixed (i.e.,
both the HOD shape and its position relative to the mass
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function) then the satellite fraction is also approximately
fixed, regardless of Mmin.

7. DISCUSSION AND PRIMARY CONCLUSIONS

It has been recognized for decades that the two-point corre-
lation function has a simple, power-law form with ξ (r) ∼ r−2.
Observational determinations of galaxy two-point clustering
spanning more than thirty years all yielded results consistent
with a single power law extending from linear and quasi-linear
length scales (r � 30 h−1 Mpc) to deeply nonlinear scales
(r � 0.1 h−1 Mpc). In this paper, we cast the problem in the
contemporary setting in which galaxies form in halos and sub-
halos of dark matter and set out to understand the physical
processes that drive this surprisingly simple result. Our primary
conclusion is that the nearly power-law correlation function of
relatively common, L∗ and sub-L∗ Galaxies at z ∼ 0 is a coin-
cidence and does not reflect any general principle of structure
formation or galaxy evolution. So how did we arrive at this
conclusion?

First, the efficiency of galaxy formation is dependent upon
halo mass and it has been determined both theoretically and
empirically that there is a halo mass scale below which galaxy
formation is inefficient, roughly Mgal ∼ 1010.5 h−1 M� (Conroy
& Wechsler 2009; Behroozi et al. 2010; Guo et al. 2010).
A number of things can set this scale, including atomic and
molecular physics and feedback from supernovae and active
galactic nuclei (for a recent review article see Benson 2010).
This mass scale is Mgal < M∗, so L∗ and sub-L∗ galaxies are
common. Had Mgal been greater than or similar to M∗, most
bright galaxies would lie in comparably rare halos and be rare
themselves. In such a case, one-halo clustering would be too
strong to be compatible with a power law. M∗ is not determined
by galaxy formation physics but is set by the completely
unrelated processes that establish the amplitude of cosmological
density fluctuations, presumably primordial inflation.

Second, power-law clustering requires that some of the
galaxies formed within relatively large subhalos are destroyed.
Destruction is due primarily to mass loss and, to a lesser
extent, merging with the central galaxy as a result of dynamical
friction. Without this destruction, satellite fractions would be
too high and small-scale clustering too strong compared with
large-scale clustering. In a forthcoming paper, we perform more
sophisticated modeling to make the connection between subhalo
mass loss and stellar mass loss in order to make predictions
for the amount of intracluster light. Large-scale clustering is
principally set by large-scale matter density fluctuations and is
insensitive to the details of galaxy formation within halos, while
the strength of small-scale clustering grows in proportion to the
fraction of galaxies that are satellites and in inverse proportion
to the number density of the galaxies of interest. As it turns out,
precisely the right amount of subhalo destruction has occurred
by redshift z ∼ 0 in a concordance cosmology to produce a
single, unbroken, power law ξ (r).

Evolution of the satellite fraction is set by a competition
between halo mergers, which increase fsat, and destruction by
dynamical processes, which occur on a dynamical timescale
and reduce fsat. At high redshifts, mergers occur more rapidly
than destruction for halos with masses �Mgal. The low-redshift
merger rate declines in part due to the fact that Mgal < M∗
at z � 1. Halos with masses below M∗ become relatively
more likely to merge with a larger object than to acquire
new substructure compared to counterparts with masses greater
than M∗ (see Zentner 2007). More importantly, the rate of

halo mergers is quenched at z � 1 as dark energy begins
to suppress further cosmological structure growth. As merger
rates decline, satellites are depleted with time. Therefore, at
z ∼ 0 the correlation function is nearly a power law because
the competition between the accretion and destruction rates
has struck just the right balance to yield the appropriate value
of fsat.

The merger and destruction rates will once again become
unbalanced in the future as halo merging is stifled by dark
energy and existing satellite galaxies are slowly destroyed over
many dynamical times through complex interactions in their
host environments. We show that this will result in small-scale
clustering that will be significantly too weak to be consistent
with a power law.

Largely as a consequence of the merger/destruction com-
petition, ξ (r) evolves through cosmic time, achieving a power
law only near z ∼ 0 for L ∼ L∗ and dimmer galaxies. The
processes of galaxy formation, the amplitude of cosmological
density fluctuations, the abundance of dark matter, and the na-
ture of the dark energy are thought to be completely distinct
and determined by unrelated physics. So the power law ξ (r) at
z ∼ 0 is a coincidental conspiracy.

In establishing these broad conclusions, we have performed
an exhaustive investigation of the ingredients of the galaxy
correlation function, which has revealed many interesting, more
detailed conclusions. These can be summarized as follows.

1. We find that satellite halo mass loss is the principle dynami-
cal process responsible for depleting sufficient substructure
so as to nearly align the one- and two-halo terms to yield a
power-law correlation function at low redshift. Dynamical
friction plays a smaller supporting role, accounting for an
additional ∼15% of subhalo destruction.

2. The shape of the correlation function is strongly mass
dependent. For instance, at low redshift deviations from
a power law ξ (r) grow with increasing host halo mass.
This drives stronger deviations from a power law for higher
luminosity galaxy samples. The best power-law fits derived
from our model are for galaxies residing in halos that
are common enough to correspond to ∼L∗ and dimmer
galaxies, in agreement with observations.

3. The correlation function is highly redshift dependent. The
sensitivity of the one-halo term to the HOD, coupled with
the relative insensitivity of the two-halo term, implies that
achieving a power law requires fine-tuning the number of
satellite galaxies per halo. The satellite galaxy abundance
evolves with redshift, driven by the evolving balance be-
tween accretion and destruction, with an enhanced amount
of substructure at high redshift. Therefore, the correlation
function can only achieve a power law during those epochs
when substructure has evolved to align the one- and two-
halo terms. The correlation function is boosted on small
scales at high z, the one- and two-halo terms join at z = 0 to
form a power law, then the power law is once again broken
in future epochs.

4. For three chosen number densities corresponding to low
redshift, ∼L∗ and dimmer galaxies, we probed the most
likely power-law space as a function of redshift for a
parameterized HOD. We find that there is a relatively
narrow range of satellite fractions for ξ (r) to be consistent
with a single power law (assuming ∼10% measurement
errors) at any given redshift. At all redshifts and masses,
power-law correlation functions have satellite fractions in
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the range fsat ∼ 0.1–0.25. It is difficult to achieve a power-
law correlation function at z � 3 for any number density.

5. We find that to achieve a power law ξ (r) at high mass
or redshift, the slope α of the satellite galaxy occupation
function must be significantly steeper than unity (for
instance, greater than 2 at z = 3). This would imply that
the mapping of galaxies to halos is much more complicated
than we think, since the number of galaxies would have
to be very different than the number of subhalos of a
particular size. Instead, it appears that the processes that
govern galaxy formation do not care about the conditions
needed to achieve a power law ξ (r).

6. The ratio M1/Mmin (the “plateau” of the HOD) is a key
ingredient for predicting the shape of ξ (r). The prominence
of the plateau is a measure of substructure abundance.
Along with M1/Mmin, it is also necessary to characterize the
ratio Mmin/M∗, which specifies what halo masses galaxies
occupy relative to the halo mass function. By maintaining
the combination of M1/Mmin ∼ 30 and Mmin/M∗ ∼ 0.05,
we can achieve a near power law for redshifts in the range
0–1.5 and the appropriate mass threshold at each redshift
(the mass threshold is Mmin ∼ M∗/20, with M∗ set by
the redshift). At higher redshifts this criterion is met for
galaxies that are most likely too dim to be observed. For
example, achieving the requisite Mmin ∼ M∗/20 at z =
2 corresponds to a halo mass of Mmin ∼ 109 h−1 M� in
which star formation is inefficient.

This work has allowed us to formulate a general picture of
the nature of the galaxy two-point correlation function. Halo
abundances and subhalo populations evolve with time. At high
redshifts, halos large enough to harbor galaxies are rare and
subhalos are abundant within these hosts. With time, host halos
that harbor galaxies generally become more common (though
the specifics of this evolution can be subtle) and subhalos within
these hosts become relatively less abundant. All the while, large-
scale matter correlations grow, but the clustering bias of large
halos evolves to largely compensate for this large-scale growth
of structure. These effects, considered either individually or in
tandem, change the HOD and the shape of ξ (r). As a result, the
correlation function evolves through an epoch where it is close to
a power law and this epoch happens to be near z ∼ 0. From our
broad discussion and detailed conclusions, it is clear that a nearly
power-law correlation function requires a conspiracy between
otherwise unrelated processes such as the early universe physics
that established the initial conditions for low-redshift structure,
the detailed physical processes that determine galaxy and star
formation efficiency, and the growth rate of cosmic structure
set largely by the abundances of dark matter and dark energy.
The low-redshift power-law galaxy two-point function is thus a
mere cosmic coincidence.
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the National Science Foundation through grant AST 0806367.
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