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ABSTRACT

Discretized numerical simulations are a powerful tool for the investigation of nonlinear MHD turbulence in accretion
disks. However, confidence in their quantitative predictions requires a demonstration that further refinement of the
spatial grid scale would not result in any significant change. This has yet to be accomplished, particularly for global
disk simulations. In this paper, we combine data from previously published stratified shearing box simulations and
new global disk simulations to calibrate several quantitative diagnostics by which one can estimate progress toward
numerical convergence of the magnetic field. Using these diagnostics, we find that the established criterion for an
adequate numerical description of linear growth of the magneto-rotational instability (the number of cells across
a wavelength of the fastest-growing vertical wavenumber mode) can be extended to a criterion for the adequate
description of nonlinear MHD disk turbulence, but the standard required is more stringent. We also find that
azimuthal resolution, which has received little attention in previous studies, can significantly affect the evolution
of the poloidal magnetic field. We further analyze the comparative resolution requirements of a small sample of
initial magnetic field geometries; not surprisingly, more complicated initial field geometries require higher spatial
resolution. Otherwise, they tend to evolve to qualitatively similar states if evolved for sufficient time. Applying our
quantitative resolution criteria to a sample of previously published global simulations, we find that, with perhaps
a single exception, they are significantly underresolved, and therefore underestimate the magnetic turbulence and
resulting stress levels throughout the accretion flow.

Key words: accretion, accretion disks – black hole physics – magnetohydrodynamics (MHD) – methods:
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1. INTRODUCTION

Numerical simulation is an important tool for understanding
the dynamics and evolution of accretion disks. In the last decade,
the increase in computational power has made it possible to
carry out global disk simulations of increasing complexity, as
the state of the art has risen from pseudo-Newtonian dynamics
(Hawley & Krolik 2001; Machida & Matsumoto 2003) to full
three-dimensional general relativistic (GR) physics (De Villiers
& Hawley 2003; Gammie et al. 2003; Anninos et al. 2005),
most recently including toy-model thermodynamics (Fragile
& Meier 2009; Noble et al. 2009; Shafee et al. 2008). These
simulations already have several achievements to their credit.
They have shown that the magneto-rotational instability (MRI;
Balbus & Hawley 1991, 1998) can be effective in providing
the required internal stress. They have shown that disks rapidly
evolve to a near-Keplerian distribution of angular momentum
regardless of the initial angular momentum distribution. They
have demonstrated two mechanisms by which a large-scale field
magnetic field can be attached to a black hole, either the inward
transport of a truly large-scale field (Beckwith et al. 2009) or
the spontaneous, if temporary, inflation of field loops within the
accretion flow (McKinney & Gammie 2004; De Villiers et al.
2003, 2005). If the black hole rotates, these large-scale fields
can support Poynting flux-dominated jets.

Nonetheless, a number of questions remain open regarding
the quantitative quality of the predictions these simulations can
make for real black holes in nature. Some of these questions have
to do with the adequacy of the physical approximations made,
most notably the still rather crude account of thermodynamics
in even the best of them. Radiation forces, although likely
very important in numerous black hole accretion contexts,
likewise remain largely omitted in global simulations. Others

have to do with physical choices that must be made in order to
calculate anything, but about which we have no real knowledge,
particularly the initial strength and structure of the magnetic
field. Confidence in the saturation strength of the field is greatest
when it is statistically time-steady, yet very different from its
initial state. It is therefore desirable to begin with a weak
magnetic field and let the natural dynamics of the situation
strengthen it. Although there have been discussions in the
literature that certain initial field geometries are “most natural”
(e.g., multiple loops; Shafee et al. 2008), all such arguments
appear to be based on little more than subjective aesthetic
judgments. We might hope that these choices have little effect
on the outcome, but that must be demonstrated; in the case of jet
launching, we already know that magnetic field geometry plays
a major role (Beckwith et al. 2008a).

Other questions have to do with the specifics of the numerical
techniques employed. Every algorithm has certain strengths
and weaknesses, and their impact depends on the nature of
the problem being simulated. Geometric symmetry conditions
may be imposed (e.g., imposing azimuthal boundary conditions
periodic across a wedge rather than around a full circle in order
to economize on computer time) whose consequences cannot
easily be determined a priori. Transients due to arbitrary initial
conditions must be eliminated. And every discrete numerical
scheme must be shown to have fine enough resolution, both
spatially and temporally, to describe adequately the physical
processes involved. This last point is a special concern for
accretion simulations because MHD turbulence is essential
to the story, but true microphysical dissipation operates on a
scale so many orders of magnitude smaller than the disk scale
that no conceivable simulation can hope to resolve it. It is
these more technical questions that are the province of this
paper.
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In this paper, we will by no means attempt a full comparison
of a broad range of codes and algorithms. We will, however,
present some comparative data in the shearing box context in
order to estimate the potential level of contrast in saturated stress
and other properties among codes utilizing different algorithms
run at similar resolutions.

We will also pass over the second question, that of overly
restrictive symmetry conditions. We note that Schnittman et al.
(2006) showed that in a full 2π simulation there is substan-
tial power in stress fluctuations on azimuthal scales as long as
∼1 rad. More recently, Beckwith et al. (2011), using a pseudo-
Newtonian thin disk simulation, argued that most of the stress
was found on scales larger than 40◦ and that similarly resolved
simulations that used smaller wedges found substantially re-
duced stresses. Given those findings, wedges of at least a quarter
circle are certainly required.

The third question, how to eliminate transients, poses some-
what different issues, depending upon whether the context is
stratified shearing boxes or global disks. In the former case, it
has long been established (Hawley et al. 1995) that the principal
transients are erased in ∼10 orbits, but the turbulence exhibits
significant long-term, chaotic fluctuation power (Winters et al.
2003), even over durations as long as the very longest simu-
lations, �500 orbits. Nonetheless, despite the long-term vari-
ability, it is possible to define time averages reasonably well.
We will discuss quantitative definition of transient removal in
global disk simulations more fully in Section 5. Here, it suffices
to say that statistical stationarity in global simulations has a dual
meaning. One sense is the same as for shearing boxes: given a
surface density and an orbital shear, the system should achieve a
statistical steady state in the amplitude of the MHD turbulence.
The other sense is that the local surface density must have a
well-defined mean value over some period of time. This is more
difficult and can never be achieved over the entire simulation
volume.

The fourth and last question, how to determine whether a
given simulation has adequate resolution to return accurate
quantitative results, will occupy most of our attention. One
expects convergence of the numerical solution to an exact
solution as the grid size goes to zero, i.e., Δx → 0. Since
that limit is never attained, convergence generally refers to the
observation that a given quantity approaches some fixed value
as Δx is reduced. Different quantities, of course, have different
convergence rates (in practice, the formal convergence rate,
determined by the order of the scheme, need not be manifest
at a given finite resolution), and individual quantities may
themselves be subject to several different criteria. The issue
of convergence is further complicated when evolving equations
without explicit resistivity and viscosity. In that case, dissipation
occurs at the grid scale, and the effective Reynolds number of
the system becomes a function of resolution.

As an illustration, consider the central quantity of accretion
physics, the local stress. Its saturation depends on the interplay
between several different processes. First, small magnetic fluc-
tuations are amplified by the MRI; the spatial resolution must
therefore be great enough that the fastest-growing linear mod-
es—for both poloidal and toroidal fluctuations—e-fold at the
correct rate. Next, nonlinear couplings between different wave
modes must also be described properly. Adequate resolution
for this process depends upon the length scale of the shortest
important modes, but it is hard to determine a priori what that
length scale may be. Finally, the turbulence must be dissipated
at scales much less than the stirring scale. Lesur & Longaretti

(2011) argue that in feasible simulations, all resolvable wave-
lengths are coupled together by nonlinear processes. They also
argue, however, that in real disks the range of non-local cou-
pling in wavevector space is much smaller than the dynamic
range between the stirring scale and the physical dissipation
scale, permitting the creation of a genuine inertial range.

Initial conditions may also play a role in determining the nec-
essary resolution. Because the fastest-growing MRI wavelength
is proportional to the field strength parallel to the wavevector,
the weaker the initial field, the finer the spatial resolution must
be. In the nonlinear stage when the magnetic field has a fixed
large-scale element, even modest resolution suffices to describe
that portion reasonably well, although a full description of the
turbulence places stronger demands. On the other hand, when
even the largest scales maintained by the physics are smaller, the
minimum necessary resolution becomes correspondingly finer.
Popular initial conditions for zero net-flux magnetic field con-
figurations illustrate this effect. When the initial magnetic field
is a single set of nested poloidal loops, many of these field line
loops become attached to the black hole horizon, forming a ra-
dially large-scale magnetic structure linking the black hole and
the disk. On the other hand, when the initial field is quadrupolar,
with a pair of nested poloidal loops on either side of the mid-
plane, these loops are free to shrink in size, demanding a much
finer spatial grid if excessive resistive losses are to be avoided.

For reasons of practicality, simulators tend to choose reso-
lutions that are as fine as possible while still consistent with
their computing budget. It is therefore often not feasible to test
directly for convergence by performing a new simulation with
more grid zones. Although some sense of the rate of convergence
can be obtained by computing models at lower resolution, that
procedure would not reveal the failure of the highest resolu-
tion simulation to resolve some important feature—it is entirely
possible that the reason the results do not change appreciably
with changing resolution is that even the best-resolved case is
incapable of sustaining an important physical effect.

Our approach to these problems is to begin with shearing
box calculations, in which it is generically easier to reach high
resolution than in global disk simulations. We will search for
quantities related to, but different from, the stress and that scale
with resolution in a way that can be calibrated. With these in
hand, it becomes possible to gain some idea of how far along the
path toward convergence certain important magnetic quantities
essential to determining the stress are in a global simulation. We
will apply these measures both to a number of older simulations
and to some new ones we have carried out especially for this
purpose. Full general relativity is not necessary to achieve
these goals because the saturation of MHD turbulence is an
essentially Newtonian process. Consequently, it is sufficient to
carry out simulations using the simpler and less computationally
demanding Zeus algorithm and a pseudo-Newtonian potential.

2. NUMERICAL SETUP AND INITIAL CONDITIONS

In this study, we explore some of the effects of resolution and
initial conditions first by examining the results from local strat-
ified shearing box simulations, and then by computing a series
of global accretion simulations. The shearing box results are, in
all but two cases, taken from the literature. Our sample features
several resolutions, box sizes, and numerical algorithms. Some
of the numerical aspects of those simulations are described in
Section 3; for a detailed account the reader should consult the
papers where these simulations were originally presented.
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Here, we describe the numerical setup for the global accretion
simulations carried out specifically for this paper. As we will
be focusing on the body of the disk itself rather than the
interactions with the black hole or any jets or winds that form,
it is sufficient to use non-relativistic MHD and to work in the
pseudo-Newtonian potential to approximate the gravity of a
black hole. We evolve the equations of Newtonian MHD in
cylindrical coordinates (R, φ, z),

∂ρ

∂t
+ ∇ · (ρv) = 0 (1)

ρ
∂v
∂t

+ (ρv · ∇)v = −∇
(

P + Q +
B2

8π

)
− ρ∇Φ +

(
B

4π
· ∇

)
B

(2)

∂ρε

∂t
+ ∇ · (ρεv) = −(P + Q)∇ · v (3)

∂B
∂t

= ∇ × (v × B) , (4)

where ρ is the mass density, ε is the specific internal energy,
v is the fluid velocity, P is the pressure, Φ is the gravitational
potential, B is the magnetic field vector, and Q is an explicit
artificial viscosity of the form described by Stone & Norman
(1992). To model a black hole gravitational field, we use
the pseudo-Newtonian potential of Paczyński & Wiita (1980),
which is

Φ = − GM

r − rg

, (5)

where r is spherical radius and rg ≡ 2GM/c2 is the “gravita-
tional radius,” akin to the black hole horizon. For this potential,
the Keplerian specific angular momentum (i.e., that correspond-
ing to a circular orbit) is

l = (GMr)1/2 r

r − rg

, (6)

and the angular frequency Ω = l/R2. The orbital period at a
radius r is Porb = 2πΩ−1 = 2πr3/2(r − rg)/r . The innermost
stable circular orbit (ISCO) is located at rms = 3rg . We use an
adiabatic equation of state, P = ρε(Γ − 1) = KρΓ, where P is
the pressure, ρ is the mass density, ε is the specific internal
energy, K is a constant, and Γ = 5/3. Radiation transport
and losses are omitted. Since there is no explicit resistivity
or physical viscosity, the gas can heat only through adiabatic
compression or by artificial viscosity which acts in shocks,
including weak shocks found in the turbulence.

The code used is a time-explicit Eulerian finite-differencing
Zeus code for MHD (Stone & Norman 1992a, 1992b; Hawley
& Stone 1995).3 We set GM = c = 1, so that rg = 2 M . Time
and distance units are given in terms of the mass M .

The initial conditions consist of an orbiting gas torus with an
angular momentum distribution parameter q = 1.65 (Ω ∝ R−q)
and K = 0.0034. The pressure maximum radius is R = 35 M
and the inner torus edge is at 20 M . The orbital period at the
pressure maximum is 1227 M . Using the definition of scale

3 Here, the term Zeus refers to the algorithm rather than a specific code
implementation. There are several publicly available versions of Zeus as well
as a large number of individually developed versions, such as was employed
here.

Figure 1. Initial torus and field configuration for the two-loop simulations. The
outermost contour line marks the boundary of the initial torus. The remaining
contours are the magnetic field lines.

height H ′ in terms of the density moment, H ′/R = 0.1 at
the pressure maximum. Explicitly fitting a Gaussian function
∝ exp[−(z/H )2] to the vertical pressure distribution gives a
value of H/R ≈ 0.16. Note that H = √

2HG, where HG is
more commonly regarded as the Gaussian scale height. In an
isothermal thin disk, HG = cs/Ω. In internal code units the
initial mass of the torus is 6096 (assuming a full 2π azimuthal
domain; the actual computational domain runs from 0 to π/2).
Of this total mass, 19% lies inside of R = 35 M .

We use two initial field configurations and two average field
strengths. The first is the standard dipole loop, in which the
vector potential is written in the form

Aφ = C(ρ − ρcut) (7)

so that the field lines run along contours of constant density.
Here, C is a constant that sets the overall field strength and is
set to zero wherever ρ < ρcut. This configuration is referred to
as “one loop.” We initialize a “two-loop” simulation using the
vector potential function of Shafee et al. (2008), namely,

Aφ = [(ρ − ρcut)r
0.75]2 sin [ln(r/S)/T ] , (8)

where r is the spherical coordinate radius, ρcut is set at 20%
of the density maximum (thus confining the initial field to
well within the edge of the initial torus), S = 1.1rin, where
rin = 20 M is the initial inner edge of the torus and T = 0.16
(see Figure 1). For either geometry, the initial field strength
is normalized to a β value, either 100 or 1000, defined as the
ratio of the total volume-integrated gas pressure to the volume-
integrated magnetic pressure.

Boundary conditions are periodic in φ and outflow along the
z and R boundaries. One consequence of cylindrical coordinates
and our use of an inner boundary radius located at Rin > rg ,
is that there is a cutout parallel to the z-axis through which
matter as well as field can pass and leave the grid. Therefore,
in these simulations no large-scale field can become attached
to the black hole or fill the axial region as is seen in the GR
simulations. Because the focus here is on the evolution of the
disk away from the black hole and plunging region, we accept
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this limitation for the sake of concentrating computational power
on the torus itself.

The grid used in this study is designed to place as many zones
as possible within the main body of the accretion disk. The inner
boundary of the radial grid is set at Rin = 4 M . From there it runs
outward with constant ΔR to R1, beyond which ΔR/R is set to
a constant. This definition produces a logarithmically stretched
grid throughout most of the domain while avoiding overly small
ΔR values near the inner boundary. The z grid concentrates half
of the total number of zones symmetrically around the equator
using equal Δz. This portion of the grid extends to z = ±z1
from the equator. The remaining z zones are logarithmically
stretched outward to boundaries that are well removed from the
initial torus. The φ grid uses evenly spaced zones that span one
quarter of the full 2π .

We choose a fiducial grid, Grid M (“medium resolution”),
and vary the resolution relative to it. Grid M contains 256 radial
zones with 48 zones inside of R1 = 20 M . The outer radial
boundary is at R = 253 M . The z grid uses 288 zones with
144 grid zones covering the range |z| � z1 = 5 M . Using the
density moment definition of the scale height, H ′ ∼ 3.3 M at
the location of the pressure maximum, giving ∼48 z zones per
H ′. Outside of z = ±5 M the grid is logarithmically stretched
out to z = ±54 M . The φ grid uses 64 equally spaced zones. In
the inner disk (i.e., 6M � R � 20 M and |z| � 5 M), the cell
aspect ratio ΔR/Δz = 4.8 and ΔR/(RΔφ) = 2.3–0.68 (from
R = 6 M to R = 20 M).

The simulations performed on Grid M will be contrasted
with the results obtained using other grid resolutions. The lower
resolution Grid L (“low resolution”) is half as well resolved in
R and z. It consists of 128 radial zones with 24 equally spaced
zones between R = 4 M and 20 M , with ΔR increasing ∝ R
from that radius out to R = 253 M . At the pressure maximum,
ΔR = 1.07 M . The z grid has 144 zones, half of which are
concentrated inside z = ±5 M , where the minimum Δz is
0.139 M . The φ grid is the same as in Grid M. In this case,
ΔR/Δz = 4.8 as for Grid M, but ΔR/(RΔφ) = 4.5–1.4.

Grid R (“high-R resolution”) is the same as Grid M for z
and φ, but the number of radial zones is increased to 816. Inside
R1 = 10 M , ΔR = 0.04 M; outside that radius, ΔR/R = 0.004.
The outer boundary of the radial grid is located at R = 142 M .
Its cell aspect ratios are ΔR/Δz = 0.58–1.2 (once again, from
R = 6 M to R = 20 M) and ΔR/(RΔφ) = 0.27–0.16.

Two other grids are used to study the influence of the φ
resolution. Grids PL and PH use the same R and z grid as Grid
M, but change the number of φ zones to 32 and 128, respectively,
while keeping the φ domain the same size (π/2).

We employ a variety of diagnostics to analyze the simulations.
Certain quantities, such as total magnetic and kinetic energies,
are computed and recorded every 10 time steps. We also
save binary data files and compute integrals of quantities over
cylindrical shells at regular time intervals.

3. SHEARING BOXES AND RESOLUTION DIAGNOSTICS

To quantify the resolution effects in global simulations, we
begin with the shearing box (Hawley et al. 1995), a system
where greater effective resolution can be employed and more
extensive resolution studies are possible. Since shearing box
models were first introduced, many studies have been carried
out to measure how the stress levels depend on resolution, the
initial field strength and geometry, and other thermodynamic
factors (e.g., Hawley et al. 1995; 1996; Brandenburg et al.
1995; Stone et al. 1996; Fleming et al. 2000; Miller & Stone

2000; Sano & Inutsuka 2001; Sano & Stone 2002; Sano et al.
2004; Fromang & Papaloizou 2007; Simon et al. 2009). The
first shearing box simulations employed comparatively few total
zones (e.g., 32 × 64 × 32 zones in x, y, z), but recently the
number of zones used in simulations has substantially increased.

Resolution studies using stratified shearing boxes that in-
clude the vertical component of gravity are the most relevant
for comparison to global simulations. We have examined data
from several recent stratified shearing box resolution studies
(Simon et al. 2011; Shi et al. 2010; Davis et al. 2010; Guan
& Gammie 2011) to see what, if any, general properties of the
MRI turbulence might prove sensitive to resolution. Although
shearing box simulations have found that the magnitude of a
physical resistivity and viscosity as well as their ratios can have
a significant impact on the turbulence levels (e.g., Fromang et al.
2007; Lesur & Longaretti 2007), at least for smaller magnetic
Reynolds numbers (Oishi & MacLow 2011), nearly all global
simulations done to date have used only grid scale dissipation.
Therefore, we consider here only those shearing box simulations
without explicit (physical) small-scale dissipation. The resolu-
tions in these simulations range from 16 to 128 zones per scale
height H. The Simon et al. and Davis et al. models have an
isothermal equation of state and make use of the Athena code
with the HLLD-flux solver (Stone et al. 2008; Stone & Gardiner
2010), but differ in regard to the initial magnetic field and box
size. The Davis models use a zero-net vertical field initial condi-
tion and a box that is H :4H:4H (x:y:z), while the Simon models
have a net toroidal field overlaid with a poloidal field loop and
a box that is 2H :4H:8H (x:y:z); in both cases, H ≡ √

2cs/Ω.
The Shi et al. models have the same initial field configuration
as Simon, but use a Zeus code and include heating and radiative
transport. Their box had side lengths 2H ′:8H′:16H′ (x:y:z). The
Guan & Gammie (2011) models use a Zeus code, an isothermal
equation of state, and focus on larger stratified boxes; their fidu-
cial simulation has a domain of 16H :20H:10H. Table 1 presents
some time-averaged data collected from Simon et al. (2011), Shi
et al. (2010), Davis et al. (2010), and Guan & Gammie (2011)
along with two unpublished 8 and 16 zones/H simulations (J.
Simon 2010, private communication). Note that the Shi et al.
data use a time-averaged scale height because the temperature
in their simulations varies as determined by thermal balance
between dissipation of the turbulence and radiative cooling. All
of these simulations except those of Shi et al. used an “orbital
advection” scheme that evolves the fluctuating flow separate
from the background shear (see Stone & Gardiner 2010, for a
description of the technique). A main advantage of that proce-
dure is to increase the time step that can be used for shearing
boxes with large radial extent.

It is immediately clear that resolution can strongly affect the
quantity most important to disk evolution, the magnetic stress.
Results from four stratified shearing box simulations that use
64, 32, 16, and 8 zones per H for the first 150 orbits are shown
in Figure 2. The plotted quantity is the volume-averaged stress
parameter α, defined

α = 〈(ρvxδvy − BxBy/4π )〉
〈ρ〉c2

s

. (9)

The 64 and 32 zone simulations are the 64Num and 32Num
models of Simon et al. (2011); the 16 and 8 zone simulations
are lower resolution versions of those simulations (J. Simon
2010, private communication). All four simulations show initial
growth to a peak that occurs at around 10 orbits in time.
After this point, the eight zone simulation (the lowest curve)
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Table 1
Shearing Box Simulations

Reference Zones/H Qz Qy B2
x /B2

y B2
z /B2

x β−1 αmag α

Simon8 (unpub) 8 0.08 1.7 0.016 1.0 0.015 0.08 0.001
Simon16 (unpub) 16 2.0 13. 0.075 0.53 0.057 0.30 0.016
Simon32 32 5.7 27. 0.13 0.53 0.072 0.37 0.025
Simon64 64 11. 44. 0.17 0.53 0.056 0.40 0.020
Davis32 32 4.5 23. 0.12 0.41 0.078 0.33 0.020
Davis64 64 10. 40. 0.16 0.47 0.051 0.36 0.012
Davis128 128 26. 98. 0.18 0.50 0.053 0.36 0.018
ShiSTD 27 4.8 13. 0.10 0.65 0.075 0.27 0.020
ShiZ512 53 11. 13. 0.12 0.56 0.130 0.30 0.029
ShiDBLE 50 15. 32. 0.15 0.63 0.098 0.22 0.029
Guan std16 12.8 2.6 15. 0.07 0.58 0.035 0.28 0.013
Guan s16a 25.6 6.8 34. 0.12 0.58 0.057 0.32 0.023

Figure 2. Ratio of α, the volume-averaged Maxwell and Reynolds stress to
volume-averaged pressure in a set of four stratified shearing box simulations.
The simulations use 8 (lowest solid line), 16 (dotted line), 32 (dashed line), and
64 zones (solid line) per scale height H. The mean α values and plus or minus
one standard deviation computed from 20 to 150 orbits are 0.0020 ± 0.00086,
0.021 ± 0.0085, 0.030 ± 0.010, and 0.024 ± 0.0066 for the 8, 16, 32, and
64 zones per H models.

clearly dies out. Large temporal variations characterize the other
simulations. The stress in the 16 zone run, for example, declines
slowly for the first 50 orbits, but then rises by a factor of three
by orbit 60. The 32 and 64 zone runs maintain a time-averaged
α that is consistent with the initial peak value. The 16 zone
run also varies strongly with time, but with a mean α that is
less than in the 32 zone run. Simon et al. (2011) note that in
unstratified simulations the time-averaged α changes by a larger
amount in going from the 16 to 32 zone resolution than in going
from 32 to 64 zones per H (their Figure 1). In both the Davis
et al. and Shi et al. resolution studies, the smallest number of
cells per scale height was �20–30, and there is little change
in α when finer resolutions are employed, including the best-
resolved Davis et al. simulation, in which there are 128 cells per
scale height. In Guan & Gammie (2011) the value of α went
from 0.013 to 0.023 when the resolution of their fiducial model
was doubled, a change from 13 to 26 zones per H in the vertical
direction.

The converged value of α in these stratified shearing boxes is
of order �0.02. There are, of course, additional effects beyond
resolution that determine α. As discussed above, resistivity
and viscosity can have a significant impact. At the same
resolution, Simon et al. find consistently larger values of the

stress compared to Davis et al., sometimes by close to a factor
of two. The Simon et al. box is a factor of two larger in both the
x- and z-dimensions. The Guan & Gammie (2011) simulations
also provide some evidence that α can be larger when larger
domains are used. There is evidence from unstratified shearing
boxes that taller boxes also promote a stronger magnetic field (J.
Stone 2010, private communication). The Shi et al. simulations,
in which the equation of state directly balances heating and
radiative cooling, suggest that α may be somewhat larger when
more realistic thermodynamics are employed.

Even using the local shearing box, few simulations are carried
out with resolutions as fine as 128 cells per scale height, so in
practice one often asks the question, “In this particular simu-
lation with only modest resolution, how close is the measured
value of stress to the numerically converged value?” Because
high-resolution simulations can be very expensive in computer
time, it is useful to define the metrics of simulation quality that
can be calibrated to a set of standard simulations and then ap-
plied to the data of a new simulation. In this way, how close
that simulation comes to convergence may be estimated without
the expense of additional, higher resolution simulations. In the
remainder of this section, we discuss several such quantities.

3.1. Convergence Metric 1: Qz

The first such metric comes from the linear theory of the
MRI. Noble et al. (2010) used the vertical field characteristic
MRI wavelength to compute a quality parameter Qz defined by

Qz = λMRI/Δz = 2π |vaz|
ΩΔz

, (10)

where vaz is the z-component of the Alfvén speed. The charac-
teristic wavelength λMRI is close to, but not precisely equal to, the
fastest-growing MRI wavelength. Wavelengths λ < λMRI/

√
3

are stable, while all wavelengths λ > λMRI are unstable, albeit
with reduced growth rates ∝ (k · vaz). On the basis of unstrati-
fied shearing box simulations, Sano et al. (2004) suggested that
a Qz value greater than 6 was required in order to achieve a
linear growth rate close to the analytic prediction. Considering
an isothermal thin disk with only vertical field in the initial con-
dition, λMRI can be rewritten in terms of the plasma β by noting
that β = 2ρH 2Ω2/B2, and hence λMRI = 2πHβ−1/2|Bz|/|B|.
Thus, a value of Qz of ∼10 requires 1.6β1/2 zones per H when
the field is purely vertical; when the field has any other sort of
geometry, β in this expression should be scaled by the fraction
of the field energy in the vertical component, giving a zone total
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of
Nz � 16 (β/100)1/2

(〈
v2

A

〉/〈
v2

Az

〉)1/2
(Qz/10) (11)

per scale height H. Because the fraction of the magnetic energy
in the vertical field is often only ∼0.01–0.1, the number of zones
required for a given β increases by ∼3–10.

The second column of Table 1 shows the values of Qz, av-
eraged over the midplane region (|z| � 0.5H ) for our strati-
fied shearing box simulation sample. It is necessary to pick out
the midplane region because |vAz| generically increases sharply
away from the midplane. Consequently, in these simulations in
which the vertical resolution is uniform (unlike typical global
simulations), Qz generally increases by 1–2 orders of magni-
tude from z = 0 to z � 3H . These regions with better effective
resolution can be important in maintaining the turbulence. By
|z| = 2–3H , β � 1, and the MRI is largely suppressed and the
large values of Qz are less relevant. Comparing the Davis et al.
series with the Simon series, we see that even with 32 cells per
scale height, the Sano et al. criterion is met only marginally.
Although α increases dramatically when Qz rises past a few, its
dependence on resolution (in relative terms) appears to level out
in the range 10 � Qz � 20.

3.2. Convergence Metric 2: Qy

Maintenance of poloidal field and turbulence requires non-
axisymmetric motion. To estimate how well non-axisymmetric
stirring is described by the simulation, we can define a merit
parameter Qy based on the toroidal field and the y grid zone
size (Qφ and RΔφ for global simulations). The toroidal field
MRI is non-axisymmetric, and the linear properties of those
non-axisymmetric modes are somewhat different from those
of the vertical field MRI. Although the non-axisymmetric
MRI modes depend on toroidal field, the presence of weak
poloidal components can greatly increase the total amplification
of non-axisymmetric modes beyond what is predicted for
a purely toroidal field (Balbus & Hawley 1992). Like the
case of vertical wavevectors, the maximum linear growth rate
occurs for wavelengths comparable to the distance an Alfvén
wave travels in one orbit, but mode growth also depends on
the radial wavelength, which evolves due to shear. Further,
maximum growth also demands vertical wavenumbers kz much
greater than H−1 (Balbus & Hawley 1992). For shearing box
simulations, the number of y zones required to achieve Qy ∼ 10
is

Ny ∼ 64(Ly/4H ) (β/100)1/2
(
Qy/10

)
(12)

for y box length Ly. For toroidal modes in global simulations,
Qφ = 2πH/(β1/2RΔφ), where β includes only the toroidal
field component. To resolve linear growth of the toroidal MRI
in a full 2π simulation requires

Nφ � 1000(0.1R/H )(β/100)1/2(Qφ/10) (13)

azimuthal cells.
The simulations described in Table 1 are nearly all well

resolved by the Qy criterion; this is one of the advantages of
shearing boxes. Only in one case (the Simon eight cells per
H run) is Qy < 10. In both the Davis et al. and Simon et al.
simulations, the cells are cubical. Because shear ensures that
the azimuthal component of the magnetic field is much stronger
than the vertical component, cell sizes that are too coarse to
yield good vertical resolution can nonetheless be quite adequate
to describe azimuthal behavior. However, in simulations whose
grids are elongated in the azimuthal direction, Qy values will be

smaller. In the better-resolved Davis and Simon simulations, for
example, Qy/Qz ∼ 4 and one might expect that if Δy/Δz ∼ 4,
Qy would be only comparable to Qz.

3.3. Convergence Metric 3: αmag

Whereas Qz and Qy derive from the critical linear wave-
length of the MRI, the other diagnostics we have studied are
more closely related to nonlinear development of the MHD tur-
bulence. They also differ in that they measure how well a numer-
ical calculation replicates macroscopic magnetic field properties
related to the stress that are independent of discretization (i.e.,
convergence).

The first of the nonlinear diagnostics is the ratio of the
Maxwell stress to the magnetic pressure, defined αmag =
−2BRBφ/B2. Although turbulent Reynolds stress also con-
tributes to angular momentum transport at a level roughly
1/4 of the Maxwell stress, it is difficult to quantify in global
simulations, so we do not include it in our definition of αmag.
Even the earliest shearing box simulations (Hawley et al. 1995)
found that αmag was remarkably constant from simulation to
simulation. More recently, Blackman et al. (2008) examined
a large sample of published unstratified shearing box results
and found that, quite generally, αβ ∝ αmag is roughly constant,
where α is the traditional constant of proportionality between
stress and (gas) pressure; the combination αβ simply removes
the gas pressure from consideration. Recomputing the results
from Blackman et al. (2008) in terms of our definition of αmag
(i.e., without the Reynolds stress), we find that their derived
values are more or less consistent with αmag = 0.3–0.4 as seen
in the shearing box simulations reported here, except for the one
with only eight cells per H.

The values of αmag presented in Table 1 are derived by taking
the ratio of the Maxwell stress integrated over the central scale
height to the similarly integrated magnetic pressure and then
time averaging; this is how αmag has been determined in past
shearing box simulations. Other averaging procedures, such as
averaging the local ratio rather than taking the ratio of the
averages, give values that are generally somewhat smaller. The
data show that at a gross level, αmag and α are correlated: a
very low value of αmag corresponds to a very low value of α. In
the lowest resolution simulation discussed here, with only eight
cells per vertical scale height, αmag = 0.08. However, with an
even modest improvement in resolution, both α and αmag rise.

The value of αmag is relatively constant because in MRI tur-
bulence Bx and By are highly correlated. Both the background
shear, which creates toroidal field out of radial, and the action
of the MRI itself, which stretches out radial field as angular
momentum is transferred between fluid elements, create this
correlation. Time averaging and volume averaging over the cen-
tral scale height, we find that the Pearson correlation coeffi-
cient C(Bx, By) is −0.73, −0.70, and −0.67 for the 32, 64, and
128 zones per H Davis runs, and −0.28, −0.75, −0.73, and
−0.71 for the 8 through 64 zones per H Simon runs. In other
words, once one is past a resolution threshold (between 8 and
16 zones per scale height), the correlation rapidly achieves a
value �−0.7. We have computed the correlation averaged over
the (x, y) plane as a function of z. For |z| < 2 it is consistently
∼ − 0.7, but approaches zero at higher altitudes. Two scale
heights from the midplane is where the stress dies out (Simon
et al. 2011; Guan & Gammie 2011).

We can probe a bit deeper into the nature of αmag by studying
its probability distribution over the set of grid cells. Figure 3
shows a time-averaged distribution function for αmag for the
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Figure 3. Distribution function for the time- and volume-averaged ratio of the
Maxwell stress to the magnetic pressure, αmag taken from a set of four stratified
shearing box simulations using 8 (leftmost solid line), 16 (dot-dashed line),
32 (dashed line), and 64 zones (solid line) per scale height H. As resolution
increases the peak of the distribution of αmag shifts to higher values.

region within two scale heights of the equator for each of the
four Simon runs. The low-resolution distribution function peaks
around 0; there is very little net stress remaining within the
decaying turbulence, even while the azimuthal field persists. As
resolution increases, the distribution shifts to higher values, as
does the mean value. On a zone-to-zone basis, αmag is correlated
with Pmag in the sense that where the field is particularly strong,
the ratio of stress to magnetic pressure is also particularly high.
In order of increasing resolution, the mean αmag values are 0.057,
0.275, 0.346, and 0.380. Thus, improving resolution also leads
to greater correlation between Bx and By, but the average αmag
saturates at ∼0.4.

Before leaving this topic, we note that the resolution depen-
dence of αmag illustrates an important aspect of convergence
testing. If one compared its behavior in the eight zone run
with simulations having fewer cells per scale height, one might
have concluded that αmag is always � 1. In other words, low-
resolution simulations can be entirely blind to important effects,
and convergence does not even begin until a resolution threshold
is reached where that effect is at least minimally resolved.

3.4. Convergence Metrics 4 and 5: 〈B2
x/B

2
y 〉 and 〈B2

z /B
2
x 〉

The αmag parameter depends, in part, on the relative mag-
nitude of the poloidal and toroidal magnetic field components
and in part on the degree of correlation between the radial and
toroidal components. As we have already seen in our discussion
of the Qz and Qy diagnostics, the fidelity with which a given
simulation follows the linear growth of these two field compo-
nents can be different. The same may be true of their nonlinear
characteristics.

To explore this question in a way that focuses on the separate
components, independent of their correlation, we examined the
time- and volume-averaged energy ratios 〈B2

x/B
2
y 〉 and 〈B2

z /B
2
x 〉

as functions of resolution. A relatively clear trend emerges from
the former. Figure 4 shows the time history of this ratio for the
simulations of Simon et al. (2011). It increases from <0.01 to
0.15–0.18 from the worst- to the best-resolved models. Despite
the substantial time variability, at every stage the curves in
this figure are well separated from each other, demonstrating
a systematic increase of this parameter with resolution. When

Figure 4. Ratio of volume-averaged radial to toroidal field energies, 〈B2
x 〉/〈B2

y 〉
for stratified shearing box simulations using 8 (solid line), 16 (dotted line), 32
(dashed line), and 64 zones (solid line) per scale height H. This ratio shows a
systematic increase with resolution.

Figure 5. Ratio of the volume-averaged radial field energy to toroidal field en-
ergy, 〈B2

x /B2
y 〉 as a function of resolution in stratified shearing box simulations.

Resolution is measured in number of grid cells per scale height H.

one looks at the full ensemble of shearing box simulations,
the dependence on resolution becomes even more striking
(Figure 5), with the value apparently leveling off near 0.2 at
the highest resolution, when there are at least �40 cells per H.
As we have data from only one simulation with 128 zones per
H, future high-resolution shearing box simulations would be
valuable as a further test of the convergence of 〈B2

x/B
2
y 〉.

On the other hand, there seems to be no general trend
for the ratio of vertical to radial field energies, 〈B2

z /B
2
x 〉; the

values range from ∼0.4 to 0.6 in these simulations. Of all
the diagnostic quantities listed in Table 1, 〈B2

x/B
2
y 〉 demonstrates

the clearest dependence on resolution. Moreover, as we will dis-
cuss in greater detail later, there is a strong correlation between
the Q values and 〈B2

x/B
2
y 〉. The simulations achieving near-

saturation values of 〈B2
x/B

2
y 〉 (Simon64, Davis64, Davis128,

and ShiDBLE) all have Qz � 10 and Qy � 32.

3.5. Summary: Stratified Shearing Box

In principle, a resolution study is directly applicable only to a
set of simulations using the same numerical scheme on the same
problem. Only after cross-comparison of parallel resolution
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Table 2
Global Simulations

Name Grid Type Initial β Duration (M)

twoloop-1000-mr M Two-loop 1000 66000
twoloop-100-mr M Two-loop 100 41000
twoloop-1000-lr L Two-loop 1000 41000
twoloop-1000-hr R Two-loop 1000 34000
twoloop-1000-mlp PL Two-loop 1000 40000
twoloop-1000-mhp PH Two-loop 1000 25000
oneloop-100-lr L Dipole one-loop 100 40000
oneloop-100-mr M Dipole one-loop 100 39000
oneloop-1000-mr M Dipole one-loop 1000 38000

studies can different algorithms be calibrated relative to one
another. Previous comparisons between the Athena and Zeus
simulations have indicated that Athena has lower turbulence
decay rates for two-dimensional shearing sheet simulations
compared to Zeus (Stone & Gardiner 2010; Stone 2009). Stone
& Gardiner (2010) suggest that this is due to the use of third-
order, rather than second-order spatial interpolation in Athena
as well as the use of the HLLD-flux solver. In the studies
gathered here, the contrast between Zeus and Athena is less
obvious: the Shi et al. simulations and the Guan & Gammie
(2011) Zeus models have diagnostic values comparable to
equivalently resolved Athena runs. The similarity between the
Zeus and Athena simulations is consistent with the recent study
by Kritsuk et al. (2011) that found that both Zeus and Godunov-
type schemes gave comparable results for integrated quantities
in isothermal magnetized supersonic turbulence simulations.
Differences between the results obtained from the different
algorithms can nevertheless be found by contrasting more
detailed features in the turbulent flow.

Thus, from these simulations, we can conclude that for both
Athena and Zeus simulations, stratified shearing boxes begin
approaching convergence when resolution is around 40 zones
per H. The quantitative changes that result from increasing the
number of grid zones beyond this point are noticeable, but
small, compared to the decrease in zone size, i.e., convergence is
occurring at a rate faster than linear in Δx. Adequate resolution
requires both Qz and Qy to be sufficiently large, but an especially
large value of one can somewhat compensate for a smaller value
of the other. When Qy � 20, Qz � 10 suffices; however, when
Qy is smaller, Qz � 15 is required. A ratio of radial to toroidal
magnetic energy greater than �0.15 and αmag � 0.3–0.4 are
signatures of well-developed MRI-driven magnetic turbulence.4

The ratio of the vertical to radial magnetic field energy, on the
other hand, shows no particular trend with respect to resolution.

It is likely that the importance of Qy stems from the essential
role played by non-axisymmetric processes in maintaining
poloidal field energy and turbulence. Purely toroidal fields
can support an active MRI-driven turbulence with relatively
small vertical fields, but the vertical field MRI will necessarily
generate a toroidal field, and non-axisymmetric motions are
essential to maintaining the poloidal field.

Moving in the direction of reduced resolution, we note that
even if the characteristic MRI wavelength is unresolved (small
Q), longer wavelengths will be unstable, albeit with smaller
growth rates. Thus, lower resolution simulations can still have

4 These values are obtained from shearing boxes without a net vertical field
or applied resistivity or viscosity, as appropriate for the global simulations to
be discussed here. Further work is required to characterize shearing box
turbulence in the presence of net vertical field and non-ideal MHD effects.

Figure 6. Evolution of the three components of the magnetic energy as a function
of time in the fiducial simulation, twoloop-1000-mr.

MRI-induced turbulence and stress, but at correspondingly
reduced levels. Such a state will be indicated by smaller relative
values of the convergence metrics. Of course, the results from
the eight zone per H simulation show that there is a resolution
limit beyond which turbulence cannot be sustained.

4. GLOBAL SIMULATIONS

In this section, we describe the results from a set of pseudo-
Newtonian global disk simulations intended to investigate the
influences of grid resolution and initial magnetic field strength
and topology. What they show about progress toward numerical
convergence will be discussed in the following section.

Our parameter study is centered around a fiducial model,
designated twoloop-1000-mr, a simulation with initial β =
1000, a two-loop initial magnetic field, and Grid M, the medium-
resolution grid. Using the same initial condition, we have
explored the effects of both increasing and decreasing the grid
resolution. To study the effects of different initial magnetic field
configurations, we have also used the M grid for a simulation
with a single dipolar loop initial condition and the same initial
β as well as both single and double dipolar loops with initial
β = 100. The various models are listed in Table 2.

4.1. The Fiducial Run

The β value given for a torus is defined as the ratio of the total
thermal to total magnetic pressure. Although the mean initial
β = 1000, the β value at any given point within the torus varies.
The minimum value is β = 283 and occurs along the radial
field lines above and below the equator in the inner field loop;
where the two loops meet at the pressure maximum, β = 412.
For those regions of the torus where there is no magnetic field,
β is nominally infinite. The initial resolution parameter Qz has
three maxima, each located where the vertical field crosses the
equator. From inside out, these maxima are Qz = 15, 29, and
20; the linear growth phase of the MRI should be well resolved.

The fiducial model was run for 6.6 × 104 M in time, corre-
sponding to 54 orbits at the initial pressure maximum, and over
1000 orbits at the location of the ISCO, R = 6 M . This evolu-
tion time is longer than previous global simulations and permits
an examination of the long-term behavior of the accretion flow
and MRI-driven turbulence at these resolutions. The evolution
proceeds in several stages as identified by the evolution of the
total magnetic energy (Figure 6). First, there is a period of

8



The Astrophysical Journal, 738:84 (20pp), 2011 September 1 Hawley, Guan, & Krolik

exponential growth in the magnetic field. This is rather brief; by
t = 1000 M (about 1.3 orbits at R = 24 M), a significant radial
field has already grown to supplement the vertical field in the
innermost part of the inner loop. This behavior is characteristic
of the vertical field MRI. The total integrated radial field energy
has doubled by this time; the vertical field energy doubles by
t = 1500 M . At first, the toroidal field grows as the MRI creates
the radial field and the background shear stretches the radial
field into toroidal; later azimuthal MRI modes also contribute to
toroidal field amplification. By t = 2000 M , the total toroidal
field energy is 10 times as large as the total poloidal field en-
ergy, and significant accretion (mass flow off the inner radial
boundary) has begun. Global field energy continues to rise until
it peaks at t ∼ 8500 M . It then declines until t = 1.5 × 104 M ,
after which the volume-integrated energies of the different mag-
netic field components vary slightly around a slowly declining
trend line. We will refer to the period between 2000 M and
1.5 × 104 M as the “initial peak”; the remainder of the simula-
tion we call the “quasi-steady state” period.

4.1.1. Inflow Equilibrium and the Quasi-steady State

Nearly every global disk simulation begins with a finite mass
on the grid. Because accretion of some mass entails transfer of
its angular momentum to other mass, part of the matter in the
simulation must move outward as other mass moves inward.
Consequently, at most only a portion of the disk can actually be
in a state of inflow. At best, therefore, inflow equilibrium can be
established only within some radius.

Having identified the largest radius within which inflow
equilibrium can be sought, one might define inflow equilibrium
to be a state in which the mass accretion rate is constant as
a function of radius. The problem with this definition is that
accretion is driven by the fundamentally chaotic process of
MHD turbulence. The accretion rate at a specific radius must
therefore always be highly variable in time. One solution is time
averaging; regions of inflow equilibrium would then be those
ranges of radius over which the time-averaged accretion rate is
constant.

A closely related procedure is to make use of the equation of
mass conservation

∂Σ
∂t

+
∂Ṁ

∂R
= 0. (14)

Here Σ is the surface mass density and Ṁ is the accretion
rate integrated over the cylindrical surface at radius R. Clearly,
wherever Ṁ is independent of R, Σ is constant in time. Thus, one
could also test Σ(R, t) for time steadiness across the radial range
of interest. Equivalently, one could check that M(<R, t) =∫ R

dR′ 2πR′Σ(R′, t) is time-steady. This alternative has the
conceptual advantage that it focuses squarely on the primary
matter of interest: that the mass distribution in the disk does not
change secularly over time. It also has the technical advantage
that Σ(R, t) changes more slowly than Ṁ(R, t), so results taken
from simulation data are less subject to noise fluctuations.

Figure 7 shows M(<R, t) for the fiducial run. The disk mass
rises quickly during the first 104 M in time and then levels off.
After that time, there is a slow secular diminution in the mass
of the disk within R = 20 M , but its characteristic timescale is
quite long, �5×104 M at R = 10 M , ∼8×104 M at R = 20 M .
Because the time to drain and replenish the region inside
R = 20 M is M/Ṁ � 1.5 × 104 M , this secular trend is quite
slow compared to the characteristic mass equilibration time.
Despite the overall steadiness of the radial mass profile, there

Figure 7. Mass interior to three radii (R = 10 M: solid, R = 15 M: dotted,
R = 20 M: dashed) as a function of time in the fiducial simulation. Mass units
are fraction of the total initial mass. The time-averaged accretion rate, Ṁ , is 1%
of the initial mass every 3700 M in time.

are also shorter timescale fluctuations that become progressively
larger in fractional terms at smaller radii, reaching ∼50% at
R = 10 M . These reflect, of course, the continuing large
amplitude fluctuations in the mass accretion rate both as a
function of time and of radius. The slow diminution in inner
disk mass reflects the declining trend in the magnetic energy,
which leads to a parallel fall in the mass accretion rate.

Another way to test for inflow equilibrium is to compare
the simulation time with an estimate of the characteristic
inflow time. We can compute an average inflow velocity from
simulation data by taking

〈vR(R)〉 =
∫

ρvRR dφ dz∫
ρR dφ dz

. (15)

These values are averaged over time to remove the ever-
present fluctuations. The accretion time from radius R is then
tin(R) = ∫ R

dR′/〈vR(R′)〉. Computing this for the fiducial run
at R = 20 we obtain 1.2 × 104 M , consistent with the estimate
above based on the average accretion rate and the disk mass
interior to R = 20 M .

How does this result compare to an estimate obtained from
steady state disk theory? In the steady state limit the equation
of angular momentum conservation is

WRφ = ṀΩ
2πΣ

(1 − j∗/j ) , (16)

where WRφ is the vertically averaged Rφ component of the
stress tensor, and j and j∗ are the specific angular momentum
at R and the angular momentum accreted per unit mass. The
j∗ term determines the net flux of specific angular momentum;
traditionally, it has been set to the angular momentum at the
ISCO on the assumption that stresses cease there. Following
Shakura & Sunyaev (1973), we write the vertically integrated
stress in units of the vertically integrated pressure and assume
that there is a single temperature throughout the flow, i.e., we set
WRφ = αΣc2

s . With those assumptions, we obtain for the steady
state mean infall velocity

〈vR〉SS = Ṁ

2πRΣ
= αc2

s

RΩ
(1 − j∗/j )−1 . (17)
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Figure 8. Inflow velocity for the fiducial run derived from the vertically and
azimuthally integrated accretion rate and density (solid line), along with the
infall velocity derived from the vertically and azimuthally averaged Maxwell
stress, pressure, and accretion rate using a steady state disk approximation
(dashed line) with j∗ = jISCO. The dot-dashed line is the steady state inflow
velocity derived using j∗ = 0.985jISCO. The data are time-averaged from
t = (4–5) × 104 M .

Agreement between the inflow velocities from Equations (15)
and (17) would indicate that the observed mass accretion is in
approximate steady state at a rate consistent with the angular
momentum transport produced by the observed stress.

We test this for the fiducial run for a time average over 104 M
beginning at t = 4 × 104 M . We compute a vertically and
time-averaged Maxwell stress, pressure, and density to obtain
α and c2

s . The average value of α thus obtained for the Maxwell
stress is 0.017. To account for the Reynolds stress (not directly
measured in global simulations), we increase the value of α
in Equation (17) by 25%, a value consistent with results from
shearing box simulations. The velocity derived from the steady
state disk model (with j∗ = jISCO) and the velocity obtained
directly from the accretion rate and the mass are compared
in Figure 8. The agreement is good out to just beyond 30 M .
This match is consistent with the range over which the time-
averaged Ṁ is constant with radius, the computed tin at 30 M
which is 4.5×104 M , and our estimates based on the evolution of
M(< R, t) as described above. The two curves deviate outside
of R ∼ 32 M because there the infall time begins to exceed the
simulation time. At small radius the curves deviate because the
stress does not go to zero at the ISCO; reducing j∗ to 0.985jISCO
brings the curves into line right down to the ISCO.

4.1.2. Comparison with Shearing Box Results

The initial transient and quasi-steady periods are seen in
both global and shearing box simulations. Figure 9 plots the
total magnetic field energy, normalized to its peak value, as
a function of time in units of orbits at the initial pressure
maximum. Overlaid on this is the evolution of the total magnetic
field energy in the stratified shearing box simulation with 16
zones per H, again normalized to the initial peak value. Because
the early evolution of the global simulation is relatively local,
dominated by MRI growth in the confined region where its
growth rate is greatest (i.e., the inner rings of the initial torus),
it is perhaps not surprising that the initial evolutions are similar.
More interesting, perhaps, is the similarity between the two
models during the subsequent quasi-steady state phase. Between
20 and 50 orbits in each run, the ratios of the total average radial

Figure 9. Evolution of the magnetic energy in the fiducial run (solid line)
compared to the magnetic energy in a stratified shearing box simulation with 16
zones per H (dashed line). Time is orbits at the initial torus pressure maximum
or in terms of the shearing box Ω, and the magnetic energies are normalized
to their peak value. Both models show a period of rapid field amplification
followed by a peak and a decline to a longer-term value that slowly declines.
The magnetic energy increases after 50 orbits in the shearing box, but not in the
global model.

to toroidal magnetic field energy, 〈B2
R/B2

φ〉, are 0.068 and 0.070
for the shearing box and the fiducial model, respectively. This
similarity suggests that the effective resolution in the fiducial
global simulation, at 14–60 zones per H depending on radial
location, is comparable to the 16 zones per H used in the
shearing box. A comparison with Figure 2 shows that higher
resolution shearing box simulations have a smaller decline in
stress immediately after the initial peak. The 16 zone shearing
box simulation, however, sees a regrowth of field energy beyond
orbit 50 that is not seen in the global simulation. The reason
for this is uncertain. It could be due to the better azimuthal
resolution in the shearing box, possibly by better capturing a
(non-axisymmetric) dynamo process. Another possibility is that
the observed field regrowth is due to other properties associated
with the shearing box, e.g., restricted box size, shearing-periodic
boundaries, and overall symmetry.

Among the differences between shearing box and global
simulations is the latter’s large dynamic range in Ω, which is
important because the MRI e-folds at a rate ∼Ω. As a result, a
single spatially averaged value is not very useful for comparison
with shearing boxes. Instead, we show figures of the principal
diagnostic quantities as a function of radius, averaged in time
and azimuthally and vertically averaged weighted by density
(Figures 10 and 11). In each case, the averaging interval was
chosen to be the longest time span covering the quasi-steady
epoch for all simulations shown in a given figure; consequently,
the averaging periods for the different figures are different.
Likewise in each case, the radial range was restricted to the
region defined as the “inner disk,” 6M < R < 20 M in order
to focus attention on the portion of the simulation most closely
resembling a statistically time-steady accretion flow.

Data from the fiducial run appear in both of these figures.
Its density-weighted 〈Qz〉 drops steadily inward, from �8 at
R = 20 M to <2 at R = 6 M . By contrast, its 〈Qφ〉 value varies
only slightly with radius, remaining near �8–10 throughout
the inner disk. Both behaviors—the strong dependence of
〈Qz〉 on radius and the near-constancy in radius of 〈Qφ〉—are
characteristic of all the simulations. 〈B2

R/B2
φ〉 displays a radial
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Figure 10. Radial dependence of the principal diagnostics for the two-loop
simulations with the standard azimuthal resolution. The curves are labeled
with model name. The data were averaged over azimuth and height with a
density weighting and then averaged in time from (2–3.4) × 104 M for all three
simulations. Top: 〈B2

R/B2
φ〉, middle: 〈Qz〉, bottom: 〈Qφ〉.

profile very similar to that of 〈Qz〉, falling from �0.08 in the
outer part of the inner disk to �0.04 just outside the ISCO at
R = 6 M .

Thus, even with a poloidal cell count of 256 × 288, the
fiducial run is, at best, marginally resolved according to both
the Qz and Qφ criteria. There is adequate resolution to describe
linear MRI growth of poloidal perturbations only near R =
20 M; nowhere in the inner disk is it well enough resolved to
describe poloidal nonlinear behavior properly. The azimuthal
resolution is no better: 〈Qφ〉 never reaches the �20 level
indicated by shearing box simulations. Similarly, the value of
the nonlinear criterion 〈B2

R/B2
φ〉 is at most only about half what

Figure 11. Radial dependence of the principal diagnostics for the two-loop
simulations with varying azimuthal resolution. The lines are labeled with model
name. The data were averaged over azimuth and height with a density weighting
and then averaged in time from (1.8–2.5)×104 M for all three simulations. Top:
〈B2

R/B2
φ〉, middle: 〈Qz〉, bottom: 〈Qφ〉.

the shearing box simulations suggest is characteristic of well-
resolved turbulence. It is near to the value seen in the marginally
resolved 16 zones per H shearing box.

The radial gradient in 〈Qz〉 is an illustration of how grid
design can interact with physics. The definition of this quantity
is 2π |vAz|/(ΩΔz). In the cylindrical coordinates used here, Δz is
independent of radius. Consequently, Qz ∝ vAz(R)R3/2; unless
vAz rises rapidly inward, poloidal resolution quality falls toward
small radius. Here, the average vAz goes roughly like R−1/2 in
the inner disk so 〈Qz〉 ∝ R. By contrast, Qφ ∝ vAφR1/2/Δφ,
leading to its much weaker dependence on R. The end result
of these different dependencies on radius is that, unless Qz is
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Table 3
Resolution Comparisons

Name R, φ, z zones Ṁ αmag Qz Qφ B2
R/B2

φ B2
z /B2

φ Cells per H

twoloop-1000-mr 256 × 64 × 288 2.71 × 10−6 0.24–0.33 1.6–7.5 7.9–10. 0.040–0.077 0.0088–0.018 11–60
twoloop-100-mr 256 × 64 × 288 2.51 × 10−6 0.29–0.37 3.0–9.0 12.–11. 0.054–0.092 0.012–0.023 14–65
twoloop-1000-mlp 256 × 32 × 288 1.53 × 10−6 0.22–0.22 2.9–4.6 6.0–4.2 0.056–0.040 0.014–0.010 8–49
twoloop-1000-mhp 256 × 128 × 288 4.40 × 10−6 0.23–0.41 2.1–11. 22.–22. 0.045–0.13 0.0079–0.035 13–57
twoloop-1000-lr 128 × 64 × 144 0.94 × 10−6 0.095–0.25 0.46–2.3 5.7–9.4 0.019–0.050 0.0055–0.0081 8–30
twoloop-1000-hr 816 × 64 × 288 1.89 × 10−6 0.31–0.29 3.8–4.9 13.–11. 0.064–0.057 0.021–0.022 10–46
oneloop-1000-mr 256 × 64 × 288 3.85 × 10−6 0.29–0.35 2.8–9.1 12.–11. 0.059–0.086 0.012–0.024 14–60
oneloop-100-lr 128 × 64 × 144 1.43 × 10−6 0.13–0.29 0.42–3.3 5.6–12. 0.017–0.065 0.0053–0.013 9–36
oneloop-100-mr 256 × 64 × 288 7.92 × 10−6 0.30–0.38 3.0–10. 13.–12. 0.063–0.10 0.010–0.033 13–76

very large at larger radii, the linear growth rate of axisymmetric
MRI modes will be reduced in the inner disk even while non-
axisymmetric modes continue to grow at their correct (albeit
slower) rate.

The radial gradient in 〈Qz〉 also provides a finely sampled
measure of convergence properties. At each radial cell, these
global simulations sample a different effective resolution. As
we will discuss in Section 5, this effect allows us a much more
quantitative measurement of the convergence rate than we would
otherwise be able to obtain.

4.2. Different Grid Resolutions

Table 3 lists time- and volume-averaged values for various
parameters, both diagnostic and physical, as well as the time-
averaged accretion rate through the inner R boundary as a
fraction of the initial torus mass. The time averages are taken
over the steady state period for each simulation; the volume
averages are limited to the inner disk body. For those parameters
with potentially significant radial gradients, a range of values
is given: the first number refers to the value at R = 6 M , the
second to R = 20 M . The scale height H is defined by a time-
and density-weighted mean of

√
2cs/Ω. In these simulations,

in which total energy is not conserved, cs scales with radius
roughly ∝ R−1/2, so that H is approximately ∝ R. In most
cases, αmag increases outward, but simulation twoloop-1000-hr
is an exception: in that case, αmag decreases slightly toward
larger radius.

4.2.1. Azimuthal Resolution

We next consider how the results seen with the fiducial model
change as the resolution is altered. We begin with a study of the
φ resolution (Figure 11). We keep the poloidal grid the same as
in Grid M and consider model twoloop-1000-mlp which uses
grid PL with 32 φ zones, and model twoloop-1000-mhp which
uses grid PH with 128 φ zones. As the orbital speed generally
sets the Courant limit in these simulations, this high-φ resolution
model is more costly to evolve.

Figure 12 shows the evolution of the total poloidal magnetic
energy as a function of time for the three runs. For the 32
zone run, exponential growth ends earlier compared to the other
simulations, with a more gradual climb to a peak value at time
104 M , followed by a steady decline. The 128 zone run leaves
the rapid growth stage earlier than the 64 zone run, but when it
levels off after declining from its magnetic energy peak, it does
so at a higher level. Thus, the sustained field energies after the
initial peak are clearly separated by resolution.

As shown in Figure 11(c), for R � 12–15 M , 〈Qφ〉 increases
by roughly a factor of two for each factor of two improvement
in resolution. Notably, however, both poloidal indicators, 〈Qz〉

Figure 12. Evolution of three simulations using different numbers of zones to
span the φ domain: 32, 64 (dashed line), and 128. The initial conditions were
the same: two magnetic field loops with average strength β = 1000.

and 〈B2
R/B2

φ〉, also respond positively to improvement in toroidal
resolution at larger radii within the inner disk. Like 〈Qφ〉, the
response to improved resolution is even stronger between the M
and PH grids than between PL and M. In other words, improved
azimuthal resolution leads to stronger poloidal field, even in
the absence of improved poloidal resolution, and this effect
strengthens with finer azimuthal resolution.

4.2.2. Poloidal Resolution

Figures 13 and 10 show the diagnostics for one-loop and
two-loop initial field configurations with a range of resolutions.
In the one-loop cases, a factor of two improvement in poloidal
resolution yields an equal factor in 〈B2

R/B2
φ〉 and a factor of

three improvement in 〈Qz〉. Moreover, even with a grid of
256×64×288 zones, these simulations remain unresolved. The
best 〈Qz〉 was only �10, while it fell below 6 inside R � 10;
〈B2

R/B2
φ〉 hovered around 0.1 outside R � 15 M , falling to

0.06–0.07 near the ISCO, whereas the shearing box simulations
indicate a converged value of almost 0.2.

Within the two-loop series of simulations, we find that the
move from the L poloidal grid to the M yielded the same level
of improvement as in the one-loop case: a factor of two in
〈B2

R/B2
φ〉 and a factor of three in 〈Qz〉. However, progress stalls

when only the radial zone size is reduced, as in the R grid.
Outside R � 10–12, the finer radial resolution actually led to a
deterioration in both 〈B2

R/B2
φ〉 and 〈Qz〉. We speculate that this

may be due to the highly elongated cells created in this grid by
its finer radial resolution. In contrast to the M grid, in which
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Figure 13. Radial dependence of the principal diagnostics for the one-loop
simulations with the standard azimuthal resolution. The curves are labeled with
the corresponding model name. The data were averaged over azimuth and height
with a density weighting and then averaged in time from (2–3.8) × 104 M for
all three simulations. Top: 〈B2

R/B2
φ〉. Middle: 〈Qz〉. Bottom: 〈Qφ〉.

RΔφ/ΔR � 0.4–1.4, that ratio is 4–6 in the R grid, increasing
toward larger radii.

Although not illustrated in the figures, much the same can
be said about the effect of resolution on αmag. When the
magnetic geometry is held fixed and only resolution changes,
finer resolution in both the poloidal and azimuthal grid leads to
larger values of αmag.

Overall, it appears that improving radial resolution without
also improving either vertical or (perhaps especially) azimuthal
resolution does not yield significant improvement. As we have
seen, the linear indicators (Qz and Qφ) do not grow (if anything,

they fell in this case), nor do nonlinear indicators such as
〈B2

R/B2
φ〉 improve.

4.3. Different Initial Magnetic Fields

All simulations must begin from some particular magnetic
field. The problem, of course, is that we can only guess at what
might actually occur in nature. We have no way to say what
geometric structure it might have, yet numerous variations are
imaginable. The field may or may not have net flux; even if it has
no net flux, it may be predominantly toroidal or poloidal; and
numerous sorts of poloidal configurations are possible. Even
granted the field geometry, we must still specify its initial
strength; so long as it corresponds to a plasma β � 1, we
have no guidance in this respect either. The most we can hope
for is that in the end the resulting steady state accretion flow is
independent of our arbitrary choices.

We begin with the question of sensitivity to initial field
strength with a comparison of oneloop-100-mr and oneloop-
1000-mr. Stronger fields, of course, will have an initial advan-
tage of larger Q values at a given resolution. In the quasi-steady
state period, as shown by Figure 13, a factor of 10 in initial mag-
netic field pressure makes a consistent, but very small difference:
the stronger initial field in general has larger values of the diag-
nostics, but only by ∼10%. There is a greater contrast between
twoloop-100-mr and twoloop-1000-mr, generally �20%–30%
and in some places larger. Like the one-loop case, the simulation
with the initially stronger field retains that advantage.

The main effect of a stronger initial field is in the initial
evolution; it creates stronger accretion early on and fills the
inner disk with matter at a faster rate. This happens for two
reasons, neither of which has much long-term effect. The first
is that the stresses driving the initial inflow are not created by
correlated MHD turbulence, but by the shear that transforms the
initial poloidal field into toroidal. The second is that in the initial
state, 〈Qz〉 is smaller if the field is weaker, depressing the linear
MRI growth rate in some locations. In the end, how the mass
distribution reaches its steady state is not important, so long as
one evolves long enough to reach the steady state.

We next turn to the question of field geometry. Beckwith et al.
(2008a) demonstrated that the magnitude of the axial funnel
field attached to the black hole, capable of powering a jet when
the black hole spins, depends strongly on whether the vertical
component of the initial magnetic field in the simulation has a
consistent sense over a wide span of radii—the jet luminosity
is substantial only when it does. They also showed that the
accretion flows in the cases they considered depended much less
on the field structure, although the stress levels and accretion
rates are noticeably lower when the initial field is purely toroidal.
Here, we take a closer look at the accretion flows associated with
two specific initial field configurations: one initial dipole loop
versus two.

The first point is that the two-loop configuration does not
persist throughout the simulation. Distinguishing the loops
by their sign of Aφ , the azimuthal component of the vector
potential, we find that in the fiducial model the disk inside
R = 20 M is effectively dominated by the inner loop until
t ∼ 104 M . By the end of that period, much of the inner loop’s
flux has been accreted through the inner boundary, and the
remainder has risen to high altitude and left the disk proper. For
the next ∼104 M , the main body of the disk is entirely dominated
by the outer loop. Between ∼2.2 × 104 M and ∼3.2 × 104 M ,
enough inner loop flux has settled into the disk that the sign
of Aφ is very mixed. During this period, there is significant
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reconnection between oppositely directed field loops. For the
remainder of the simulation (until t = 6.6 × 104 M), the disk is
once again dominated by poloidal field loops having the sense
of the outer of the two initial loops. In other words, with the
exception of an episode that lasts only ∼1/6 of the simulation,
there is little to distinguish the poloidal field geometry in the
inner disk of a two-loop simulation from one that began with
only a single set of poloidal loops. In both cases, there is a
consistent sign of Aφ (i.e., consistent sense of field circulation)
in the inner disk, but with a highly complex structure (the more
fully developed the turbulence, the more complex, of course).

Nonetheless, our time-averaged diagnostics do show inter-
esting contrasts between the one-loop and two-loop results
(Figures 13 and 10). At low resolution, the 〈Qz〉 diagnostic
improves by ∼50% from two loop to one loop at all radii. At
medium resolution, 〈Qz〉 in the one-loop case is only about 10%
greater in the disk body (e.g., R = 20 M) than for the two-loop
case, but that advantage widens toward smaller radii, rising to
almost a factor of two by R = 10 M . Very similar contrasts are
found for 〈B2

R/B2
φ〉. Although the magnitude of the change is

smaller, the trend is the same for αmag.
One might reasonably ask why these contrasts occur, given

our assertion that the inner disk magnetic field at any single
time generally has a uniform sign of Aφ . A clue comes from
looking at their time variation. During the period (1–2)×104 M ,
the diagnostic quantities in twoloop-1000-mr are, in fact, very
similar to those of oneloop-1000-mr. Their decline at small
radii takes place only after 2×104 M , the time when oppositely
directed field loops re-enter the disk. That re-entry is extremely
irregular and creates gradients in Aφ on very short length scales.
For the same grid scale, the larger amount of short length scale
fluctuation power leads to a faster numerical reconnection rate.
This, in turn, weakens the magnetic field to the point that the
MRI is unable to rebuild the field strength, even after the period
of enhanced reconnection is over. Throughout this later period
Qz is only �2–8, insufficient to drive the MRI at its full rate.

Thus, the two-loop initial condition creates—through a rather
recondite mechanism—considerable short length scale power
that requires a finer resolution grid to treat properly. In principle,
a weakened magnetic field (and therefore smaller values of 〈Qz〉
and 〈Qφ〉 for a fixed grid scale) might be a physical consequence.
However, there is clear evidence that this really is a resolution
effect. As we have just pointed out, the prevailing Qz after the
strong reconnection epoch is inadequate to drive linear MRI
growth, much less support nonlinear poloidal dynamics. The
low value of 〈B2

R/B2
φ〉 further supports our conclusion that the

turbulence is less than fully developed at late times in the two-
loop simulations.

5. INTERPRETATION

The principal goal of this paper is to develop from highly
resolved shearing box models a set of diagnostics that can
be applied to gauge how well global simulations represent the
quasi-stationary behavior of a disk obeying the same physics as
in the simulation. In this section, we will discuss how to use the
diagnostics we have identified, making use of their application
to the simulations described in the previous section.

One might have supposed that the most natural quantity to
study as a gauge of progress toward convergence is the stress,
the physical quantity of central interest to the entire subject.
However, there are several good reasons not to use it. The
first is that it is not dimensionless. A similar statement can
be made about the accretion rate. It can be useful to compare

quantities such as stress and accretion rate between a set of
simulations with the same initial conditions, but a comparison
of any dimensional value across different simulations would
need calibration in terms of other quantities.

The stress is often quoted in units of the gas pressure,
giving it an apparently “natural” dimensionless form, but it
is not at all clear that this form is appropriate. We do not
know whether the pressure is the only variable influencing the
stress, or whether the dependence is linear. Fluctuation timing
correlations (Hirose et al. 2009) suggest that the relationship is
more complicated than commonly thought. In addition, even
if stress were dependent only on the pressure and exactly
proportional to it, the great majority of accretion simulations
treat thermodynamics with very crude approximations, making
the value of the pressure both questionable and difficult to
compare from one simulation to the next. For all these reasons,
therefore, we prefer to use diagnostics that are dimensionless
ratios of quantities referring only to magnetic properties.

5.1. Relationship Between the Different Diagnostics

Each of our diagnostics has a slightly different standing. 〈Qz〉
and 〈Qφ〉, for example, depend directly on cell sizes in the grid
and can be meaningfully evaluated on the initial data whenever
it includes either a vertical magnetic field (for 〈Qz〉) or toroidal
field (for 〈Qφ〉). In that sense, they are predictive measures
of the ability of the simulation to describe accurately the linear
growth of, respectively, the axisymmetric and non-axisymmetric
branches of the MRI. At the same time, however, both are also
simulation products because their values change as the field
strength evolves; in that sense, they also serve as diagnostics for
the fully developed MRI-driven turbulence.

The quantity 〈B2
R/B2

φ〉 has little significance in the initial
state; it is simply a function of the initial magnetic field. It is
not even defined if the initial field is entirely poloidal. Thus, it
is purely a product of the simulation; the same is true of αmag.

The definitions of the Q parameters have an explicit de-
pendence on grid size; their values can never converge with
increased resolution. In contrast, 〈B2

R/B2
φ〉 and αmag measure

physical quantities and do not have an explicit dependence on
resolution in their definitions. In principle, they could be mea-
sured in a laboratory experiment. Thus, they signal progress of
the simulation toward achieving the true physical state of the
MHD turbulence, no matter what resolution or algorithm has
been used.

Despite these contrasts in status, there is a tight relationship
between these different diagnostics of resolution quality. This
relationship is illustrated in Figure 14. Although the filled circles
in this figure are drawn from 11 different times at all radial cells
in the inner disk in each of three different simulations (twoloop-
1000-lr, twoloop-1000-mr, and twoloop-1000-mhp) that differ
in both poloidal and azimuthal griding, they closely follow
a single track: 〈B2

R/B2
φ〉 � 0.01〈Qz〉0.65 for 〈Qz〉 � 10–12,

flattening out at larger 〈Qz〉, where it rises slowly to almost
0.2. The crosses, squares, and diamond represent the time-
averaged values in the midplane region of the different stratified
shearing box simulations; the different symbols distinguish
different ranges of 〈Qy〉 (the crosses have similar 〈Qy〉 to 〈Qφ〉
in the global simulations; the others have larger 〈Qy〉). The
shearing box simulations with 〈Qy〉 similar to the 〈Qφ〉 values
of the global simulations lie very close to the track defined by
the global simulations. Consonant with our finding that better
azimuthal resolution also strengthens poloidal field, the shearing
box results with larger 〈Qy〉 lie somewhat above the track; that is,
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Figure 14. Correlation between 〈Qz〉 and 〈B2
R/B2

φ〉. The points shown by filled
circles in this figure are drawn from the same set of times in three different
simulations: twoloop-beta1000-lr, twoloop-beta1000-mr (the fiducial global
simulation), and twoloop-beta1000-mhp. All are density-weighted averages,
but they are taken at different radii within the inner disk. The points shown by
the other symbols are time averages of data from the midplane region of the
shearing box simulations. The different symbols within this category denote
different ranges of 〈Qy〉: 12 � 〈Qy〉 � 25 (×’s); 25 < 〈Qy〉 � 50 (squares);
〈Qy〉 = 98 (diamond). The dashed line has a slope of 0.65.

larger 〈Qy〉 can compensate to a certain degree for smaller 〈Qz〉.
Taken as a whole, this figure confirms that for global simulations
as well as for shearing boxes, convergence in 〈B2

R/B2
φ〉 does

not begin until 〈Qz〉 � 10–15 for typical global simulation
azimuthal resolution (i.e., 〈Qφ〉 � 10); larger 〈Qy〉 (�25) can
relax this requirement slightly.

5.2. Importance of y/φ-resolution

In most of the MRI literature hitherto, discussion of resolution
criteria has generally focused on poloidal griding, particularly
the Qz criterion established by Sano et al. (2004). Less attention
has been paid to the φ resolution. It is generally understood that
in multi-dimensional simulations one should avoid cell aspect
ratios that are too far from unity. Accuracy in directionally split
algorithms requires that the truncation errors in the different
spatial directions not be too different. In any case, if the
truncation error in one spatial direction remains large due
to a lack of resolution, improvements in resolution in other
dimensions will be of limited value due to the dominance of
that error.

In the context of disk dynamics, including shearing box
simulations, experience suggests that even though it is best for
ΔR/Δz ∼ 1, ratios RΔφ/ΔR as large as ∼4 are acceptable
because orbital shear tends to stretch out features in the
azimuthal direction. Our findings here suggest that larger ratios,
such as are found in twoloop-beta1000-hr, tend to weaken the
development of MHD turbulence even though the unfavorable
ratio was created by improved radial resolution.

To our knowledge, the comparisons presented here are the
first to underline the importance of adequate 〈Qφ〉. Our anal-
ysis indicates that sufficiently large 〈Qφ〉 is necessary for the
proper development of poloidal properties such as 〈B2

R/B2
φ〉 and

maintenance of a large 〈Qz〉. This is, perhaps, not so surpris-
ing as it is well understood that non-axisymmetric motions are
essential for maintaining poloidal field in the face of dissipa-
tion (the “anti-dynamo” theorem). Even the earliest stratified
shearing box simulations found evidence for a dynamo process
(Brandenburg et al. 1995), and recent simulations have shown
explicitly that magnetic field evolution can be empirically mod-

Figure 15. Time-averaged and shell-integrated Maxwell stress profiles for the
three two-loop simulations differing only in poloidal grid (top) and the three
two-loop simulations differing only in azimuthal grid (bottom). Curves are
labeled by their model name.

eled with a simple α–Ω dynamo equation (Guan & Gammie
2011; Simon et al. 2011). Although we have yet to develop a
detailed understanding of the mechanism by which the MRI
creates the α-effect that generates poloidal field from toroidal,
it clearly requires adequate resolution to be effective. Future
simulations should therefore be graded on their values of 〈Qφ〉
as well as 〈Qz〉.

Finally, one should bear in mind that φ-resolution might well
be much more important in global simulations compared to
local. The shearing box is in a local corotating frame whereas
the global simulation must deal with the full orbital velocity.
If one assumes that the numerical dissipation level in a code
is proportional to a diffusion coefficient, e.g., Δx2/Δt , then the
diffusion will be roughly proportional to the fastest velocity
times Δx because Δt ∼ v∗/Δx, where v∗ is that fastest velocity.
For a global simulation, the orbital velocity is RΩ ∝ (R/H )cs .
Because for a shearing box the fastest velocity is �cs , one
might well require R/H more grid zones in the φ-direction
compared to a shearing box in order to have similarly low levels
of diffusion. For global thin disk simulations this requirement
is particularly problematic.

5.3. Connection with Stress

It would seem natural that stronger magnetic fields would
lead to larger stress. In fact, the correspondence between the
hierarchy we see in our diagnostics (〈Qz〉, 〈Qφ〉, 〈B2

R/B2
φ〉, αmag)

is reproduced closely in stress levels. Figure 15 plots the stress
as a function of radius and can be compared with the previous
figures showing diagnostic quantities versus radius. As the
diagnostics indicate better resolution, the stress rises. Moreover,
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when poloidal resolution is improved and the general level of
stress rises, so does the ratio between stress near the ISCO and
stress in the disk body. Although not illustrated in the figure,
this trend also applies to the radial stress profile at particular
times during an individual simulation. Higher stress levels at
larger radius generally correspond to higher stress throughout
the flow, even if the stress and the Q values decrease moving
in. The ISCO-region stress appears even more sensitive to the
prevailing stress than the stress in other regions of the inner disk.

Because even relatively low-resolution simulations neverthe-
less show some stress due to MRI turbulence, the mere presence
of stress and accretion is not itself indicative of convergence
in any sense. Weak fields remain unstable at longer (better re-
solved) wavelengths, but at greatly reduced growth rates. As
we have tried to make clear, not even the best-resolved global
simulations shown here appear to be near the diagnostic levels
identified as adequate in the shearing box models. Even if some
regions satisfy the resolution criteria, their variation with radius
means, they are not satisfied globally. We expect that still better-
resolved simulations can be expected to show both higher stress
levels overall, and a greater ratio of ISCO-region stress to stress
in the disk body.

5.4. Effects of the Initial Magnetic Configuration

Because the MRI grows exponentially when the initial field
is weak (β � 1), it has long been hoped that the saturated
state of this instability would be independent of the initial field
intensity. The stress in unstratified shearing box simulations
depends on the net value of the initial field (e.g., Hawley
et al. 1995; Sano et al. 2004), but this probably reflects the
constraints imposed by the shearing box boundary conditions,
which preserve net magnetic flux. In less-constrained global
simulations one might expect the field to evolve to some self-
consistent average magnetic energy with β somewhere below
equipartition, independent of the field’s initial strength, even
though local regions may have persistent net vertical flux
(Sorathia et al. 2010). Although we have not made extensive
comparisons of simulations with different initial values of β,
those we have examined are consistent with this hope. In the
quasi-steady state period there are only modest differences
between our one- and two-loop simulations with initial β = 100
and β = 1000, for example.

Field geometry can matter, however, in the way in which it
interacts with grid resolution. Intuitively, one might suppose
that a correct discretized description of any field requires a
grid with a characteristic scale significantly smaller than the
field’s characteristic length scale of variation. Applying that
argument in the present context suggests that initial fields
with more small-scale structure require finer grids to describe
accurately. The contrast between our results for the one-loop
and two-loop simulations supports this suggestion, although,
as we have explained, the specific way in which the small-
scale structure is created is rather more complicated than one
might have guessed. Introducing oppositely directed field loops
creates more opportunities for reconnection, and this rate is
enhanced by coarse resolution. Because the ability of a given
grid to support field growth through MRI stirring depends on the
field strength itself when the resolution is marginal, excessive
numerical reconnection can lead to a long-term suppression of
the field intensity.

This has implications for comparing physically significant
quantities such as accretion rate or stress in simulations with
differing magnetic field geometry. Without clear proof of

convergence, the contrast between them as simulated with the
same grid is as likely to be due to a contrast in effective resolution
as it is to be due to a contrast in the real physical behavior of the
different systems.

5.5. Inflow Equilibrium

In shearing boxes one measures the properties of the MHD
turbulence after many tens of orbits, when a quasi-steady state
is clearly established. In global simulations one looks for inflow
equilibrium, a desirable property because it is the primary
prerequisite for achieving a statistically stationary state. Any
other state could, in principle, exhibit properties resulting more
from transients due to arbitrary choices in the initial conditions
than to the intrinsic physics of the system. Its meaning, however,
requires precise specification in order to test how well a
simulation matches this condition. The key question is how
long to evolve a global simulation in order to reach a reasonable
approximation to equilibrium.

We have used several procedures for determining inflow
equilibrium. One is to measure M(< R, t), the mass interior
to radius R as a function of time. A related procedure is to
compute the characteristic inflow time from accretion rate and
mass distribution, M/Ṁ , and the average inflow velocity 〈vR〉.
This, in turn, can be compared to the inflow velocity derived
using the time-averaged stress and steady state disk theory.
Agreement indicates that the observed mass accretion rate is
consistent with the observed angular momentum transport. For
the fiducial run we find that all these measures give comparable
results and show that the disk inside of R ∼ 30 M is in inflow
equilibrium.

It is worth noting that Penna et al. (2010) proposed an
alternative definition of inflow equilibrium time at radius R,
specifically 2R/〈vR〉 (rather than

∫
dR/〈vR〉), solely in terms

of a general scaling argument. Because the magnitude of 〈vR〉
increases rapidly inward, there is a large difference between
the local infall estimate R/vR and the actual integrated infall
time. The Penna et al. value of the inflow equilibrium time is,
for example, a factor of seven larger at R = 20 M than the
actual inflow time

∫
dR/〈vR〉 in the fiducial run. In fact, the

inflow time estimated from 2R/〈vR〉 at the initial torus pressure
maximum exceeds the time required to accrete the entire initial
torus at the observed Ṁ .

More generally, although an order of magnitude scaling
argument may provide a rough rule of thumb for estimating the
equilibration time, it does not provide a rigorous criterion. Only
observed properties of the inflow can be used to test whether it
is in equilibrium. After all, how a disk achieves a quasi-steady
state is irrelevant; if the initial condition (miraculously) agreed
identically with the steady state mass profile, it would be as
good an equilibrium as one achieved after long computation.
In fact, a commonly used initial condition (one in which the
magnetic field is dominated by large dipole loops; our one-loop
simulations are examples) behaves roughly in this way. Large
magnetic stresses develop early in the simulation at the inner
edge of the initial torus, pulling mass into the inner disk far more
quickly than would happen at later, more representative, stages
of evolution. Once the inner disk is filled with matter, however, it
evolves toward an appropriate time-steady condition. The large
transient magnetic stresses are simply a “jump-start” that allows
a more rapid approach to the steady state.

As a final comment on this topic, we also wish to emphasize
that achievement of inflow equilibrium does not, on its own,
signal numerical convergence. In almost all of the global
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simulations we report here, the late-time state was one of
approximate steady state in terms of mass inflow within the
inner disk, yet for none of them would we claim numerical
convergence.

5.6. Resolution and Numerical Dissipation Rate

In simulations such as these, in which there is no explicit
resistivity or shear viscosity, dissipation of turbulence occurs
entirely due to grid scale discretization error (and any artificial
viscosity). This is true regardless of whether one uses an internal
energy algorithm such as Zeus or an energy conservative scheme
such as Athena. It follows that the numerical dissipation rate
is affected by cell size. Because short length scale dissipation
is the primary means by which magnetic (and kinetic) energy is
lost, the saturation strength of the turbulence depends directly
on this dissipation rate. To understand how resolution affects
the amplitude of the magnetic field therefore requires a closer
consideration of grid scale losses.

In the shearing box simulations of Hirose et al. (2006), the
local rate of this sort of dissipation scales ∝ |J|1.1 for electric
current density J. In other words, by Ampére’s law, numerical
dissipation is roughly proportional to the cell-by-cell contrast
in |B|. If the local scaling were exactly proportional to |J|, then
the box-integrated dissipation would be likewise proportional
to the box-integrated |J|. However, if there is any departure
from linearity, it is necessary to be more careful in regard to the
distribution function of current density over the box.

The best data we have available for this purpose come from the
simulations of Shi et al. because their code explicitly tracked the
several different kinds of grid scale dissipation. With remarkably
little scatter, these data show that the box-integrated magnetic
dissipation rate Qtot ∝ J 2.5

tot , where Jtot is the box-integrated
current density. Because this is numerical dissipation, not
physical, it must depend on the cell-to-cell contrast in B, rather
than on the actual current. Its most appropriate dimensional
form is therefore

Qtot = q
〈δBgrid〉5/2

Δt
p−1/4, (18)

where q is a number of order unity, Δt is the time step in
the simulation, and p is the pressure. We evaluate 〈δBgrid〉 as
〈|∇′×B|〉, where ∇′ denotes a curl operator defined with respect
to cell index rather than distance. As resolution improves, one
would expect the cell-to-cell contrast to diminish, reducing Qtot.
However, there are countervailing effects: in turbulence, new
short length scale power can readily be generated by nonlinear
transfer from longer wavelengths; and the time step Δt also
decreases.

In fact, the time step Δt depends on spatial resolution in two
ways: Δt = Δx/cs , and cs depends on resolution because Shi
et al. found that over their range of resolutions the total, i.e.,
gas plus radiation, pressure had not yet converged; it scaled
roughly ∝ (Δx)k , with k � −0.45. At fixed surface density,
hydrostatic balance implies that cs ∝ p, so Δt ∝ (Δx)1−k . Thus,
we expect that the overall resolution scaling of Qtot should
be ∝ 〈δBgrid〉5/2(Δx)−4/3. Comparing the Qtot versus 〈δBgrid〉
relations found in the Shi et al. simulations, we find that the
actual exponent of Δx is �−1.3, in very good agreement with
the dimensional argument leading to Equation (18).

When the magnetic field achieves its saturation strength,
Qtot balances the fluctuation power delivered to the grid scale
by nonlinear coupling with longer length scales in the MHD

turbulence. At resolutions currently feasible, these couplings
are non-local in the sense that the shortest wavelengths couple
significantly to essentially all longer length scales; however,
there is reason to think that in genuine MHD turbulence, where
the dynamic range between stirring scale and dissipation scale
is far greater, the dissipation scale actually decouples (Lesur &
Longaretti 2011). Because all our simulations are in the regime
in which all length scales couple directly to the grid scale, we
write the rate at which longer scales couple to the dissipation
scale as

Hnonlin = sΩ
〈
δB2

tot

〉
β−m, (19)

where 〈δB2
tot〉 is the total variance in the magnetic field. Nonlin-

ear energy transfer occurs on the eddy turnover, i.e., dynamical,
timescale and involves the entire fluctuating power. Equating
Hnonlin to Qtot yields the prediction

δBtot =
[

(8π )m
Γq

s

p
m+3/4
0

ΣΩ2Δx0

f
5/2
grid

(Δx/Δx0)m+1−3k/4

]1/(2m−1/2)

.

(20)
Here, we have introduced the adiabatic index Γ, column density
Σ, orbital frequency Ω, characteristic pressure p0, and grid
resolution Δx0 for which p = p0. We have also introduced
the quantity fgrid, the ratio between the characteristic amplitude
of magnetic field fluctuations on the grid scale and on the stirring
scale.

As the cell size Δx decreases, we can expect fgrid to decrease.
However, only when convergence is reached must it scale
∝ Δxm+1−3k/4. Consequently, convergence in the magnetic field
intensity may not be monotonic. Using the data in our stratified
shearing box calculations, we can measure how far toward
convergence we have progressed in this regard by computing
fgrid. Combining the Simon et al. and Davis et al. data, we find
that fgrid falls from 0.42 for the simulation with 8 cells per scale
height to 0.26 when there are 128 cells per H. In other words, for
these simulations, in which k = 0 and the resolution improves
by a factor of 16, fgrid falls by only 40% so that, if the index
m = 0, the ratio f

5/2
grid/(Δx/Δx0)m+1−3k/4 would rise by almost

a factor of 5 and the saturated field strength would fall by a
factor of 25. That the saturated magnetic field in fact increases,
but rather slowly, over this range of resolutions suggests that
−1 � m � −0.5; in other words, the nonlinear energy transfer
rate increases as the gas pressure rises relative to the magnetic
pressure. With this dependence of the nonlinear energy transfer
rate on the plasma β, the saturated field strength increases as
the grid scale fluctuations become smaller relative to the total
variance. At still finer resolution, the scaling with Δx of both
fgrid and the nonlinear coupling could change, but at least in this
range of resolutions for these algorithms, the field intensity
can be expected to grow with further refinement in spatial
grids.

Thus, the action of grid scale dissipation creates a direct
relation between resolution and the nonlinear processes that
determine the magnetic field intensity and Maxwell stress. Be-
cause improving resolution also increases short length scale
fluctuation power, the level of grid scale fluctuations dimin-
ishes only slowly with improving resolution. If, as appears to
be the case in the simulations we have studied, nonlinear cou-
pling between large scales and small grows modestly with an
increasing ratio of gas pressure to magnetic pressure, the net
result is a slow increase in saturated magnetic intensity with im-
proving resolution. Processes like these account, at least in part,
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for the more stringent requirements for resolution that we have
uncovered.

5.7. Difficulties of Convergence Testing

Although convergence testing is an accepted approach for
gauging the reliability of numerical simulations, there are
several issues that make it extremely difficult to apply to global
accretion simulations. Some of these difficulties are practical;
others are more fundamental.

One of the fundamental difficulties arises because accretion
is driven by MHD turbulence, and the interaction of dynam-
ics at widely differing length scales is intrinsic to the nature of
turbulence. Large dynamic range in spatial scales generically
demands very high resolution, of course. The difficulties asso-
ciated with achieving convergence are especially compounded
for MRI-driven MHD turbulence for which stirring occurs over
a wide range of scales. Lesur & Longaretti (2011) argue that a
clearly defined inertial range separating the stirring scale from
the dissipation scale still has not emerged in the shearing box,
even at the highest resolution available to their spectral code.
Because the total Maxwell stress is dominated by field energy
on the largest scales, one may hope that its magnitude becomes
reasonably well determined even while the resolution remains
insufficient to describe details of the short-wavelength dissipa-
tion, but that remains to be demonstrated. The previous subsec-
tion discussed some of the problems to overcome in order to
achieve that decoupling.

Among the practical considerations is that MHD turbulence-
driven global accretion simulations must be three dimensional.
Achieving even modest resolution in three dimensions requires
a large number of cells. Whenever the science pushes computa-
tional capacity to its limit, it is infeasible to carry out additional
simulations at higher resolution than the level at which one
begins to see interesting effects. For this reason, attempts are
sometimes made to “test convergence” by contrasting one set
of results with those found at coarser resolution. Although this
may be the only available procedure for simulations carried out
at the largest feasible resolution, it is an approach that must be
used with caution. If the grid scale at every resolution tested
remains too coarse to be sensitive to a physical mechanism,
the results will give the appearance of convergence, even while
missing the very existence of a mechanism that may be very
important. This motivates this paper: using the better-resolved
shearing box simulations to develop diagnostics that allow a
global simulation to be evaluated directly.

Finally, there is the difficulty of measuring the effects of
truncation error and the rate at which it is being reduced
for simulations carried out at relatively coarse, but practical,
numerical resolutions. Strictly speaking, every algorithm has its
own properties, particularly with respect to truncation error.
Truncation error is characterized by the amplitude of the
error, the effective convergence rate at a given resolution, and
the asymptotic convergence rate. The latter is a fundamental
property of the method, but in practice one almost never reaches
the asymptotic regime, except in select test problems or for
one-dimensional problems where exceptionally fine resolution
may be achieved. At resolution levels reached in typical three-
dimensional simulations, the observed convergence rate need
not agree with the asymptotic convergence rate of the algorithm.
Also, the convergence rate alone provides no information about
the amplitude of the truncation error at a given resolution.
Again, by determining properties that are characteristic of well-

Table 4
Cell Sizes

Name ΔR/R Δφ 〈Qφ〉 Δz/H 〈Qz〉 Rmax Orbits

L Grid 0.033–0.111 0.025 7–10 0.0333-0.1 1–3 35 33
M Grid 0.017–0.055 0.025 �10 0.016–0.08 2–10 35 54
R Grid 0.004–0.0067 0.025 6–12 0.02–0.1 3–10 35 28
HK02 0.008–0.015 0.025 0.02–0.07 20 15
KD0b 0.024 0.025 19 0.06–0.14 6 25 14
QD0 0.024 0.025 26 0.08 8 25 14
ThinHR 0.004 0.025 18 0.0086 25 35 12
Shafee 0.0065 0.025 0.03 35 8
Penna 0.013 0.05 0.064 ∼5? 35 22

developed MRI-driven MHD turbulence (e.g., 〈B2
R/B2

φ〉), we
sidestep this difficulty.

Both global and local simulations have made use of several
different algorithms (finite difference: Zeus, GRMHD; finite-
volume conservative: Athena, HARM3D) as well as variations
with in the same general algorithm (e.g., different flux solvers).
The relative merits of different algorithms will be reflected in the
value of the Q parameters required to produce good results. For
the shearing box results in Section 3, we found that the use of
either Zeus or Athena appears to make relatively little difference;
our diagnostics of convergence depend upon resolution in very
similar ways. In Section 6, we compute the number of grid
zones that might be required for a future well-resolved global
simulation. These numbers can vary for one algorithm compared
to another, according to the Q values that prove necessary.

5.8. Spatial Resolution Requirements and
Published Global Simulations

There is no single number by which spatial resolution may
be defined. Even to specify the raw cell count requires three
numbers, one for each dimension, and that is not sufficient
because cell size depends on the extent of the simulation volume.
Moreover, what really matters is not so much the absolute size
of the cells as their size relative to the natural length scales of
the problem. For global simulations, the radius R is the primary
scale relevant to the radial direction, so the appropriate measure
of cell size is ΔR/R. In the azimuthal direction, there are two
natural scales: radians and 2πvAφ/Ω. The former is due to the
necessity of resolving a wide range of non-axisymmetric modes
in the turbulence; the latter has to do with adequate resolution
for the fastest-growing linear non-axisymmetric modes. In the
vertical direction, there are likewise two scales: the density (or
pressure) scale height, H, and 2πvAz/Ω. Quantities based on the
Alfvén speed always require time averaging because the field
evolves rapidly over the course of the simulation; depending on
the treatment of thermodynamics in the simulation, the vertical
scale height may also require averaging. Therefore, to align
resolution metrics against simulations in the literature requires
translation of all cell size specifications into these five natural
units.

We have done this for a selection of published simulations in
Table 4. In addition to cell size data, we list the radius of the
pressure maximum in the initial torus used, and the simulation
length in terms of orbits at that radius. The data from the various
simulations reported here with the L, M, and R grids are also
given in this table. The additional simulations used are the high-
resolution poloidal field simulation of Hawley & Krolik (2002),
which we label HK02; the high-resolution Schwarzschild simu-
lation of De Villiers et al. (2003), called KD0b; the quadrupolar

18



The Astrophysical Journal, 738:84 (20pp), 2011 September 1 Hawley, Guan, & Krolik

field simulation from Beckwith et al. (2008b), designated QD0;
the high-resolution thinnest simulation of Noble et al. (2010),
which they labeled ThinHR; the Schwarzschild simulation re-
ported by Shafee et al. (2008), identified as “Shafee” in the
table; and the fiducial simulation A0HR07 from Penna et al.
(2010), here called “Penna.” For many of these, the published
paper did not report full information. For those for which we
have access to the data, we have computed what we needed;
for the remainder, we have filled in only those entries deriv-
able from the publications. Where this required reading values
off graphs, we have added a question mark. All but one of the
simulations listed in the table used an azimuthal range of π/2;
the Shafee simulation used a wedge only π/4 in angle. In these
other simulations, unlike the Zeus simulations described in this
paper, the radial grid has a fixed ΔR/R. They also differ in that,
unlike our new Zeus simulations, which used cylindrical coor-
dinates, they used spherical coordinates. Because Δz = RΔθ in
spherical coordinates, the radial gradients in 〈Qz〉 seen in the
Zeus simulations are greatly reduced.

As the data in this table demonstrate, most global simulations
performed hitherto have had effective resolutions roughly at the
level of our M grid with the standard azimuthal resolution, while
the Penna simulation most closely resembled our twoloop-1000-
mlp simulation, which used our poloidal M grid but coarser
azimuthal resolution. As a fraction of the local radius, the
radial cell sizes have been generally in the range �0.01–0.025,
similar to the 0.017–0.055 range of our M grid; the only
exceptions in this list are Shafee (ΔR/R = 0.0065) and ThinHR
(ΔR/R = 0.004), both of whose radial resolution was closer to
our R grid. In terms of the scale height, the vertical cells of
most of these simulations are in the range 0.02–0.14, again
matching our M grid; by this measure, Shafee is similar to all
the others, while ThinHR is the only one substantially better,
with Δz/H = 0.0086. These values match the range explored
in the stratified shearing box simulations, where the coarsest we
discussed had a vertical cell 0.125H thick, and the thickness of
the finest vertical cell was 0.0078H . In radian measure, all of
these simulations except Penna used a cell with Δφ = 0.025,
identical to that in our standard M grid; Penna’s azimuthal cell
was twice as large. Our ability to be quantitative about 〈Qz〉 and
〈Qφ〉 is limited: we kept insufficient data from HK02 to compute
these diagnostics, and we lack access to data from Shafee and
Penna. However, on the basis of what the published papers say,
it is clear that 〈Qz〉 in most of the global disk literature has been
�5–8, while 〈Qφ〉 has been �20. By these measures, at �25,
ThinHR was a lone standout in terms of 〈Qz〉, but in the same
range as all the others in terms of 〈Qφ〉.

Because our M and R grid simulations at best went only part
way toward convergence as measured by any of our diagnostics,
we expect that all these simulations likewise fell short of
convergence. For those cases in which the initial magnetic field
was in a single dipole loop (HK02, KD0b), the 〈Qz〉 values
suggest that the 〈B2

R/B2
φ〉 measure is in the neighborhood of

∼1/2 its saturated value. For those in which the initial magnetic
field was in two loops (QD0b, Shafee), the shift we have seen in
two-loop simulations relative to one loop suggests that 〈B2

R/B2
φ〉

is somewhat smaller. The Shafee simulation also has large
aspect ratio cells (although ΔR/(RΔφ) is similar in ThinHR, the
latter’s much finer vertical resolution appears to compensate).
In Penna, the combination of a four-loop configuration and
coarser azimuthal resolution seems particularly challenging. In
our simulations such conditions cause 〈B2

R/B2
φ〉 to fall by a factor

of two or more. Such a reduction in the relative magnitude of

the radial component of the magnetic field would indicate that
the turbulence is not fully developed, that the field intensity
is rather lower than the converged value, and that the stress is
smaller than in saturation because it is proportional to BR.

6. CONCLUSIONS

Although global disk simulations have explored many impor-
tant aspects of the accretion process, their quantitative reliability
remains uncertain. In this paper, we have made use of high-
resolution local shearing box simulations to develop four diag-
nostics by which one may gauge how closely a given simulation
approaches to fully developed MRI-driven MHD turbulence. We
have then examined how those diagnostics carry over to global
simulations. Establishing this connection is an important step
in relating local simulations to global. Local simulations will
always be able to include more physics and use better effective
resolution than global, and by means of this mutual calibration,
information from shearing boxes can help guide and interpret
global models.

The four diagnostic terms we found most useful are 〈Qz〉,
the number of vertical cells across a wavelength of the fastest-
growing poloidal field MRI mode; 〈Qy〉 (or 〈Qφ〉 in global
simulations), the number of azimuthal cells across a wavelength
of the fastest-growing toroidal field MRI mode; 〈B2

R/B2
φ〉, the

ratio of energy in the radial magnetic field component to the
toroidal component; and αmag, the ratio of the Maxwell stress
to the magnetic pressure. Only the first has seen significant use
previously, and we extend its utility to gauge spatial resolution
for nonlinear behavior of the MHD turbulence as well as
linear growth of the MRI. Whereas Sano et al. (2004) found
that a minimum 〈Qz〉 of 6–8 is required in order to describe
poloidal MRI linear growth, we find that the prerequisite for
simulating nonlinear behavior is more stringent and couples
poloidal resolution to azimuthal. If the analogous azimuthal
diagnostic 〈Qφ〉 � 20, then 〈Qz〉 � 10 is necessary; if 〈Qφ〉 is
smaller than that, still larger values of 〈Qz〉 are required.

Using these diagnostics, we find that all the global simulations
done to date are underresolved, particularly in the φ-direction.
Only one simulation in the literature (ThinHR; Noble et al. 2010)
comes close to adequate poloidal resolution, but even it does not
meet the azimuthal standard. Our tests varying the azimuthal
cell size showed that it can be important to the development of
the poloidal, as well as the toroidal, magnetic field. Achieving
adequate azimuthal resolution is made especially difficult when
the disk is thin for two reasons. Thinner disks require smaller
vertical cell dimensions, but avoiding the deleterious effects of
large cell aspect ratios then demands cells still smaller in the
azimuthal direction. In addition, vA tends to diminish with the
smaller sound speeds seen in thinner disks; smaller Δφ is then
necessary in order to achieve an adequate value of Qφ .

Regarding the initial conditions, we have found that the addi-
tional short length scale fluctuation power that is a concomitant
of more complicated magnetic field geometry places stronger
demands on spatial resolution. The additional magnetic recon-
nection associated with attempting to describe a more com-
plicated field geometry on a given grid can weaken the field
sufficiently that MRI stirring is curtailed and the field intensity
remains artificially low. Until global simulations are adequately
resolved it will be difficult to distinguish numerical from phys-
ical effects arising from different initial field geometries.

We can make an estimate of the resolution required for a
global torus evolution using Equations (11) and (13). To avoid
the problem of decreasing H with decreasing R that is found

19



The Astrophysical Journal, 738:84 (20pp), 2011 September 1 Hawley, Guan, & Krolik

in cylindrical coordinates, we assume a spherical-polar grid
(r, θ, φ). To keep Δr = rΔφ we use logarithmic spacing in
r. We also assume the radial grid spans a factor of 100 from
the inner to the outer boundary, and that the φ grid spans only
π/2. We next assume β = 10, βz/β = 50, H/R = 0.1. Our
target values are 〈Qz〉 = 10 and 〈Qφ〉 = 25 (one’s preferred
target Q values may well be algorithm dependent). With these
assumptions, the θ grid, if equally spaced, must have ∼900 zones
if equally spaced from 0 to π . In a practical simulation, however,
one could increase Δθ away from the midplane, reducing the
number of zones required, perhaps by as much as 50% (450
zones). The φ grid requires 200 zones and the r grid 600 zones.
For H/R = 0.1, the number of cells (600 × 200 × 450) is
not too much greater than what has already been used. Of
course, reducing H/R would further increase the number of
required zones proportionally in each of the three dimensions.
Higher resolution also reduces the Courant-limited time step,
making it challenging to evolve the disk for a large number
of orbits. In this estimate we assumed a smooth distribution
of field; intermittency in the field distribution may change
the required resolution from this estimate. Typically there is
significant spatial variation in β so that a density weighted
Q value can be larger than a volume-weighted value. On the
other hand, complex initial field distributions may require more
zones for adequate representation. Future simulations done at
resolutions approaching this estimate can test these ideas.

Although we find that certain values of the resolution parame-
ters indicate well-resolved turbulence, lower values of those pa-
rameters do not mean that turbulence necessarily decays rapidly;
as we have described, it can persist for long periods of time with
lower amplitude and reduced stress. Even underresolved global
simulations can have nonzero stress levels and accretion rates. A
seemingly long duration of accretion is therefore not a guarantor
of convergence. Qualitative conclusions can usefully be—and
have been—obtained from such simulations, but quantitative
stress levels are likely to be undervalued.

Lastly, we have explored the question of the meaning of
“inflow equilibrium” in the context of global simulations.
Analysis of several diagnostics can determine the existence
and extent of the region of the accretion disk that is in inflow
equilibrium. One can show that there are at most weak long-term
trends in the radial mass distribution, that the time-averaged
accretion rate is relatively constant as a function of R, and
that the observed accretion rate is consistent with the observed
angular momentum transport as computed from the steady state
disk equation. Even when the disk is in time-averaged inflow
equilibrium, there can be large short-term fluctuations in the
mass distribution. Moreover, whenever there is only a finite mass
reservoir in the initial condition, a sufficiently long simulation
cannot, by definition, support even a statistical steady state for
longer than the inflow time from the initial half-mass radius.

In summary, this work provides guidance for future global
simulations, both in terms of resolution and evolution time,
to approach what is needed for quantitative conclusions about
accretion disk dynamics and structure.
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