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ABSTRACT

Despite the great promise of machine-learning algorithms to classify and predict astrophysical parameters for the
vast numbers of astrophysical sources and transients observed in large-scale surveys, the peculiarities of the training
data often manifest as strongly biased predictions on the data of interest. Typically, training sets are derived from
historical surveys of brighter, more nearby objects than those from more extensive, deeper surveys (testing data).
This sample selection bias can cause catastrophic errors in predictions on the testing data because (1) standard
assumptions for machine-learned model selection procedures break down and (2) dense regions of testing space
might be completely devoid of training data. We explore possible remedies to sample selection bias, including
importance weighting, co-training, and active learning (AL). We argue that AL—where the data whose inclusion in
the training set would most improve predictions on the testing set are queried for manual follow-up—is an effective
approach and is appropriate for many astronomical applications. For a variable star classification problem on a
well-studied set of stars from Hipparcos and Optical Gravitational Lensing Experiment, AL is the optimal method
in terms of error rate on the testing data, beating the off-the-shelf classifier by 3.4% and the other proposed methods
by at least 3.0%. To aid with manual labeling of variable stars, we developed a Web interface which allows for easy
light curve visualization and querying of external databases. Finally, we apply AL to classify variable stars in the
All Sky Automated Survey, finding dramatic improvement in our agreement with the ASAS Catalog of Variable
Stars, from 65.5% to 79.5%, and a significant increase in the classifier’s average confidence for the testing set, from
14.6% to 42.9%, after a few AL iterations.
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1. INTRODUCTION

Automated classification and parameter estimation proce-
dures are crucial for the analysis of upcoming astronomical
surveys. Planned missions such as Gaia (Perryman et al. 2001)
and the Large Synoptic Survey Telescope (LSST; LSST Sci-
ence Collaborations et al. 2009) will collect data for more than
a billion objects, making it impossible for researchers to man-
ually study significant subsets of the data. At the same time,
these upcoming missions will probe never-before-seen regions
of astrophysical parameter space and will do so with larger tele-
scopes and more precise detectors. This makes the training of
automated learners for these new surveys a difficult, non-trivial
task.

Supervised machine-learning methods (see Bloom &
Richards 2011 for a review) have shown great promise for the
automatic estimation of astrophysical quantities of interest—
response variables in the statistics parlance—from sets of
features extracted from the observed data.4 These studies
include areas as diverse as photometric redshift estimation
(Collister & Lahav 2004; Wadadekar 2005; D’Abrusco et al.
2007; Carliles et al. 2010), stellar parameter estimation and
classification (Tsalmantza et al. 2007; Smith et al. 2010),

4 By feature we mean any quantity that can be computed directly as a
function of the raw data, while response variable refers to the target parameter
to be predicted for each new source. For example, in photometric redshift
estimation the features are photometric colors while the response is redshift.

galaxy morphology classification (Ball et al. 2004; Huertas-
Company et al. 2008), galaxy–star separation (Gao et al. 2008;
Richards et al. 2009), supernova typing (Newling et al.
2011; Richards et al. 2011a), and variable star classification
(Debosscher et al. 2007; Dubath et al. 2011; Richards et al.
2011b), among others.

These studies typically assume that the distribution of training
data5 is representative of the set of data to be analyzed (the
so-called testing data). In reality, in astronomy the distributions
of training and testing data are usually substantially different.
This sample selection bias can cause significant problems for an
automated supervised method and must be addressed to ensure
satisfactory performance for the testing data. For instance,
standard cross-validation techniques assume that the training
and testing distributions are exactly the same; when this is not
the case, sub-optimal model selection can occur.

In this paper, we show the debilitating effects of sample
selection bias on the problem of automated classification of
variable stars from their observed light curves. Using a set
of highly studied, well-classified variable star light curves
from the Hipparcos (Perryman et al. 1997) Space Astrometry
Mission and the Optical Gravitational Lensing Experiment
(OGLE; Udalski et al. 1999a) missions, we train a classifier
to automatically predict the class of each variable star in the All
Sky Automated Survey (ASAS; Pojmanski 1997; Pojmański

5 Training data are the subset of data with known response variable that is
employed to fit a supervised learning model.
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2001). We demonstrate that this classifier results in a high
error rate, a substantial number of anomalies, and low average
classifier confidence. These debilitating effects are also seen in
existing catalogs such as the ASAS Catalog of Variable Stars
(ACVS; Pojmanski 2000; Pojmanski et al. 2005), whose use
of training data from OGLE plus from an early ASAS release
yields a supervised classifier that is only confident on 24%
of all variable sources. Upcoming surveys, whose automated
prediction algorithms will be trained on data from older surveys
and/or idealized models, will suffer from these same maladies
if sample selection bias is not treated properly.

To overcome sample selection bias, we examine three meth-
ods: importance weighting (IW), co-training (CT), and active
learning (AL). On both the ASAS variable star classification
problem and a simulated variable star data set, we find that AL
performs the best. AL is an iterative procedure, whereby on
each iteration the testing data whose inclusion in the training set
would most improve predictions over the entire testing set are
queried for manual follow-up and added to the training set. AL
is a semi-supervised method that leverages the known features
of the testing data to make the best decision about which of these
objects is most useful to the supervised learner. We argue that AL
is appropriate in many areas of astrophysics, where follow-up
information can often be attained through spectroscopic obser-
vations, manual study, or citizen science projects (e.g., Lintott
et al. 2008). Furthermore, AL is a principled method for select-
ing objects for expensive follow-up in circumstances where it
is infeasible to perform an in-depth analysis on every object. In
particular, projects such as Galaxy Zoo stand to benefit from the
AL approach for candidate object selection, especially when
data sizes become prohibitively large for people to manually
analyze each source.

The structure of the paper is as follows. In Section 2 we
describe in detail the problem of sample selection bias, showing
how it can arise in various astronomical settings and detailing
its adverse effects in a variable star classification problem. In
Section 3, we introduce a few methods that can be used to
mitigate the effects of sample selection bias. We describe AL
in detail, focusing on its implementation with Random Forest
(RF) classification. Next, we test those methods in Section 4,
showing that AL attains the best results in a simulated variable
star classification experiment. In Section 5 we describe our
online AL variable star classification tool, ALLSTARS, which
was developed to aid the manual study of objects in various
photometric surveys. We present the result of applying AL
to classify ASAS variable stars in Section 6, showing drastic
improvement over the off-the-shelf classifier. Finally, we end
with some concluding remarks in Section 7.

2. SAMPLE SELECTION BIAS IN
ASTRONOMICAL SURVEYS

A fundamental assumption for supervised machine-learning
methods is that the training and testing sets6 are drawn indepen-
dently from the same underlying distribution. However, in astro-
physics this is rarely the case. Populations of well-understood,
well-studied training objects are inherently biased toward in-
trinsically brighter and nearby sources and available data are
typically from older, lower signal-to-noise detectors.

6 Throughout the paper, we call training data those objects with known
response variables that are used to train the supervised model, and we call
testing data the objects of interest whose unknown response is to be predicted
by the model.

Indeed, in studies of variable stars, samples of more luminous,
well-understood stars are often employed to train supervised
algorithms to classify fainter stars observed by newer and deeper
surveys. Examples of this abound in the literature. For instance,
Debosscher et al. (2009) use a training set from OGLE, a ground-
based survey from Las Campanas Observatory covering fields
in the Magellanic Clouds and Galactic bulge, to classify higher-
quality COnvection ROtation and planetary Transits (CoRoT;
Auvergne et al. 2009) satellite data. Dubath et al. (2011) train
a classification model using a subset of the Hipparcos periodic
star catalog containing the most reliable labels from the literature
and most confident period estimates. This systematic difference
between the training and testing sets can cause supervised
methods to perform poorly, especially for the types of objects
that are undersampled by the training set.

In Debosscher et al. (2009), the authors recognize that a
training set “should be constructed from data measured with
the same instrument as the data to be classified” and claim
that some misclassifications occur in their analysis due to
systematic differences between the two surveys. Because the
aims and specifications of each survey are different, data from
sources observed by different surveys usually follow distinct
distributions with significant offsets. See, for example, Figure 1,
where there is an obvious absence of the combined Hipparcos
and OGLE training data (black diamonds) in the high-frequency,
high-amplitude regime where the density of the testing set of
ASAS variables (red squares) is high. Even if two surveys
have similar specifications (e.g., cadence, filter, depth), they
may be looking in different parts of the sky or with different
sensitivities and thus will observe different demographics of the
same sources, causing systematic differences in the distribution
of source types.

In other areas of astrophysics and cosmology it is a common
practice to construct supervised models using spectroscopic
samples and apply those models to predict parameters of
interest for objects that fall entirely outside the support of the
distribution of the spectroscopic data. For example, photometric
redshift estimation methods typically train a regression model
using a set of spectroscopically confirmed objects, whereby
those models are extended to populations of galaxies that are
fainter and (often) at higher redshift (papers that have studied
this problem include Bonfield et al. 2010 and Sypniewski &
Gerdes 2011). Several authors have proposed novel methods to
mitigate the effects of non-representative photo-z training sets
using physical association of galaxies (Matthews & Newman
2010; Quadri & Williams 2010) or calibration through cross-
correlation (Schulz 2010). Another field where these issues
occur is supernova typing, where classifiers are typically trained
on spectroscopically confirmed templates and then applied to
classify fainter testing data (Kessler et al. 2010; Newling et al.
2011). Recently, Richards et al. (2011a) studied the impact of
the accuracy of a supervised supernova classification method on
the particular spectroscopic strategy employed to obtain training
sets, finding that deeper samples with fewer objects are preferred
to surveys with shallower limits.

The situation we describe, where the training and testing
samples are generated from different distributions, is referred
to in the statistics and machine-learning literature as covari-
ate shift (Shimodaira 2000) or sample selection bias (Heckman
1979). The systematic difference between training and testing
sets can cause catastrophic prediction errors when the trained
model is applied to new data. This problem arises for two rea-
sons. First, under sample selection bias, standard generalization
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Figure 1. Presence of sample selection bias for ASAS variable star (red �) classification using a training set of well-understood data from Hipparcos and OGLE
(black �) is exhibited by the large discrepancy between the feature distributions of the two data sets. Left: large distributional mismatch exists in the period–amplitude
plane. ASAS testing data have high density in short-period, high-amplitude and long-period, moderate-amplitude regions, where there are little training data. Only
those ASAS data whose statistical significance of the fist frequency are larger than the median are plotted. Right: testing data tend to have smaller values of the QSO-like
variability metric—which measures how well the observed light curve fits a damped random walk QSO model (see Butler & Bloom 2011)—and larger values of
the statistical significance of the first frequency (compared to a null, white-noise model; see Richards et al. 2011b).

(A color version of this figure is available in the online journal.)

error estimation procedures, such as cross-validation,7 are
biased, resulting in poor model selection. Off-the-shelf super-
vised methods are designed to choose the model that minimizes
some error criterion integrated with respect to the training dis-
tribution; when the testing distribution is substantially differ-
ent, the chosen model is likely to be suboptimal for prediction
on the testing data. In Section 3.1, we describe a principled
weighting scheme to alleviate this complication. Second, signif-
icant regions of parameter space may be ignored by the training
data—such as in the variable star classification problem shown
in Figure 1—causing catastrophically bad extrapolation of the
model into those regions. In this case, any classifier trained only
on the training data will produce poor class predictions in the
ignored regions of parameter space: no weighting scheme on
the training data can enforce good classifier performance in
these regions. This suggests that the testing data need to be
used, in a semi-supervised manner, to augment the training set.
In this paper, we explore two different approaches to this prob-
lem: CT (Section 3.2 and self-training), where testing instances
with most certain class prediction are iteratively added to the
training set, and AL (Section 3.3), where testing instances whose
labels, if known, would be of maximal benefit to the supervised
method, are manually studied to ascertain the value of their
response (e.g., class label, redshift, etc.), and subsequently in-
cluded in the training set.

2.1. Example: Source Classification for ASAS

In this section, we demonstrate the effects of sample selection
bias in classifying variable stars from the ASAS. Particularly,

7 Cross-validation is a standard technique for model selection in which a
subset of the data are used to train the model while the left-out data are used to
evaluate performance.

we use an automated machine-learning algorithm to classify
sources in the ACVS (Pojmanski 2002). ACVS verson 1.18

consists of V-band light curves for 50,124 stars that have
passed tests of variability as described in Pojmanski (2000).
As a training set for this classification problem, we use only
the confidently labeled Hipparcos and OGLE sources used in
Debosscher et al. (2007) and Richards et al. (2011b). This data
set consists of 1542 variable stars from 25 different science
classes. The period–amplitude relationship of the instances in
the training set of Hipparcos and OGLE data, and in the ACVS
catalog are plotted in Figure 1, where the presence of sample
selection bias is obvious: the distributions of the two data sets are
clearly different, and several regions of feature space are densely
populated with ASAS data while being devoid of training data.

As a part of ACVS, predicted classes are provided for a
fraction of the stars. As described in Pojmanski (2002), ACVS
obtains their classifications using a neural net type algorithm
trained on set of visually labeled ASAS sources, confirmed
OGLE cepheids (Udalski et al. 1999b, 1999c), and OGLE Bulge
variable stars (Wozniak et al. 2002). A filter is used to divide
strictly periodic from less regular periodic sources. A neural
net is trained on the period, amplitude, Fourier coefficients
(first four harmonics), J − H and H − K colors and IR fluxes to
predict the classes of the strictly periodic sources. Many ACVS
objects either have multiple labels or are annotated as having
low-confidence classifications. For less regular periodic sources,
location in the J − H versus H − K plane is tested; if the object
falls within an area of late-type irregular or semi-regular stars, it
is assigned the label miscellaneous (MISC), else it is inspected
by eye. We find that 38,117 ACVS stars, representing 76% of

8 The ACVS catalog can be downloaded at
http://www.astrouw.edu.pl/asas/data/ACVS.1.1.gz.
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Figure 2. Left: period–amplitude relationship for the 1542 training set sources from the Hipparcos and OGLE surveys. Symbols and colors denote the true science
class of each object. Right: same for a random sample of size 10,000 from the 50,124 ASAS testing objects, where symbols and colors denote the ACVS labels.
Black “U” denotes that the source is either labeled MISC, doubly labeled, or has low-confidence label by ACVS. Our goal is to use the training data set to predict the
class label (and posterior class probabilities) for each ASAS object. Complicating this task is significant distributional difference between the training and testing sets,
which can cause poor performance of a machine-learned classifier.

(A color version of this figure is available in the online journal.)

the catalog, are either labeled as MISC, assigned multiple labels,
or have low class confidence. The remaining 24% of stars have
confident ACVS labels and provide a set of classifications to
compare our algorithms against. In Figure 2 we plot in color, in
period–amplitude space, the classes of the training data and the
ACVS classes of the ASAS data.9

As our base model, we use an RF classifier (Breiman 2001).
RF has recently been shown by Richards et al. (2011b) and
Dubath et al. (2011) to attain accurate results in automated
classification of variable stars. In this paper, we represent each
variable star in our data set by the 59 light curve features
used by Richards et al. (2011b) as well as five additional light
curve features from Dubath et al. (2011). The RF classifier is
a supervised, non-parametric method that attempts to predict
the science class of each star from its high-dimensional feature
vector. It operates by constructing an ensemble of classification
decision trees and subsequently averaging the results. The key
to the good performance of RF is that its component trees are de-
correlated by sub-selecting a small random number of features
as splitting candidates in each non-terminal node of the tree.
As a result, the average of the de-correlated trees attains highly
decreased variance over each single tree, with no substantial
increase in bias.10

Training an RF classifier on the Hipparcos and OGLE data as
in Richards et al. (2011b) and applying that classification model
to predict the class label of each object in ACVS, we obtain
a 65.5% correspondence with the ACVS labels for the 24%

9 Note that not all sources are actually periodic, meaning that some period
estimates are nonsensical. However, we also use the statistical significance of
the frequency estimate as an input feature into our classifier; thus the classifier
learns to trust the only periodic features of those sources with high-frequency
significance and to rely on only the non-periodic features of the
low-significance data.
10 For more details about the Random Forest variable star classifier used, see
Richards et al. (2011b).

of objects that have a confident ACVS label. A table showing
the correspondence of our predicted RF classification labels
with those of ACVS is plotted in Figure 3. The RF algorithm
successfully finds 90% of the Mira and 79% of the RR Lyrae, FM
stars identified by ACVS, but shows much lower correspondence
for other classes, such as Delta Scuti, Population II Cepheid, and
RR Lyrae, FO. Note that the RF class taxonomy is finer than
that used by ACVS, including twice as many classes; as such,
the RF has the ability to identify objects of rarer classes, such
as T Tauri and Gamma Doradus stars.

There are serious problems that arise by running the analysis
in this manner and ignoring the significant sample selection
bias between the training and testing sets. In Figure 1, we saw
that the distribution of the training set of Hipparcos and OGLE
sources is appreciably different than the distribution of ASAS
sources; notably, regions of long-period, amplitude <1 sources
and regions of short-period, high-amplitude sources are densely
populated in ASAS but contain little or no training data. As a
consequence, a large proportion of the ASAS data set has no
counterpart in the training set that closely matches its feature
vector, meaning that it will likely be incorrectly identified by
the RF classifier as belonging to a physically different class
of variable star. One telling statistic is that for only 14.6%
of the ASAS objects does the RF produce a posterior class
probability of �0.5, meaning that the classifier is confident on
the class predictions for less than 1/8th of the entire ASAS
ACVS catalog.

Furthermore, in Figure 3 we find that many ASAS sources
(9114 of 50,124, or 18.2%) are identified by the RF classifier
as being of RR Lyrae, DM type, a relatively rare type of doubly
pulsating variable star. This is far too many RR Lyrae, DM
candidates; for comparison, Soszyński et al. (2011) find, through
visual inspection, only 91 RR Lyrae, DM candidates in the entire
OGLE-III catalog, out of 16,836 total RR Lyrae candidates
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(A color version of this figure is available in the online journal.)

(0.5%). This classification artifact occurs because RR Lyrae,
DM stars have multiple pulsational modes, causing their data to
poorly fold around a single period. Because ASAS photometry
is less precise than that of Hipparcos or OGLE, its folded light
curves are considerably more noisy. Consequently, for a large
subset of ASAS sources that do not resemble any of the training
data, the classifier’s “best guess” is RR Lyrae, DM because
training light curves of that class most resemble ASAS data.
This deficiency of the off-the-shelf classifier illustrates the need
for other approaches.

3. METHODS TO TREAT SAMPLE SELECTION BIAS

Above, sample selection bias was defined, its presence
in astrophysical problems motivated, and its adverse effects
exemplified in variable star classification. In this section, we
will introduce three different principled approaches of treating
sample selection bias and argue that AL is the most appropriate
of these methods for dealing with biases in astronomical data
set. In Section 4, these methods will be compared using variable
star data from the OGLE and Hipparcos missions.

3.1. Importance Weighting

Under sample selection bias, standard error estimation pro-
cedures (such as cross-validation) are biased, resulting in poor
model selection. The basic idea is that one wishes to choose the
statistical model (e.g., classifier) that minimizes the expected
prediction error on the testing data. When the distribution of
training and testing data is different, one needs to explicitly
account for this difference, else the testing error estimate will

likely be wrong. Minimizing an incorrect testing error estimate
will cause us to choose a suboptimal model. One can achieve
an unbiased estimate of the testing error via IW (see Sugiyama
& Müller 2005; Huang et al. 2007, and Sugiyama et al. 2007),
whereby training examples are weighted by an empirical esti-
mate of the ratio of testing-to-training set feature densities when
computing the statistical risk of a model.11 Specifically, when
training a statistical model, weighting the training data by

wi = PTest(xi , yi)

PTrain(xi , yi)
= PTest(xi)PTest(yi |xi)

PTrain(xi)PTrain(yi |xi)
= PTest(xi)

PTrain(xi)
(1)

modifies standard risk estimation procedures to compute the
statistical risk over the testing set (see Huang et al. 2007 for
further mathematical details). Here, xi is the feature vector and
yi is the response for training object i.

To achieve the last equality in Equation (1), it is assumed that
PTest(yi |xi) = PTrain(yi |xi), i.e., that the probability of a specific
response given a feature vector is the same for the training and
testing sets. In practice, this last equality will probably not hold
for the types of astrophysical data sets that we are interested in:
though the mapping from features to response values may be
the same for data from different surveys, the prior distributions
over the responses, y, are different, in general. Even in this situ-
ation, use of the ratio of feature densities—though imperfect—
may still be useful and is more tractable than using the joint

11 Statistical risk is the expected error, measured by a loss function, over a
particular probability distribution. By default, risk is computed over PTrain; IW
modifies this to compute the risk with respect to PTest.
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feature-response densities, P(x, y).12 Even so, in practice the
training and testing feature densities are difficult to estimate
(and their ratio is even harder to estimate) because they reside
in high-dimensional feature spaces. To overcome this, Equa-
tion (1) can be estimated via distribution matching (Huang et al.
2007) or by fitting a probabilistic classifier to the classification
problem of training versus testing set and employing the output
probability estimates (Zadrozny 2004).

Using the weights defined in Equation (1) when training a
classifier induces an estimation procedure that gives higher
importance to training set objects in regions of feature space that
are relatively undersampled by the training data, with respect to
the testing set density. This enforces a higher penalty for making
errors in regions of feature space that are underrepresented by
the training set. This is sensible because, since the ultimate
goal is to apply the model to predict the response of the testing
data, we should attempt to do well at modeling the output in
regions of feature space that are densely populated by testing
data (and conversely ignore modeling those regions devoid of
testing data). For the ASAS example, IW will give large weights
to the training data in the region of amplitude <0.5 and period
>100 and affix small weights to data in the high-amplitude
clump centered around a 300 day period.

Though IW is useful in some problems, it has been shown
to be asymptotically sub-optimal when the statistical model
is correctly specified13 (Shimodaira 2000) and with flexible
non-parametric models such as RF we observe very little
change in performance using IW (see Section 4). An additional,
more debilitating drawback is that IW requires the support
of the testing distribution14 be a subset of the support of the
training distribution,15 which, in the types of supervised learning
problems common in astrophysics, is rarely the case.

3.2. Co-training

In astronomical problems, we typically have much more
unlabeled than labeled data. This is due to both the pain-
staking procedures by which labels must be accrued (e.g.,
by spectroscopic follow-up or manual assignment) and the
fact that there are exponentially more dim, low signal-to-
noise sources than bright, well-understood sources. Recently,
supervised classification algorithms have been developed that
employ both labeled and unlabeled examples to make decisions.
This class of models is referred to as semi-supervised because
learning is performed both on the instances with known response
values and on the feature distribution of instances with no
known response. Semi-supervised methods such as CT and self-
training slowly augment the training set by iteratively adding the
most confidently classified testing set cases from the previous
iteration.

CT was formalized by Blum & Mitchell (1998) as a method
of building a classifier from scarce training data. In this method,
two separate classifiers, h1 and h2, are built on different (disjoint)
sets of features, x1 and x2. In an iteration, each classifier
adds its p most confidently labeled testing instances to the

12 Note that we could alternatively rewrite the joint density as P(yi )P(xi |yi ). It
is unlikely that PTest(xi |yi ) = PTrain(xi |yi ) in most practical situations;
however, if this were to hold then the importance weights would simply reduce
to the ratio of response priors.
13 In other words, IW produces worse results than the analogous unweighted
method if the parametric form of P(y|x) is correct.
14 Defined as the subset of feature space with non-zero density:
S = {x : P(x) > 0}.
15 Else the weights, defined as the ratio of test-to-training set feature densities,
explode, and the theoretical properties of the method no longer hold.

training set of the other classifier. This process continues
either for N iterations or until all testing data belong to the
training set of both classifiers. The final class predictions
are determined by multiplying the class probabilities of each
classifier, i.e., p(y|x) = h1(y|x1)h2(y|x2). CT has shown
impressive performance in situations where very few training
examples are used to classify many testing cases. Blum &
Mitchell (1998) use CT in a two-class problem, using 12
labeled Web pages to classify a corpus of 1051 unlabeled pages,
achieving a 5% error rate.

In the original CT formulation, it was assumed that each
object could be described by two different “views” (i.e., feature
sets) of the data that were both redundant (each view of the
object gives similar information) and conditionally independent
given the true class label. While this natural redundancy may be
present in Web page classification (e.g., the words on the Web
page and the words on pages linked to that Web page), it is not
generally the case. Later papers by Goldman & Zhou (2000)
and Nigam & Ghani (2000) argue that even when a natural
feature division does not exist, arbitrary or random feature splits
produce better results than self-training (Nigam & Ghani 2000),
where a single classifier is built on all of the features whereby
the most confidently classified testing instances are iteratively
moved to the training set.

In the variable star classification paper of Debosscher et al.
(2009), something akin to a single iteration of self-training
was performed for CoRoT classification using OGLE training
data. Here, candidate lists obtained with the first version of
the classifier were used to select very probable class members
among the CoRoT data for subsequent inclusion in the training
set. This augmentation procedure led to inclusion of an extra
114 sources into the training set.

Both CT and self-training are reasonable approaches to prob-
lems that suffer from sample selection bias because they it-
eratively move testing data to the training set, thereby grad-
ually decreasing the amount of bias that exists between the
two sets. However, in any one step of the algorithm, only
those data in a close neighborhood to existing training data
will be confidently classified and made available to be moved
to the training set. Thus, as the iterations proceed, the dominant
classes in the training data diffuse into larger regions of feature
space, potentially gaining undue influence over the testing data.
In addition, CT and self-training will never predict classes that
are rare or unrepresented in the training data, even if they are
prominent in the testing data. In Section 4 we apply both self-
training and CT to variable star classification, finding that these
methods perform poorly in terms of overall error rate, especially
for classes that are undersampled by the training data.

3.3. Active Learning

A special feature to supervised problems in astronomy is that
we often have the ability to selectively follow up on objects to
ascertain their true nature. For example, this can be achieved
via targeted spectroscopic study, visualization of (folded) light
curves, or querying of other databases and catalogs. Consider
astronomical source classification for future missions: while
it is impractical to manually follow-up all hundred-million
plus objects that will be observed by Gaia and LSST, manual
labeling of a small, judiciously chosen set of objects can greatly
improve the accuracy of an automated supervised classifier.
This is the approach of AL (and in particular, pool-based AL,
Lewis & Gale 1994). Under pool-based AL for classification,
an algorithm iteratively selects, out of the entire set of unlabeled
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data, the object (or set of objects) that would give the expected
maximal performance gains of the classification model, if its
true label(s) were known. The algorithm then queries the
user to manually ascertain the science class of the object(s),
whereby the supervised learner incorporates this information its
subsequent training sets to improve upon the original classifier.
AL has enjoyed wide use in machine learning, with impressive
results in many areas of application, such as text classification,
speech recognition, image and video classification, and medical
imaging (Lewis & Gale 1994; Tong & Chang 2001; Tong &
Koller 2002; Yan et al. 2003; Liu 2004; Tur et al. 2005). For a
thorough review, see Settles (2010).

The basic procedure for pool-based AL is the following:
begin with a training set L and testing set U . On each AL
iteration, manually find the class of the testing set source,
x′ ∈ U , whose inclusion into L would most improve the
classifier’s performance on the testing data according to some
query function, see Section 3.3.1. These queried AL samples
tend to be data that reside in relatively dense regions of testing set
feature space, PTest(x), scarcely populated regions of training set
feature space, PTrain(x), and in regions where the class identity is
uncertain. This procedure is similar to the importance sampling
approach of Zadrozny (2004), who show that if training set
sources are resampled with respect to the appropriate (weighted)
distribution, then the statistical risk of the classifier built on that
data will minimize the statistical risk evaluated over all of the
data. However, the drawback to that approach is that it needs a
relatively large initial training sample and requires that for all
non-void regions of PTest, PTrain also be non-zero. On the other
hand, the AL approach is to expand the training set in a way that
makes it most closely resemble the testing set, thereby curtailing
sample selection bias.

3.3.1. Active Learning Query Function

Several strategies have been proposed to determine which
testing data about which AL will query the “human annotator.”
Most of these prescriptions attempt to select data whose label, if
known, would maximally help the classifier. The simplest form
of querying is uncertainty sampling (Lewis & Gale 1994), by
which on each iteration, the training datum with highest label
uncertainty (measured, e.g., by entropy or margin) is queried
for manual identification. Though simple, this approach does
not explicitly consider changes to the overall error rate of the
classifier and is prone to select outlying points that have little
influence in the classification of the other testing data.

We have an explicit goal of minimizing the classification
error rate over the entire set of testing data, so it is sensible
to consider this metric explicitly when queuing data for AL.
This is the approach taken by the expected error reduction
strategies (Roy & McCallum 2001), where on each iteration
the algorithm queries the testing point whose inclusion into
the training set would produce the smallest classification error
rate (statistical risk) over the testing set. These methods operate
by iteratively adding each testing point to the training set and
retraining the classifier.16 However, because the true labels
of the training data are not known a priori, one must also
iterate over the possible labels of the training data, computing a
rough estimate of the expected decrease in testing error rate by
approximation of the error under all possible labels of all testing
data. For common astronomy data sets, with �105 objects,

16 For many machine-learning algorithms, fast incremental updating
algorithms exist, making this approach feasible.

expected error reduction is impractical. A viable alternative is
variance reduction (Cohn 1996), where the testing object that
minimizes the classifier’s variance is selected on each iteration.
Since a classifier’s error can be decomposed into variance
plus squared-bias plus label noise,17 minimizing the variance
amounts to minimizing the error rate; also, for many models, the
variance can be written in closed form, circumventing any costly
computations.

In this paper, we consider two different selection criteria.
The first criterion is motivated by IW and the second is
motivated by selecting the sources whose inclusion in the
training set would produce the largest total change in the
predicted class probabilities for the testing sources. To explain
how we implement these heuristics, we first revisit the RF
classifier. For each of B bootstrap samples from the training
set, we build a decision tree, θb, which predicts the class of each
object from its feature vector, x. The RF estimate of probability
of class y is simply the empirical proportion,

P̂RF(y|x) = 1

B

B∑
b=1

θb(y|x), (2)

of the B trees that predict class y. Additionally, the RF provides a
measure of the proximity of any two feature vectors with respect
to the ensemble of decision trees, defined as

ρ(x′, x) = 1

B

B∑
b=1

I (x ∈ Tb(x′)), (3)

which is the proportion of trees for which the two objects x
and x′ fall in the same terminal node, where I (·) is a Boolean
indicator function, which is 1 when the statement is true and
0 if it is false. Here, we use the notation Tb(x′) to denote the
terminal node of feature vector x′ in tree b.

Heuristically, sample selection bias causes problems in the
building of a classifier principally because large-density regions
of testing data are not well represented by the training data.
Our first AL selection procedure uses this heuristic argument to
select the testing point, x′ ∈ U , whose feature density is most
undersampled by the training data, as measured by

S1(x′) =
∑

x∈U ρ(x′, x)/NTest∑
z∈L ρ(x′, z)/NTrain

, (4)

which is the ratio of the average proximity measure for x′
in the testing (U) to the training (L) set. The expression∑

x∈U ρ(x′, x)/NTest, is the average, over the trees in the forest,
of the proportion of testing data with which x′ shares a terminal
node. Thus, the ratio in Equation (4) is large only for testing
data that reside in regions of feature space with relatively high
testing set density compared to training set density.

Our second AL selection criterion is to choose the testing
example, x′ ∈ U , that maximizes the total amount of change
in the predicted probabilities for the testing data. This is a
reasonable metric because it says that we will only spend time
manually annotating the testing data whose labels most affect the
predicted classifications. To achieve this, we create a selection

17 Classifier variance measures the variability in a classifier with respect to the
actual training set used, classifier bias is the amount of discrepancy between
the true labels and the expected prediction of a classifier (averaged over all
possible training sets), and label noise is the amount of error in the training set
labels.
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metric that attempts to choose the x′ that maximizes the total
change, over the testing set, of the RF probability vectors, as
measured using the �1 norm.18 An approximate solution to this
problem is to choose the testing data points that maximize

S2(x′) =
∑

x∈U ρ(x′, x)(1 − maxy P̂RF(y|x))∑
z∈L ρ(x′, z) + 1

, (5)

where the RF probability, P̂RF(y|x), is defined in Equation (2),
and maxy P̂RF(y|x) refers to the maximum of the class probabili-
ties for feature vector x. In the Appendix, we work out the details
of deriving Equation (5) from the heuristic of selecting testing
points whose inclusion in the training set maximally affects the
total change of the RF predicted probabilities over U .

The key elements to Equations (4) and (5) are (1) the
testing set average proximity, represented by

∑
x∈U ρ(x′, x), is

in the numerator, and (2) the training set average proximity,
represented by

∑
z∈L ρ(x′, z), is in the denominator. This means

that we choose instances that are in close proximity to many
testing points and are far from any training data, thereby
reducing sample selection bias. In addition, S2 is a weighted
version of S1 with the RF prediction uncertainty, represented
by 1 − maxy P̂RF(y|x), in the numerator. This means that S2
gives higher weight to those testing points that are difficult to
classify, causing the algorithm to focus more attention along
class boundaries or other poorly identified regions of feature
space, which should lead to better performance.

3.3.2. Batch-mode Active Learning

In typical AL applications, queries are chosen sequentially.
However, in most astronomical applications, it makes more
sense to query several testing set objects at once, in batch mode;
for instance, in a typical astronomical observing run, multiple
objects are queued for follow-up observation. In classifying
variable stars from the ASAS survey (Section 6), we determine
that the best use of users’ time is to supply them with dozens of
sources to label at one sitting.

The challenge with batch-mode AL is to determine how to
best choose multiple testing instances at once. Selecting the top
few candidates is typically suboptimal because those objects
generally lie in the same region of feature space (as is obvious
from analyzing the criteria in Equations (4) and (5)). Heuristic
methods have been devised that create diversity within batches
of AL samples (e.g., Brinker 2003 for support vector machines
(SVMs)). In our use of AL, we sample batches of AL samples by
treating the criterion function as a probability sampling density,
i.e., P(select x′) ∝ S1(x′). In Section 4 we compare this density
method, which we call AL-d, to a method that selects the top
candidates on each AL iteration, which we refer to as AL-t.

3.3.3. Crowdsourcing Labels

Most AL papers assume that labels can be found, without
noise, for any queried data point. In typical astronomical
applications, this will not be the case. For instance, after follow-
up observations of an object, its true nature might still be
difficult to ascertain and will often remain unknown. Indeed, in
classifying variable stars, users will sometimes have difficulty
in obtaining the true class of an object, especially for noisy or
aperiodic light curves. This causes two complications in the AL
process:

18 The �1 norm is defined as ||x||1 = ∑
j |xj |.

1. some queried sources will still have an unknown label after
manual classification and

2. a few sources will be annotated with an incorrect label.

The first difficulty means that we expect to receive user labels
for only a fraction of the queried sources; to avoid wasting costly
user time, we attempt to select AL sources that users will have
a higher probability of successfully labeling (in Section 3.3.4
we describe how this is achieved by using a cost function).
To overcome the second complication, we use crowdsourcing,
where several users are presented with the same set of AL
sources. The idea behind crowdsourcing is that by using the
combined set of information about each object from multiple
users, we are able to suppress noise in the manual labeling
process.

A difficulty in crowdsourcing is in simultaneously predicting
the best label and judging the accuracy of each annotator from
a set of user responses. Users are likely to disagree on some
objects, so determining a true label can be difficult. However,
because each annotator has a different skill level, we should give
more credence to the labels of the more adept users in deciding
on a label. In the AL paper of Donmez et al. (2009), a novel, yet
simple method called IEThresh was introduced to filter out the
less-adept users in crowdsourcing labels. Their basic approach
is to initialize each user with the same prior skill level. Then,
as the AL iterations progress, users whose responses agree with
the consensus votes of the crowd are given higher “reward.” The
skill level of each user is determined by the upper confidence
interval (UI) of the mean reward of all their previous labels. For
each subsequent iteration, only those users whose UIs are higher
than ε times the UI of the best annotator are included in the vote
for the class of that object. Even if a particular user’s label is
not used in a vote, their reward level can change, meaning that
users are able to drift in and out of the decision-making process
over time.

In Section 6, we use the IEThresh algorithm with ε = 0.85
to crowdsource labels for the ASAS data set. In addition, for
a source to be included in the training set, we require that at
least 70% of users who looked at the source return a label. This
strict policy is implemented so that only the most confident AL
sources are moved to the training set so as to avoid including
incorrectly labeled objects.

3.3.4. Cost of Manual Labeling

Standard AL methods assume that the cost of attaining a label
is the same for every data point and thus aim to minimize the total
number of queries performed (or equivalently achieve the lowest
error rate for a given number of queries). This assumption is not
valid for the variable star classification problem, for a variety
of reasons. First, higher signal-to-noise light curves with larger
number of epochs will be, on average, easier to manually label
than sparser, noisier light curves. Second, a star that has been
observed and cataloged by multiple surveys (for instance, it is
in the Sloan Digital Sky Survey, SDSS, footprint) will have
more archival data with which to determine its true class. Third,
depending on its coordinates, a star may or may not be readily
available for spectroscopic follow-up. To avoid wasting user
time on impossible-to-classify objects, these factors must be
taken into account when choosing AL samples.

In applying AL to variable star classification, we treat the
cost as a multiplicative factor on the querying criterion. That is,
the AL function is S(x′) = S1(x′)(1 − C(x′)), where the cost
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function, C(x′), is

C(x′) = P(x′ cannot be manually labeled |x′ is queried), (6)

i.e., the cost function is the probability that a user (or set of
users) cannot actually determine a label for that source, given
that the user was given that object to manually study.19 High cost
on a source means that we avoid querying that object. Inclusion
of a cost function deters us from wasting valuable user time
on objects that are too noisy or sparsely sampled to determine
their science class. In Section 6, we describe how we model
the cost and derive an empirical cost estimate for each object
in the ASAS testing set.

3.3.5. Stopping Criterion

Insofar as the aim of AL is to improve the performance of a
classifier to the greatest extent possible with as little effort as
possible, we must determine when to stop manually labeling
sources. A reasonable rule of thumb is to stop querying data
for AL when the effort needed to acquire the new labels is
larger than the benefit that those labels have on the classifier’s
performance. However, it is often difficult to compare these
gains and losses, especially for problems where ground truths
do not exist with which to judge the classifier performance, nor
good metrics to measure gains and losses. Alternatively, one can
track the intrinsic stability of the classifier (e.g., by measuring its
average confidence over the testing set) and stop when a plateau
is reached (cf. Vlachos 2008; Olsson & Tomanek 2009). In
our implementation of AL, we choose to run iterations until
the performance of the classifier levels off (as judged by a few
intrinsic and extrinsic metrics, see Section 6).

4. EXPERIMENT: OGLE AND HIPPARCOS
VARIABLE STARS

In this section, we test the effectiveness of the various methods
proposed in Section 3 in combating sample selection bias for
variable star classification. Starting with the set of 1542 well-
understood, confidently labeled variable stars from Debosscher
et al. (2007), we randomly draw a sample of 721 training
sources according to a selection function, Γ, that varies across
the amplitude–period plane as

Γ(x) ∝ log(period x) · log(amplitude x)1/4. (7)

This selection function is devised so that the training set under-
samples short-period, small-amplitude variable stars. The resul-
tant training and testing sets are plotted in the amplitude–period
plane, along with the training set selection function, in
Figure 4.20

Distributional mismatch between the training and testing sets
causes an off-the-shelf RF classifier to perform poorly for short-
period small-amplitude sources. The median overall error rate
for an RF classifier trained on the training data and applied to
classify the testing data is 29.1%. This is 32% larger than the
10-fold cross-validation error rate of 21.8% on the entire set of
1542 sources (see Richards et al. 2011b; the error rate quoted

19 Other definitions of the cost are possible, such as the time necessary for a
user to manually label a source or the user disagreement rate. As formulated,
our “cost” function measures the lack of capability of the user in manually
labeling each particular source.
20 All of the code and data used to generate the results and figures in Section 4
are available for download at
http://lyra.berkeley.edu/∼jwrichar/arXiv1106.2832_sec4.tar.gz.

here is slightly lower due to the addition of new features). The
average error rate for testing set objects with period smaller than
0.5 days is 36.1%.

To treat the sample selection bias, we use each of the following
methods.

1. Importance weighting. A single RF is built on the training
set, with class-wise21 importance sampling weights defined
as the ratio of the testing set to training set class propor-
tions.22

2. Self-training and CT. Each algorithm is repeated for 100
iterations, where on each iteration the most confident three
testing set objects are added to the training set. For CT, we
use both random feature splits (CT) and a split between
periodic and non-periodic features (CT.p).

3. Active learning. Using the metrics in Equations (4) (AL1)
and (5) (AL2), we perform 10 rounds of AL, with batch
size of 10 objects selected on each round. The classifier
is retrained on the available labeled data after each round.
Testing set objects are selected for manual labeling either
by treating the selection metrics as probability distributions
(AL1.d, AL2.d) or by taking the top candidates (AL1.t,
AL2.t). We also compare to an AL method that selects
objects completely at random (AL.rand).

For each of the AL approaches, we evaluate the error rate
only over those testing set objects that are not queried by the
algorithm. This way we do not artificially decrease the error
rate by evaluating sources whose labels have been manually
obtained. Note that for this experiment, we have assumed that
the true labels can be manually obtained with no error.

Distributions of the classification error rates for each method,
obtained over 20 random draws of training data from Γ, are
plotted in Figure 5. The largest improvement in error rate is
obtained by both AL1.t and AL2.t (25.5% error rate), followed
by AL2.d (25.9%). Quoted results for the AL methods are after
querying 100 training set objects (10 AL batches of size 10).
AL1.d lags well behind the performance of these other AL
querying functions. For comparison, the AL.rand approach of
randomly querying observations for manual labeling does not
perform well compared to any of the principled AL approaches.
None of the other methods produces a statistically significant
decrease in the error rate of the classifier. Indeed, the ST and
CT approaches cause an increase in the overall error rate. IW
produces a slight decrease in the error rate, by an average of
0.4%, which represents three correct classifications.

Figure 6 depicts the error rate of the AL approaches as a
function of the total number of objects queried. Between the
AL1 and AL2 metrics, there is no clear winner, but once large
numbers of samples have been observed AL2.d and AL2.t
perform better than their AL1 counterparts. We also find in
Figure 6 that the AL.d approaches—where objects are drawn
with probability proportional to the AL criterion—perform
worse than the approaches that always select the top AL
candidates. This is unexpected, as selecting only the top methods
in batch mode produces samples of objects from the same
region in feature space, causing an inefficient use of follow-
up resources. However, this observed better performance by the

21 In importance weighting, ratios of feature densities are typically used as the
weights. However, in the R randomForest code that we use, weights may
only be defined by class.
22 Since we know the true class of each object, we are able to use this
information to derive the weights. In a real problem, the feature or class
densities would need to be estimated.
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Figure 4. Training (black �) and testing (red X) data for the simulated example using OGLE and Hipparcos data. The 771 training data were randomly sampled from
the original 1542 sources according to the sampling distribution, Γ, plotted in color. Using this sampling scheme, we create sample selection bias by oversampling
long-period, high-amplitude stars and undersampling the short-period, low-amplitude sources.

(A color version of this figure is available in the online journal.)
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Figure 5. Error rates, evaluated over the testing set, of 10 different methods applied to the OGLE and Hipparcos simulated data set of 771 training and 771 testing
samples. Due to sample selection bias, the default Random Forest (RF-Def.) is ineffective. Importance weighting (IW) improves upon the RF only slightly. The
co-training and self-training methods produce an increased error rate. Only the active learning approaches yield any significant gains in the performance of the
classifier over the testing set. Note that the AL error distributions are somewhat wider than for other methods because the AL methods are each evaluated over only
the 671 testing data points that were not in the active learning sample. No large difference is found between the two AL metrics, but both outperform the random
selection of AL samples. Each boxplot displays the 25th and 75th quantiles as the edges of the boxes, with the center line denoting the median and the whiskers
extending to the minimum and maximum.

(A color version of this figure is available in the online journal.)
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Figure 6. Performance of the active learning approaches for the OGLE and Hipparcos classification experiment. Both AL1 and AL2 dominate the performance of
AL.rand, but there is no clear winner between these two approaches. AL1.t performs best for the first few iterations, but is overtaken by AL2.t after 100 samples are
queried. AL2.d performs significantly better than AL1.d after about 50 iterations. For each method, the mean error rate—evaluated over the testing set not included in
the AL sample—is plotted along with ±1 standard error bands.

(A color version of this figure is available in the online journal.)

Table 1
Error Rates, in %, Over All Testing Data, and for those Testing Data within Selected Science Classes in the OGLE and Hipparcos Experiment

Science Class NTrain NTest RFa IW ST CT CT.p AL1.db AL1.tb AL2.db AL2.tb AL.randb

All 771 771 28.9 28.5 29.6 30.0 29.4 27.3 25.5 25.9 25.5 28.0

Delta Scuti 25 89 15.7 15.7 15.7 15.7 14.6 15.4 14.0 15.6 21.3 12.3
Beta Cephei 9 30 95.0 91.7 96.7 96.7 96.7 90.7 87.5 88.9 84.0 90.7
W Ursa Maj. 16 43 40.7 36.0 51.2 60.5 61.6 27.0 27.3 27.1 19.2 30.1

Mira 121 23 8.7 8.7 8.7 8.7 4.3 9.1 8.7 8.7 8.7 9.8
Semi-Reg. PV 33 9 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 33.3 35.4
Class. Cepheid 122 68 2.9 2.9 1.5 1.5 1.5 3.1 1.5 1.6 1.5 2.8

Notes. The first set of classes are those most underrepresented in the training data. The second set are those most overrepresented in the training data. Several methods
for sample selection bias reduction are compared.
a Default Random Forest.
b Errors evaluated over all objects not in the active learning sample.

AL.t strategies may be an artifact of using small batch sizes (10
objects); in the application of AL to ASAS, we typically use
batch sizes >50.

AL is able to significantly improve the classification error
rate on the set of OGLE and Hipparcos testing data because it
selectively probes regions of feature space where class labels,
if known, would most influence the classifications of a large
number of testing data. For the OGLE and Hipparcos variable
star data, sets of low-amplitude, short-period stars are selected
by the AL algorithm, which in turn improve the error rates within
the science classes populated by these types of stars, without
increasing error rates within the classes that are highly sampled
by the training set. We make this more concrete in Table 1, where
the classifier error rates within a few select classes are shown.
The AL classifiers show substantial improvement, on average,

over the default RF for the classes which are most undersampled
by the training data with no increase in the error rates within the
classes that are most overrepresented in the training set.

5. ALLSTARS: ACTIVE LEARNING LIGHT
CURVE WEB INTERFACE

We developed the ALLSTARS (Active Learning Light curve
classification Service) Web-based tool as the crowdsourcing
user interface to our active learning software. For each AL
iteration, this Web site displays to a user the set of AL-queried
sources. For each source, users are given access to eight external
Web resources in addition to several feature space visualizations
to facilitate manual classification of that source. A screen shot
of the ALLSTARS Web interface is in Figure 7. Additionally,

11
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Figure 7. Screen shot of the ALLSTARS Web interface. Here, a Mira variable from the ASAS survey has been queried by the user. From top to bottom, the user is
provided a (folded) ASAS light curve of the source, its location in amplitude–period space, its J − H vs. H − K, and its B − J vs. J − K colors. At the top of the page
are several tabs which link to external resources. On the left margin the user can make and submit a classification for the source.

(A color version of this figure is available in the online journal.)

for each source a user may make a science classification, a
rating of their confidence, a data quality classification, can tag
the source as interesting, and also may provide comments and
store a manually determined period. This set of information is
used to determine the class of each of the AL queried sources
and to decide which subset of those sources to add to the
training set.

ALLSTARS was built using a combination of javascript,
PHP, and Python which accesses a MySQL database. Back-
end feature generators, AL, and classification algorithms were
implemented using a combination of Python, C, and R. The in-
teractive plots are generated using the Flot jQuery23 package.

23 Flot is a Javascript plotting library downloadable from
http://code.google.com/p/flot/.
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included on subsequent iterations of the algorithm. Cyan triangles signify variable stars that were queried, but for which fewer than 65% of users were able to classify.
Black diamonds and red squares are the original training and testing data, as in Figure 1.

(A color version of this figure is available in the online journal.)

External resources made available for classifying each source
are as follows.

1. NED Extinction Calculator: http://ned.ipac.caltech.edu/
forms/calculator.html.

2. SDSS DR7 Explorer: http://cas.sdss.org/dr7/en/tools/
explore/obj.asp.

3. SDSS DR7 Navigate Tool: http://cas.sdss.org/dr7/en/tools/
chart/navi.asp.

4. SIMBAD Query by coordinates: http://simbad.u-strasbg.fr/
simbad/sim-fcoo.

5. 2MASS Interactive Image (J band): http://irsa.ipac.caltech.
edu/applications/2MASS/IM/interactive.html.

6. SkyView Original DSS image: http://skyview.gsfc.nasa.gov/
cgi-bin/query.pl.

7. NVO DataScope: http://heasarc.gsfc.nasa.gov/cgi-bin/vo/
datascope/init.pl.

8. DotAstro LightCurve Warehouse: http://dotastro.org/.

The initial page for a source includes two color–color plots:
B − J versus J − K and J − H versus H − K, using colors from
the SIMBAD source which best matches the location of the given
source. The source is also shown on a log-amplitude versus log-
period plot, with sources from the initial Hipparcos and OGLE
training set displayed in the background. These sources are
discriminated using 21 different colors which represent most

science classes to which the user may classify. An interactive
magnitude versus time light curve plot is also shown, with
options to display it either unfolded, folded on any of the
three most significant periods, or folded using a user-entered
or zoom-box generated period. The chosen period also updates
a black circle on the amplitude–period plot. Also available on
this initial page are the top three algorithm classifications and
their confidences.
ALLSTARS can be used to display any source available in the

http://dotAstro.org Lightcurve Warehouse, allowing a registered
user to make a science classification, assess data quality, note
a manually found period, or add additional comments for that
source. This Web interface is an extremely useful tool, not only
for performing AL for variable star classification, but also for
following up on outliers discovered via unsupervised learning,
for finding typical examples of light curves of desired science
classes, and to manually search through subsets of thedotAstro
data warehouse.

6. APPLICATION OF ACTIVE LEARNING TO
CLASSIFY ASAS VARIABLE STARS

We use the AL methodology presented in Section 3.3 to
classify all of ACVS (see Section 2.1) starting with the combined
Hipparcos and OGLE training set. We employ the S2 AL query
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Figure 9. Value of the active learning query function, S2, before the first iteration (left) and the ninth iteration (right) of active learning. For each variable star, the
radius of the data point is proportional to S2. After including actively learned training samples from eight AL iterations, the average S2 value is markedly decreased.
This occurs because regions of feature space that were originally undersampled by the training set are filled in by AL data, making the training and testing distributions
less discrepant.

(A color version of this figure is available in the online journal.)
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Figure 10. Left: percent agreement of the Random Forest classifier with the ACVS labels, as a function of AL iteration. Right: percent of ASAS data with confident
RF classification (posterior probability >0.5), as a function of AL iteration. In the percent agreement with ACVS metric, performance increases dramatically in the
first couple of iterations and then slowly levels off. In the percent of confident RF labels, the performance increases steadily.

function (Equation (5)), treating it as a probability distribution
(AL2.d in Section 4), and selecting 50 AL candidates on each
of nine iterations (except for the first iteration, where 75 AL
candidates were chosen). For a cost function, we employ data
from our first AL iteration to train a logistic regression model
to predict cost as a function of freq_signif, the statistical
significance of the estimated first frequency.24

24 This will bias us away from selecting aperiodic sources, such as T Tauri.
However, this is a reasonable approach because (1) there are simply too many

A total of 11 users classified sources using the ALLSTARSWeb
interface. To help train new users, the beginning of each iteration
was populated with 14–18 high-confidence sources.25 A total of
615 sources were observed by users (this represents 1.2% of the

aperiodic sources that are impossible to classify manually and (2) in AL we
draw a random sample from the S2(x′) ∗ (1 − C(x′)) meaning that we are still
very likely to select some interesting aperiodic sources with high S2 score.
25 So as to not throw away useful annotations, these classifications were used
along with the AL samples.
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Figure 11. Distribution of the Random Forest maxy P̂RF(y|x) values for the ASAS data, as a function of AL iteration. For the default RF classifier, most values are
smaller than 0.4, meaning that the classifier is confident on very few sources. As the AL iterations proceed, much of the mass of the distribution gradually shifts toward
larger values. The distribution slowly becomes multimodal: for a slim majority of sources, the algorithm has high confidence, while for a substantial subset of the data
the algorithm remains unsure of the classification.

(A color version of this figure is available in the online journal.)

ACVS catalog). The average user classified 137 sources, with
a range from 21 to 474. User responses were combined using
the crowdsourcing methodology in Section 3.3.3. This led to
the inclusion of 415 ASAS sources (67% of all sources that
were studied manually, representing 0.8% of the ACVS catalog)
into the training set. In Figure 8 we plot the AL queried data
from one iteration in the amplitude–period plane, highlighting
those objects which were selected for inclusion in the training
set. Figure 9 depicts, in period–amplitude space, how the S2
criterion changes from the first to the last AL iteration: inclusion
of the AL samples markedly decreases the average S2 value
and almost completely diminishes the S2 value for short-period,
high-amplitude variables.

As described in Section 2.1, the default RF only attains
a 65.5% agreement with the ACVS catalog. After nine AL
iterations, this jumps to 79.5%, an increase of 21% in agreement
rate. The proportion of ACVS sources in which we are confident
(which we define as those objects having RF probability �0.5
for a single class) climbs from 14.6% to 42.9%. This occurs
because the selected ASAS data that are subsequently used as
training data fill in sparse regions of training set feature space,
thus increasing the chance that ASAS sources are in close
proximity to training data and increasing the RF confidence.
As a function of the AL iteration, the ACVS agreement rate
and the proportion of confident classifications achieved by
our classifier are plotted in Figure 10. The full evolution
of the distribution of maxy P̂RF(y|x) is plotted in Figure 11.
As the iterations proceed, power is shifted from low to high
probabilities.

In Figure 12, we plot a table of the correspondence be-
tween our classifications after nine AL iterations and the
ACVS class. Compared to Figure 3, the AL predictions more
closely match the ACVS labels across most science classes.
For example, correspondence in the Classical Cepheid class
rose from 24% to 60%, RR Lyrae, FM from 79% to 93%,

Delta Scuti from 22% to 62%, and Chemically Peculiar from
1% to 70%. We have also identified a number of candidates
for more rare classes, such as 119 RV Tauri, 192 Pulsating
Be stars, and 16 T Tauri. Additionally, the number of RR
Lyrae, DM candidates, which was artificially high for the orig-
inal RF classifier, has diminished from 9114 to 468. A sum-
mary of our ASAS classification AL, by class, is given in
Table 2.

As a consequence of performing AL on the ASAS data set,
we were able to detect the presence of three additional science
classes of red giant stars. These classes were discovered by
one of the AL users upon realizing that many of the queried
pulsating red giant stars were low-amplitude with 10–75 day
periods. A literature search revealed that these stars naturally
break into small-amplitude red giant A and B subclasses (SARG
A and B, see Wray et al. 2004). Furthermore, the presence of
a red giant subclass of long secondary period (LSP, Soszyński
2007) stars was discovered and added. Via AL, our classifier
identified 3811 SARG A, 8748 SARG B, and 5896 LSP
candidates.

Our final experiment compares our classification results
using AL with an RF classifier trained directly on the ACVS
labels. The aim of this study is to determine whether our
classifier’s 20.5% disagreement with ACVS is due principally
to inadequacies in our classifier or because of mistakes and
inconsistencies in the ACVS labels. Using a five-fold cross-
validation on the ACVS labels, an RF classifier finds a 90%
agreement rate with ACVS. Hence, half of our discrepancy
with ACVS can be explained by inconsistencies in the ACVS
labels. Further, our use of a finer taxonomy (where, e.g.,
we can correctly identify some ACVS Miras as being Semi-
Regular PVs) causes more discrepancies between the AL and
ACVS classifiers. Additionally, within the classes in which
the AL classifier has its poorest agreement with ACVS, the
ACVS RF also does not do well: for Pop. II Cepheids, the
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Figure 12. Top: classifications of the active learning RF classifier after nine iterations of AL. Compared to Figure 3, there is a closer correspondence to the ACVS
class labels (y axis). Notably, the RRL, DM artifact has largely disappeared. Bottom: same for only sources with classification probability >0.5. Here, the agreement
is even higher. The main confusion is in classifying ACVS RR Lyrae, FO, and Delta Scuti as W Ursae Maj.

(A color version of this figure is available in the online journal.)

ACVS RF finds only 37% agreement (compared to 0%), for
Multi. Mode Cepheids it finds 45% agreement (29%), and
in Beta Cepheid it finds 0% agreement (0%). This evidence
points to the conclusion that the disagreement of our AL

classifier to ACVS is due more to lack of self-consistency in
ACVS (due either to mistakes in ACVS or absence of crucial
features in our classifier) than to any shortcomings in the AL
methodology.
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Table 2
Results, by Class, of Performing Active Learning to Classify

ASAS Variable Stars

Science Class NTrain NALAdd
a NRF

b NAL
c

a. Mira 144 20 3590 3167
b1. Semi-Reg. PV 42 59 5796 9279
b2. SARG A 0 15 0 3811
b3. SARG B 0 29 0 8748
b4. LSP 0 54 0 5896
c. RV Tauri 6 5 0 119
d. Classical Cepheid 191 16 327 492
e. Pop. II Cepheid 23 0 97 5
f. Multi. Mode Cepheid 94 4 162 270
g. RR Lyrae, FM 124 26 1714 1653
h. RR Lyrae, FO 25 14 51 314
i. RR Lyrae, DM 57 3 9114 468
j. Delta Scuti 114 19 821 1743
k. Lambda Bootis 13 0 0 0
l. Beta Cephei 39 0 0 0
m. Slowly Puls. B 29 0 0 0
n. Gamma Doradus 28 0 0 0
o. Pulsating Be 45 4 10 192
p. Per. Var. SG 55 0 1660 371
q. Chem. Peculiar 51 14 27 460
r. Wolf–Rayet 40 0 6684 1393
s. T Tauri 14 4 752 16
t. Herbig AE/BE 15 0 4 1
u. S Doradus 7 0 0 0
v. Ellipsoidal 13 0 0 0
w. Beta Persei 169 25 2111 3062
x. Beta Lyrae 145 37 11960 2633
y. W Ursae Maj. 59 66 5244 6031

Notes.
a ASAS sources added to the training set after eight AL iterations.
b Number of ASAS sources classified by the default Random Forest.
c Number of ASAS sources classified by the RF after eight AL iterations.

7. CONCLUSIONS

We have described the problem of sample selection bias
(a.k.a. covariate shift) in supervised learning on astronomical
data sets. Though supervised learning has shown great promise
in automatically analyzing large astrophysical databases, care
must be taken to account for the biases that occur due to
distributional differences between the training and testing sets.
Here, we have argued that sample selection bias is a common
problem in astronomy, primarily because the subset of well-
studied astronomical objects typically forms a biased sample
of intrinsically brighter and nearby sources. In this paper, we
showed the detrimental influence of sample selection bias on
the problem of supervised classification of variable stars.

To alleviate the effects of sample selection bias, we proposed
a few different methods. We find, on a toy problem using Hip-
parcos and OGLE light curves, that AL performs significantly
better than other methods such as IW, CT, and self-training.
Furthermore, we argue that AL is a suitable method for many
astronomical problems, where follow-up resources are usually
available (albeit with limited availability). AL simply gives a
principled way to determine which sources, if followed up on,
would help the supervised algorithm the most. We show that in
classifying variable stars from the ASAS survey, AL produces
hugely significant improvements in performance within only a
handful of iterations. Our ALLSTARS Web interface was critical
in this work, as was the participation of knowledgeable (“trained
expert”) users and sophisticated crowdsourcing methods.

One common cause of sample selection bias in variable
star classification is that data from older surveys—whose
sources have typically been observed over many epochs— are
commonly used to classify data from ongoing surveys, whose
sources contain many fewer epochs of observation. Additionally,
the differing cadences between surveys can be debilitating when
attempting to utilize data from older surveys to classify within
new surveys. In addition to AL, other viable approaches to this
particular problem are those of noisification, where the training
set light curves are artificially modified to resemble those of the
testing set, and denoisification, where each testing light curve is
matched to a (clean) training light curve. These techniques are
currently being studied by J. P. Long et al. (2011, in preparation).

Our discussion of sample selection bias has revolved around
the use of non-parametric tools (and in particular RFs). For the
types of complicated classification and regression problems in
astrophysics, flexible non-parametric methods are usually nec-
essary. However, in many applications, parametric models are
appropriate. In this parametric setting, there are several meth-
ods of overcoming sample selection bias, including Bayesian
experimental design (Chaloner & Verdinelli 1995).

We conclude by emphasizing the importance of treating
sample selection bias for future petabyte-scale surveys such
as Gaia and LSST. These upcoming surveys will collect data at
such massive rates that rare, unexpected, and yet-undiscovered
sources will be prevalent in their data streams. Furthermore,
due to superior optics and cameras, they will probe different
populations of sources than observed by any previous mission.
For these reasons, any conceivable training set constructed prior
to the start of these surveys will have significant sample selection
bias. Through AL, we now have a principled way to queue
sources for targeted follow-up in order to augment training sets
to optimize the performance of machine-learned algorithms and
to maximize the science that these missions produce.
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APPENDIX

DERIVATION OF ACTIVE LEARNING
RANDOM FOREST METRIC

In this Appendix, we derive Equation (5) as an AL selection
criterion function. Our starting point is to select instances that
maximize the total amount of change in the RF predicted
probabilities of the testing data x ∈ U . Assuming we have a
labeled training set L, the total amount of change in the testing
RF probabilities due to the addition of x′ to L is

S2(x′) =
∑
x∈U

||P̂RF,L∪x′(y|x) − P̂RF,L(y|x)||1, (A1)

where we use the notation P̂RF,L(y|x) to denote the RF probabil-
ity that the label for instance x is y, where the RF is trained on the
set L. To simplify notation, we rewrite S2(x′) = ∑

x∈U Δ(x′, x),
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where

Δ(x′, x) = ||P̂RF,L∪x′(y|x) − P̂RF,L(y|x)||1 (A2)

=
C∑

y=1

|P̂RF,L∪x′(y|x) − P̂RF,L(y|x)|, (A3)

where C is the total number of classes. Equation (A3) follows
from the definition of �1 norm.

From Equation (2), P̂RF,L(y|x) = 1
B

∑
b θb,L(y|x), where θb,L

is the bth decision tree in the RF built on training set L. Now,
assuming that the addition of x′ to L does not change the
structure of any of the B decision trees,26 we can compute the
change in the decision tree estimate in terminal node Tb(x′) of
tree b. Let Y (x′) denote the true label of source x′. In adding x′
to L, decision tree b changes to

θb,L∪x′ (y|x)

=

⎧⎪⎨
⎪⎩

nb(x′)θb,L(y|x) + I (Y (x′) = y)

nb(x′) + 1
if x ∈ Tb(x′)

θb,L(y|x) if x /∈ Tb(x′),
(A4)

where nb(x′) is the number points in L that fall in Tb(x′) and
I (·) is a boolean indicator function. The way to understand
Equation (A4) is that the empirical probability estimates in the
terminal node Tb(x′) update to include Y (x′), while the rest of
the terminal nodes remain unchanged.

Therefore, if x ∈ Tb(x′), then the amount of change in the
probability estimate is

θb,L∪x′ (y|x) − θb,L(y|x) = nb(x′)θb,L(y|x) + I (Y (x′) = y)

nb(x′) + 1
− θb,L(y|x) (A5)

= I (Y (x′) = y) − θb,L(y|x)

nb(x′) + 1
, (A6)

while in all other terminal nodes of b, the change is 0.
Using the result in Equation (A6) for tree b, we can compute

the total amount of change, Δ(x′, x), across the entire RF by
averaging the response over the B trees:

Δ(x′, x) =
C∑

y=1

∣∣∣∣∣∣
1

B

∑
b:x∈Tb(x′)

I (Y (x′) = y) − θb,L(y|x)

nb(x′) + 1

∣∣∣∣∣∣ ,
(A7)

where nb(x′) and θb,L(y|x) are quantities computed for each
of the B trees. However, these entities are costly to store for
large B and are not available in most RF implementations. To
compute Equation (A7) directly from the standard RF output
(e.g., proximity matrices and predicted probabilities), we need
two approximations: (1) nb(x′) = ∑

z∈L ρ(x′, z), i.e., replace
the number of objects in Tb(x′) by the average number over
the B trees and (2) θb,L(y|x) = P̂RF,L(y|x), i.e., approximate

26 In reality, the structure of the trees may change, but analyzing the effect on
the RF of adding x′ is intractable if the trees are allowed to change
substantially.

the probability vector of each tree by the RF probability. Using
these approximations we have that

Δ(x′, x) ≈
C∑

y=1

∣∣∣∣∣∣
1

B

∑
b:x∈Tb(x′)

I (Y (x′) = y) − P̂RF,L(y|x)∑
z∈L ρ(x′, z) + 1

∣∣∣∣∣∣
(A8)

= 1∑
z∈L ρ(x′, z) + 1

C∑
y=1

×
∣∣∣∣∣

1

B

B∑
b=1

I (x ∈ Tb(x′))
(
I (Y (x′) = y) − P̂RF,L(y|x)

)∣∣∣∣∣
(A9)

= 1∑
z∈L ρ(x′, z) + 1

C∑
y=1

∣∣I (Y (x′) = y) − P̂RF,L(y|x)
∣∣

× 1

B

B∑
b=1

I (x ∈ Tb(x′)) (A10)

However, we cannot directly compute this equation because
do not know a priori what the value of Y (x′) is. Luckily, we can
find a lower bound on the term in Equation (A10) that includes
Y (x′) and use this to produce a conservative estimate of Δ(x′, x).
Our lower bound is

C∑
y=1

|I (Y (x′) = y) − P̂RF,L(y|x)| = (1 − P̂RF,L(Y (x′)|x))

+
∑

y �=Y (x′)

P̂RF,L(y|x)

� 1 − P̂RF,L(Y (x′)|x)

� 1 − max
y

P̂RF,L(y|x).

Therefore, the smallest possible change in the RF probabilities
is given by

Δ(x′, x) = 1 − maxy P̂RF,L(y|x)∑
z∈L ρ(x′, z) + 1

1

B

B∑
b=1

I (x ∈ Tb(x′)), (A11)

which is a metric that can be computed.
Now substituting the result of Equation (A11) into

Equation (A1), we have that

S2(x′) =
∑
x∈U

1 − maxy P̂RF,L(y|x)∑
z∈L ρ(x′, z) + 1

1

B

B∑
b=1

I (x ∈ Tb(x′))

(A12)

=
∑
x∈U

1 − maxy P̂RF,L(y|x)∑
z∈L ρ(x′, z) + 1

ρ(x′, x), (A13)

which is the AL criterion, S2, presented in Equation (5).
Finally, for completeness we note that other approximations

can be derived. For example, if the RF class probability estimate
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is modified from Equation (2) to be

P̂RF(y|x) =
∑B

b=1 nb(x)θb(y|x)∑B
b=1 nb(x)

, (A14)

where nb(x) is the number of training set objects sharing a
terminal node with x in tree b, then one is led to the selection
metric

S3(x′) =
∑
x∈U

B(1 − maxy P̂RF,L(y|x))

Bρ(x′, x) + N (x)
ρ(x′, x), (A15)

where N (x) = ∑
b nb(x).
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Debosscher, J., Sarro, L. M., López, M., et al. 2009, A&A, 506, 519
Donmez, P., Carbonell, J., & Schneider, J. 2009, in Proc. 15th ACM SIGKDD

Int. Conf. on Knowledge Discovery and Data Mining (New York: ACM),
259
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Wray, J. J., Eyer, L., & Paczyński, B. 2004, MNRAS, 349, 1059
Yan, R., Yang, J., & Hauptmann, A. 2003, in Ninth IEEE Int. Conf. on Computer

Vision, 516
Zadrozny, B. 2004, in Proc. Twenty-first Int. Conf. on Machine Learning (New

York: ACM), 114

19

http://dx.doi.org/10.1051/0004-6361/200810860
http://adsabs.harvard.edu/abs/2009A&A...506..411A
http://adsabs.harvard.edu/abs/2009A&A...506..411A
http://dx.doi.org/10.1111/j.1365-2966.2004.07429.x
http://adsabs.harvard.edu/abs/2004MNRAS.348.1038B
http://adsabs.harvard.edu/abs/2004MNRAS.348.1038B
http://dx.doi.org/10.1111/j.1365-2966.2010.16544.x
http://adsabs.harvard.edu/abs/2010MNRAS.405..987B
http://adsabs.harvard.edu/abs/2010MNRAS.405..987B
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1088/0004-6256/141/3/93
http://adsabs.harvard.edu/abs/2011AJ....141...93B
http://adsabs.harvard.edu/abs/2011AJ....141...93B
http://dx.doi.org/10.1088/0004-637X/712/1/511
http://adsabs.harvard.edu/abs/2010ApJ...712..511C
http://adsabs.harvard.edu/abs/2010ApJ...712..511C
http://dx.doi.org/10.1214/ss/1177009939
http://dx.doi.org/10.1016/0893-6080(95)00137-9
http://dx.doi.org/10.1086/383254
http://adsabs.harvard.edu/abs/2004PASP..116..345C
http://adsabs.harvard.edu/abs/2004PASP..116..345C
http://dx.doi.org/10.1086/518020
http://adsabs.harvard.edu/abs/2007ApJ...663..752D
http://adsabs.harvard.edu/abs/2007ApJ...663..752D
http://dx.doi.org/10.1051/0004-6361:20077638
http://adsabs.harvard.edu/abs/2007A&A...475.1159D
http://adsabs.harvard.edu/abs/2007A&A...475.1159D
http://dx.doi.org/10.1051/0004-6361/200911618
http://adsabs.harvard.edu/abs/2009A&A...506..519D
http://adsabs.harvard.edu/abs/2009A&A...506..519D
http://dx.doi.org/10.1111/j.1365-2966.2011.18575.x
http://adsabs.harvard.edu/abs/2011MNRAS.414.2602D
http://adsabs.harvard.edu/abs/2011MNRAS.414.2602D
http://dx.doi.org/10.1111/j.1365-2966.2008.13070.x
http://adsabs.harvard.edu/abs/2008MNRAS.386.1417G
http://adsabs.harvard.edu/abs/2008MNRAS.386.1417G
http://dx.doi.org/10.1051/0004-6361:20078625
http://adsabs.harvard.edu/abs/2008A&A...478..971H
http://adsabs.harvard.edu/abs/2008A&A...478..971H
http://dx.doi.org/10.1086/657607
http://adsabs.harvard.edu/abs/2010PASP..122.1415K
http://adsabs.harvard.edu/abs/2010PASP..122.1415K
http://dx.doi.org/10.1111/j.1365-2966.2008.13689.x
http://adsabs.harvard.edu/abs/2008MNRAS.389.1179L
http://adsabs.harvard.edu/abs/2008MNRAS.389.1179L
http://www.arxiv.org/abs/0912.0201
http://dx.doi.org/10.1088/0004-637X/721/1/456
http://adsabs.harvard.edu/abs/2010ApJ...721..456M
http://adsabs.harvard.edu/abs/2010ApJ...721..456M
http://dx.doi.org/10.1111/j.1365-2966.2011.18514.x
http://adsabs.harvard.edu/abs/2011MNRAS.414.1987N
http://adsabs.harvard.edu/abs/2011MNRAS.414.1987N
http://dx.doi.org/10.1051/0004-6361:20010085
http://adsabs.harvard.edu/abs/2001A&A...369..339P
http://adsabs.harvard.edu/abs/2001A&A...369..339P
http://adsabs.harvard.edu/abs/1997A&A...323L..49P
http://adsabs.harvard.edu/abs/1997A&A...323L..49P
http://adsabs.harvard.edu/abs/1997AcA....47..467P
http://adsabs.harvard.edu/abs/1997AcA....47..467P
http://adsabs.harvard.edu/abs/2000AcA....50..177P
http://adsabs.harvard.edu/abs/2000AcA....50..177P
http://adsabs.harvard.edu/abs/2001IAUCo.183...53P
http://adsabs.harvard.edu/abs/2002AcA....52..397P
http://adsabs.harvard.edu/abs/2002AcA....52..397P
http://adsabs.harvard.edu/abs/2005AcA....55..275P
http://adsabs.harvard.edu/abs/2005AcA....55..275P
http://dx.doi.org/10.1088/0004-637X/725/1/794
http://adsabs.harvard.edu/abs/2010ApJ...725..794Q
http://adsabs.harvard.edu/abs/2010ApJ...725..794Q
http://dx.doi.org/10.1088/0004-6256/137/4/3884
http://adsabs.harvard.edu/abs/2009AJ....137.3884R
http://adsabs.harvard.edu/abs/2009AJ....137.3884R
http://dx.doi.org/10.1111/j.1365-2966.2011.19768.x
http://dx.doi.org/10.1088/0004-637X/733/1/10
http://adsabs.harvard.edu/abs/2011ApJ...733...10R
http://adsabs.harvard.edu/abs/2011ApJ...733...10R
http://dx.doi.org/10.1088/0004-637X/724/2/1305
http://adsabs.harvard.edu/abs/2010ApJ...724.1305S
http://adsabs.harvard.edu/abs/2010ApJ...724.1305S
http://dx.doi.org/10.1016/S0378-3758(00)00115-4
http://dx.doi.org/10.1051/0004-6361/201014381
http://adsabs.harvard.edu/abs/2010A&A...522A..88S
http://adsabs.harvard.edu/abs/2010A&A...522A..88S
http://dx.doi.org/10.1086/513012
http://adsabs.harvard.edu/abs/2007ApJ...660.1486S
http://adsabs.harvard.edu/abs/2007ApJ...660.1486S
http://adsabs.harvard.edu/abs/2011AcA....61....1S
http://adsabs.harvard.edu/abs/2011AcA....61....1S
http://dx.doi.org/10.1524/stnd.2005.23.4.249
http://adsabs.harvard.edu/abs/2011BAAS...4315004S
http://adsabs.harvard.edu/abs/2011BAAS...4315004S
http://dx.doi.org/10.1051/0004-6361:20077300
http://adsabs.harvard.edu/abs/2007A&A...470..761T
http://adsabs.harvard.edu/abs/2007A&A...470..761T
http://dx.doi.org/10.1016/j.specom.2004.08.002
http://adsabs.harvard.edu/abs/1999AcA....49....1U
http://adsabs.harvard.edu/abs/1999AcA....49....1U
http://adsabs.harvard.edu/abs/1999AcA....49..223U
http://adsabs.harvard.edu/abs/1999AcA....49..223U
http://adsabs.harvard.edu/abs/1999AcA....49..437U
http://adsabs.harvard.edu/abs/1999AcA....49..437U
http://dx.doi.org/10.1016/j.csl.2007.12.001
http://dx.doi.org/10.1086/427710
http://adsabs.harvard.edu/abs/2005PASP..117...79W
http://adsabs.harvard.edu/abs/2005PASP..117...79W
http://adsabs.harvard.edu/abs/2002AcA....52..129W
http://adsabs.harvard.edu/abs/2002AcA....52..129W
http://dx.doi.org/10.1111/j.1365-2966.2004.07587.x
http://adsabs.harvard.edu/abs/2004MNRAS.349.1059W
http://adsabs.harvard.edu/abs/2004MNRAS.349.1059W
http://dx.doi.org/10.1109/ICCV.2003.1238391
http://dx.doi.org/10.1109/ICCV.2003.1238391

	1. INTRODUCTION
	2. SAMPLE SELECTION BIAS IN ASTRONOMICAL SURVEYS
	2.1. Example: Source Classification for ASAS

	3. METHODS TO TREAT SAMPLE SELECTION BIAS
	3.1. Importance Weighting
	3.2. Co-training
	3.3. Active Learning

	4. EXPERIMENT: OGLE AND HIPPARCOS VARIABLE STARS
	5. ALLSTARS: ACTIVE LEARNING LIGHT CURVE WEB INTERFACE
	6. APPLICATION OF ACTIVE LEARNING TO CLASSIFY ASAS VARIABLE STARS
	7. CONCLUSIONS
	APPENDIX. DERIVATION OF ACTIVE LEARNING RANDOM FOREST METRIC
	REFERENCES

