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ABSTRACT

This paper, the second in a series on radiation-regulated accretion onto black holes (BHs) from galactic scales,
focuses on the effects of radiation pressure and angular momentum of the accreting gas. We simulate accretion
onto intermediate-mass black holes, but we derive general scaling relationships that are solutions of the Bondi
problem with radiation feedback valid for any mass of the BH Mbh. Thermal pressure of the ionized sphere around
the BH regulates the accretion rate, producing periodic and short-lived luminosity bursts. We find that for ambient
gas densities exceeding ncr

H,∞ ∝ M−1
bh , the period of the oscillations decreases rapidly and the duty cycle increases

from 6%, in agreement with observations of the fraction of active galactic nuclei at z ∼ 3, to 50%. The mean
accretion rate becomes Eddington limited for nH,∞ > nEdd

H,∞ � ncr
H,∞T −1

∞,4 where T∞,4 is the gas temperature in units
of 104 K. In the sub-Eddington regime, the mean accretion rate onto BHs is about 1%T 2.5

∞,4 of the Bondi rate, and
thus is proportional to the thermal pressure of the ambient medium. The period of the oscillations coincides with
the depletion timescale of the gas inside the ionized bubble surrounding the BH. Gas depletion is dominated by a
pressure gradient pushing the gas outward if nH,∞ < ncr

H,∞ and by accretion onto the BH otherwise. Generally, for
nH,∞ < ncr

H,∞ angular momentum does not significantly affect the accretion rate and period of the oscillations.

Key words: accretion, accretion disks – black hole physics – dark ages, reionization, first stars – hydrodynamics –
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1. INTRODUCTION

Gravitational accretion onto point sources can be described
analytically (Bondi & Hoyle 1944; Bondi 1952), assuming
spherical symmetry. The Eddington-limited Bondi formula is
often prescribed in cosmological simulations to estimate the
gas accretion rate onto black holes (BHs) from large scales
(Volonteri & Rees 2005; Di Matteo et al. 2008; Pelupessy et al.
2007; Greif et al. 2008; Alvarez et al. 2009; Kim et al. 2011).
However, even in the sub-Eddington regime, a fraction of the
gravitational potential energy of accreted gas is converted into
mechanical or radiative feedback (Shapiro 1973), reducing the
accretion rate. The radiation emitted by BHs creates feedback
loops that regulate the gas accretion and luminosity of the BHs.
Several published works have investigated physical processes
that may dominate the feedback such as X-ray preheating,
gas cooling, photo-heating, and radiation pressures (Ostriker
et al. 1976, 2010; Cowie et al. 1978; Bisnovatyi-Kogan &
Blinnikov 1980; Krolik & London 1983; Vitello 1984; Wandel
et al. 1984; Milosavljević et al. 2009a; Novak et al. 2011).
In general, radiative feedback reduces the accretion luminosity
of the accreting BH (Ostriker et al. 1976; Begelman 1985;
Ricotti et al. 2008). There have been extensive publications
on self-regulation of supermassive BH growth at the centers
of elliptical galaxies (Sazonov et al. 2005; Ciotti & Ostriker
2007; Ciotti et al. 2009; Lusso & Ciotti 2011) or axisymmetric
outflows in active galactic nuclei (AGNs; Proga 2007; Proga
et al. 2008; Kurosawa et al. 2009; Kurosawa & Proga 2009a,
2009b). Recently, several works have paid closer attention
to radiation-regulated accretion onto intermediate-mass black
holes (IMBHs; Milosavljević et al. 2009a, 2009b; Park & Ricotti
2011; Li 2011).

Cosmological simulations show that massive BHs may have
formed in metal-free minihalos as Population III star remnants

in the early universe (Abel et al. 1998, 2000; Bromm et al.
1999; Madau & Rees 2001; Schneider et al. 2002; Oh &
Haiman 2002) or from direct collapse of primordial gas (Carr
et al. 1984; Haehnelt et al. 1998; Fryer et al. 2001; Begelman
et al. 2006; Volonteri et al. 2008; Omukai et al. 2008; Regan
& Haehnelt 2009; Mayer et al. 2010; Johnson et al. 2011).
Estimating the accretion luminosity of IMBHs (for a review,
see Miller & Colbert 2004; van der Marel 2004) is important
to understand their cosmological importance at high z and
in the local universe (Mack et al. 2007; Ricotti 2009). Since
the luminosity of IMBHs is directly related to their accretion
rate, these studies are also relevant for better understanding
the mass growth of primordial massive BHs in the early
universe (Madau & Rees 2001; Volonteri et al. 2003; Yoo &
Miralda-Escudé 2004; Volonteri & Rees 2005; Johnson &
Bromm 2007; Pelupessy et al. 2007; Alvarez et al. 2009) or
provide clues about the origin and impact on the ionization
history of the universe of ultraluminous X-ray sources (ULXs;
Krolik et al. 1981; Krolik & Kallman 1984; Krolik 2004; Ricotti
& Ostriker 2004; Ricotti et al. 2005; Ricotti 2007; Strohmayer
& Mushotzky 2009).

In Park & Ricotti (2011), hereafter Paper I, we explored the
radiation-regulated accretion onto IMBHs assuming spherical
symmetry and zero angular momentum of the accreting gas.
One of the main objectives of the study was to derive an
analytical description of the effect of radiation feedback on the
Bondi accretion rate. We accomplished this goal by simulating
accretion onto IMBHs with idealized initial conditions and
simple physics, but for a large parameter space of the initial
conditions (varying BH radiative efficiency, the BH mass, the
density and temperature of ambient gas, and the spectrum of
radiation). We found that the IMBH is quiescent most of the
time with short intense periodic bursts of accretion (with a
duty cycle of 6%). The qualitative description of the cycle is as
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follows. Gas accumulates in a dense shell ahead of the I-front,
nearly halting accretion onto the IMBH. Meanwhile, the ionized
gas inside the hot bubble is pushed outward toward the dense
shell by pressure gradients, eventually de-pressurizing the hot
bubble, producing the collapse of the shell and a burst of
accretion. The scaling relationships for the burst period, mean
and peak accretion rates can be understood analytically but are
quite sensitive to the details of the thermal structure inside the
Strömgren sphere. Thus, we expect that gas metallicity may be
an important parameter in the problem that we have not yet
explored.

In this paper, the second in the series, we relax most of the
simplifying assumptions in Paper I and discuss the effects of
helium heating/cooling, radiation pressure, and gas angular
momentum on the accretion rate. It has been noted that not
only electron scattering but also radiation pressure on H i may
be important (Milosavljević et al. 2009a). We explore how the
radiation pressure regulates the gas accretion by transferring
momentum to the inflowing gas, and whether these physical
processes become important compared to the pressure gradients
inside the Strömgren sphere.

As in Paper I of this series, here we present the results of our
simulations as dimensionless accretion rates λrad ≡ Ṁ/ṀB ,
where ṀB = πe3/2ρ∞G2M2

bhc
−3
s,∞ is the Bondi accretion

rate for an isothermal gas (with polytropic index γ = 1),
that is a function of BH mass Mbh, density ρ∞, and sound
speed of cs,∞ of neighboring gas. The Eddington luminosity is
LEdd = 4πGMbhmpcσ−1

T , which is proportional to the BH mass
only. We define the Eddington accretion rate ṀEdd ≡ LEdd/c

2

which is a factor of 10 smaller than the definition most often
used, ṀEdd ≡ LEdd/0.1c2, in which η = 0.1 is assumed, and
the dimensionless Eddington rate as λEdd ≡ η−1ṀEdd/ṀB .
We introduced three quantities to describe the accretion: mean
accretion rate 〈λrad〉, accretion rate at peaks λrad, max, and period
between accretion bursts τcycle. In Paper I we found

〈λrad〉 � C(nH,∞)T 2.5
∞,4

[
Tin(α,Z)/4 × 104 K

]−4
, (1)

with C ∼ 3% for nH,∞ � 105 cm−3 and C ∼
3%(nH,∞/105 cm−3)1/2 for nH,∞ < 105 cm−3 with η = 0.1
and Mbh = 100 M
. Here, Tin(α,Z) is the time-averaged tem-
perature at the accretion radius within the Strömgren sphere,
that is, 4 × 104 K for our fiducial spectrum (spectral slope
α = 1.5) and a gas composed of hydrogen only (metallic-
ity Z = 0). However, Tin is sensitive to changes of α and
the gas composition (see Paper I and Section 3 in this paper).
In the sub-Eddington regime, the period τcycle ∝ 〈Rs〉, where
〈Rs〉 is the time-averaged Strömgren radius, and the duty cycle
fduty ≡ τon/τcycle ≡ 〈λrad〉/λrad, max ∼ 6%T

1/2
∞,4, where τon is the

duration of bursts.
This paper is organized as follows. In Section 2, we briefly

explain the numerical methods. In Section 3, we present our
simulation results including the effect of helium cooling/
heating, radiation pressure, and gas angular momentum. The
summary and discussion are presented in Section 4.

2. NUMERICAL SIMULATIONS

We run a suite of hydrodynamic simulations to interpret
how radiative feedback regulates accretion onto BHs. We
use a modified parallel non-relativistic hydrodynamics code,
ZEUS-MP (Stone & Norman 1992; Hayes et al. 2006) plus
a radiative transfer algorithm (Ricotti et al. 2001) to simulate

photo-ionization and photo-heating by UV and X-ray ionizing
photons emitted near the BHs. See Paper I for a detailed
description.

In this study, we include the effects of helium
heating/cooing in addition to hydrogen. Therefore, we simulate
photo-ionization, photo-heating and cooling for six species: H i,
H ii, He i, He ii, He iii, and e−.

We also calculate the radiation pressures on both e− and H i
to interpret the effect of momentum transfer to the inflowing
gas by the ionizing photons. The magnitude of acceleration
at a given radius due to radiation pressure depends on the
luminosity, the ionization fraction of hydrogen and helium, and
the cross section of the species to photon-ionization. The specific
flux Fν ∝ e−τ /r2 at a given radius(r), assuming a power-law
spectrum with a spectral index α, depends on the optical depth
τν , and the cross section σν . Thus, the accelerations due to
momentum transfer to H i and e− can be written as

arad,H i = xH i

mpc

∫
σH i,νFνdν, (2)

arad,e− = xe−

mpc

∫
σT Fνdν, (3)

where xH i and xe− are H i and e− fractions, respectively, σT

is the Thomson cross section, and mp is the proton mass. The
radial component of the acceleration at a given radius is updated
as a = agrav + arad, where arad = arad,H i + arad,e− .

In Section 3.3, we study the effect of non-zero angular
momentum of gas which leads to a time delay between the
accretion rate at the sonic radius and the luminosity output, due
to the formation of an accretion disk. In order to estimate realistic
values of the time delay we assume that the gas conserves
angular momentum and settles into an accretion disk of radius
Rdisk. We then assume an alpha model for the thin disk to estimate
the timescale for the gas to lose angular momentum and fall into
the BH.

Numerically, it is convenient to express the time delay in units
of the free-fall timescale tff calculated at the simulation’s inner
boundary (typically Rmin ∼ 10−5 pc). The free-fall timescale we
have defined can be very large compared to tff calculated at the
radius of the accretion disk near the BH (at tens of gravitational
radii RSch ≡ 2GMbh/c

2). Approximately, the gas is accreted at
the viscous timescale tvisc, which compared to tff is

tvisc(Rdisk)/tff(Rdisk) ∼ α−1M2 ∼ α−1c−2
s,diskGMbhR

−1
disk

∼ 0.5α−1(c/cs,disk)2R−1
disk, (4)

where α is the dimensionless parameter for a thin disk (Shakura
& Sunyaev 1973), cs,disk is the sound speed of the gas in the
disk, and we define Rdisk ≡ Rdisk/RSch. The dependence of the
free-fall time on radius is tff ∝ R1.5, while the viscous timescale
is tvisc ∝ R−1tff ∝ R0.5 assuming constant sound speed due to
effective cooling (note that since we are considering a gas of
zero or very low metallicity, the gas in the disk will not easily
cool to temperature below 104 K if the gas is atomic). Thus, the
infall time at the disk radius Rdisk is

tvisc(Rdisk)

tff(Rmin)
∼ 0.5

α

v3
min

cc2
s,disk

R1/2
disk ∼ 0.3

α

(
Tdisk

104 K

)−1

R1/2
disk. (5)

To estimate the parameters in Equation (5) we have de-
fined vmin ≡ (GMbh/Rmin)1/2 � 260 km s−1. Assuming

2



The Astrophysical Journal, 747:9 (11pp), 2012 March 1 Park & Ricotti

Figure 1. Top: accretion rate in units of the Bondi rate as a function of radiative
efficiency η for simulations with Mbh = 100 M
, nH,∞ = 106 cm−3, and T∞ =
104 K. Large symbols indicate mean accretion rate (〈λrad〉 ∼ 1%), while small
symbols show accretion rate at peaks (λrad, max ∼ 20%). Bottom: period between
bursts τcycle as a function η. The dotted line shows τcycle ∝ η1/3. In both panels,
triangles represent simulations neglecting the effect of radiation pressures, while
circles show simulations including radiation pressures. Radiation pressures
introduce a minor difference in both the accretion rate and period of the bursts
for this parameter set.

α ∼ 0.01–0.1, Tdisk ∼ 104 K, and Rdisk � 102–104, we find
time delays of �300 free-fall times at Rmin, which is the param-
eter space we explore in Section 3.3.

In our code, the accretion rates calculated at the inner
boundary of the simulations are stored in an assigned array
about 1000 steps for each tff . Stored accretion rates with a given
time delay are then read from the array and used to estimate the
luminosity at the current moment.

3. RESULTS

In this section, we show the results of simulations, discussing
the effects of helium heating/cooling, radiation pressures, and
angular momentum on the BH accretion rate. All the simulations
in this paper include helium heating/cooling but the gas is
metal free. The simulations remain qualitatively the same as
in Paper I where we did not include helium; the only noticeable
difference with respect to Paper I is that the accretion rate at
peak luminosity shows multiple minor peaks instead of a well-
defined single peak. This is to be expected, as a larger opacity
produces a stronger feedback with respect to the hydrogen-only
case, leading to multiple shocks in the gas. This complicated
structure—i.e., a burst consisting of several sub-bursts—is
commonly found (e.g., Ciotti & Ostriker 2007). In addition, the
average accretion rate 〈λrad〉 decreases from ∼3% to ∼1%, but
this can be understood by the increase of the mean temperature
inside the Strömgren sphere from Tin ∼ 4×104 K to ∼6×104 K.
The top panel of Figure 1 shows the accretion rate as a function
of η = 0.01–0.1 with Mbh = 100 M
, nH,∞ = 106 cm−3,
and T∞ = 104 K. Large symbols show 〈λrad〉 while small
symbols show λrad, max. For the given set of parameters, the
luminosity remains in the sub-Eddington regime; thus the effects

of radiation pressures are minor. The bottom panel of Figure 1
shows the dependence of τcycle on η1/3, the same as found in
Paper I. However, τcycle for η = 0.1 is now ∼2200 years, which
is ∼60% of the value found in Paper I for the given set of
parameters. This is also well understood (see Equation (22) in
Paper I) as our model predicts τcycle ∝ 〈λrad〉1/3.

3.1. Effect of Radiation Pressures

In Paper I, we have focused on exploring the parameter
space in which the mean accretion rate is dominated by thermal
feedback, i.e., radiation pressure can be neglected. We found
〈λrad〉 ∼ 1% for nH,∞ = 105 cm−3, assuming Mbh = 100 M
,
T∞ = 104 K, α = 1.5, and including helium cooling/heating.
However, not surprisingly, including the effect of radiation
pressure produces a reduction of the accretion rate when
the BH luminosity approaches the Eddington limit. Figure 2
shows 〈λrad〉 as a function of gas density for a 100 M
 BH,
comparing simulations that do not include radiation pressure
(open triangles) to ones including pressure on H i only (open
squares), on e− only (open pentagons), and the total effect of
radiation pressure (solid circles). Compton radiation pressure
reduces the accretion rate below 〈λrad〉 ∼ 1% for nH,∞ �
107 cm−3 while the radiation pressure on H i appears always
negligible with respect to Compton scattering. Both 〈λrad〉 and
λrad, max change from a constant fraction of the Bondi accretion
rate to the Eddington rate λEdd, shown by the dashed line for
Mbh = 100 M
 and radiative efficiency η = 0.1.

Figure 3 shows the dimensionless accretion rates 〈λrad〉 and
λrad, max as a function of the BH mass from Mbh = 102 to
104 M
, keeping the other parameters constant: η = 0.1,
nH,∞ = 105 cm−3, and T∞ = 104 K. The simulations include
radiation pressures on H i and e−, and show that the transition
to Eddington-limited accretion happens for Mbh � 5000 M
.

3.1.1. Transition from Bondi-like to Eddington-limited Accretion

So far the simulation results have shown that Compton
scattering on electrons is the dominant radiation pressure effect;
thus the Eddington-limit applies. Figure 4 summarizes the
results of a large set of simulations that include radiation
pressure. The top three panels in Figure 4(a) show 〈λrad〉 as
a function of gas density for Mbh = 102, 103, and 104 M
,
respectively. For each BH mass, corresponding Eddington
limits are shown by the dashed lines. The panels show the
mean accretion rate 〈λrad〉 (large triangles) and λrad, max (small
triangles) transitioning from being a constant fraction of the
Bondi rate at low densities to being Eddington-limited at higher
densities. The period of the accretion τcycle, in the bottom panels,
also shows different dependencies in Bondi-like and Eddington-
limited regimes. We will come back to this in Section 3.2.

Figure 4(b) shows the mean accretion luminosity in units of
LEdd for Mbh = 102, 103, and 104 M
 as a function of gas
density. The dotted lines show 1% of the Bondi accretion rate
for each BH mass. Thus, from Figure 4 we have approximately

〈Ṁ〉 = min
(
1%T 2.5

∞,4ṀB, η−1ṀEdd
)
, (6)

where T∞,4 ≡ T∞/(104 K), valid for density nH,∞ � 105 cm−3,
and α = 1.5.

It is thus apparent that IMBHs can grow at a rate near the
Eddington limit if the gas density of the environment is larger
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Figure 2. Comparison of relative importance of radiation pressures in regulating
mean accretion rate (top panel) and the period of bursts (bottom panel) as
a function of the ambient gas density nH,∞. Symbols are explained in the
legend of the figure. Top: the long-dashed line shows the Eddington limit
for a 100 M
 BH with η = 0.1. When the accretion rate is sub-Eddington
(nH,∞ � 106 cm−3) radiation pressures both on electrons and H i do not play
an important role and the thermal structure of the Strömgren sphere regulates
the accretion. Radiation pressure is important in reducing the accretion rate at
nH,∞ = 107 cm−3 where the accretion rate approaches the Eddington rate.
The transition of accretion rate from 〈λrad〉 ∼ 1% to the Eddington-limited
regime happens at nEdd

H,∞ ∼ 4 × 106 cm−3 for a 100 M
 BH with η = 0.1 and

T∞ = 104 K. Bottom: radiation pressures do not produce significant differences
in τcycle. Transition of τcycle from mode-I (dotted line) to mode-II (short-dashed
line) happens at the critical density ncr

H,∞ ∼ nEdd
H,∞ (see Section 3.2). The result

shows a good agreement with the work of Milosavljević et al. (2009b)

than the critical density

nEdd
H,∞ ∼ 4 × 106 cm−3

(
Mbh

102 M


)−1 (
T∞

104 K

)−1 ( η

0.1

)−1
.

(7)

3.1.2. Why is Continuum Radiation Pressure Negligible?

As shown in Figures 2–4, the simulations show that radi-
ation pressure on H i does not play an important role when
the accretion rate is sub-Eddington. In this section, we fo-
cus on understanding why this is. Figure 5 shows the evo-
lution of relative magnitude of acceleration due to radiation
pressures normalized by the gravitational acceleration at a
given radius. Each panel refers to a different density nH,∞ =
105, 106, 107, and 108 cm−3. Within the Strömgren sphere, the
relative effect of Compton radiation pressure remains constant
as a function of the radius since the electron fraction xe− is close
to unity and the gas is nearly transparent to ionizing radiation.
Outside of the Strömgren sphere, the rapid decrease of the elec-
tron fraction reduces the effect of Compton scattering. Radiation
pressure on H i (thick lines in Figure 5) increases as a function of
radius and has its peak value just inside the Strömgren sphere.
This is due to the increase of the H i fraction as a function
of radius. Outside the Strömgren sphere the relative effect of
H i radiation pressure drops quickly because the ionizing lumi-
nosity decreases rapidly due to the increase of the H i opacity.

Figure 3. Same as Figure 1, but showing 〈λrad〉, λrad, max, and τcycle as a function
of Mbh with η = 0.1, nH,∞ = 105 cm−3, and T∞ = 104 K. A similar pattern
which we observe as a function of density is also seen as a function of Mbh. With
increasing Mbh, the transition from 〈λrad〉 ∼ 1% to the Eddington-limited regime
and the transition of τcycle from mode-I to mode-II happen at Mbh ∼ 4×103 M
.

Continuum radiation pressure on H i is comparable to Comp-
ton electron scattering only in a shell just inside the Strömgren
sphere, where the H i abundance starts to increase rapidly as
a function of radius and the ionizing radiation is not fully
shielded by H i. With increasing gas density, the peak and mean
luminosities increase; hence the relative effect of Compton
pressure on average increases and eventually becomes com-
parable to the effect of gravity (i.e., Eddington limit), whereas
Figure 5 shows that the relative effect of continuum radiation
pressure does not increase much with increasing gas density.
In addition, the range of variation of radiation pressures dur-
ing a period of oscillation decreases with increasing density. In
other words, at low densities radiation pressures display several
magnitudes of variation which are not seen in the high-density
regime. As a result, at low densities (nH,∞ � 106 cm−3) ra-
diation pressure is significant only near the peaks of luminos-
ity and generally is negligible compared to gravity, whereas at
high densities (nH,∞ � 107 cm−3) Compton scattering domi-
nates throughout a period of oscillation, reducing the accretion
rate to Eddington-limited values. Only at intermediate densities
nH,∞ � 107 cm−3, the magnitude of H i radiation pressure just
behind the Strömgren radius becomes comparable to that by
Compton scattering.

The weak dependence of the H i radiation pressure on density
and its magnitude with respect to the Compton pressure can be
understood analytically. The key point is that the H i radiation
pressure is proportional to the value of the neutral fraction xH i
just behind the Strömgren radius Rs and, assuming ionization
equilibrium, it is easy to show that xH i(Rs) ∝ n

−2/3
H . It follows

that the pressure on H i is relatively insensitive to variations of
nH:

P cont
Rad ∝ S0xH i(Rs) exp [−τ (Rs)] ∝ n

1/3
H , (8)

where S0 ∝ nH is the ionizing luminosity, and exp [−τ (Rs)] =
constant. The derivation of xH i(Rs) is as follows. At
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Figure 4. Left: same as Figure 2, but showing 〈λrad〉, λrad, max, and τcycle as a function of gas density for Mbh = 102 M
 (left panel), 103 M
 (middle panel), and
104 M
 (right panel). Long-dashed lines in each panel show the Eddington accretion rate for η = 0.1 and the given BH mass. With increasing gas density, the
accretion rate eventually becomes Eddington limited, but the transition to the Eddington-limited regime occurs at densities nEdd

H,∞ ∼ 4 × 106 cm3M−1
bh decreasing

linearly with increasing BH mass. Right: accretion luminosities normalized by Eddington luminosities for the same simulations in the left figure. Symbols (circles:
102 M
; triangles: 103 M
; squares: 104 M
) show the simulations including radiation pressures for each BH mass. With increasing gas density, the accretion rate
becomes regulated primarily by Compton radiation pressure.

Figure 5. Radial profiles of the gas acceleration due to radiation pressures on H i and e− normalized to the gravitational acceleration of simulations for
nH,∞ = 105, 106, 107, and 108 cm−3 with BH mass Mbh = 100 M
, η = 0.1, and T∞ = 104 K. Thick lines refer to radiation pressure on H i, while thin
lines show Compton-scattering radiation pressure. Different line types show the profiles at different time during the oscillation cycle (e.g., solid lines at the accretion
bursts and dot-dashed just before the bursts). Radiation pressure on H i peaks just inside the Strömgren sphere with weak dependence on density, while Compton
radiation pressure inside the Strömgren sphere increases on average as a function of density. At nH,∞ = 107 cm−3 the peak values of H i radiation pressure and
Compton radiation pressure become comparable and about 10% of gravity. However, at higher densities (�108 cm−3) radiation pressure on electrons becomes
dominant everywhere inside the Strömgren sphere.

(A color version of this figure is available in the online journal.)

Rs = S
1/3
0 n

−2/3
H α

−1/3
R the photoionization rate is Γ(Rs) =

S0σ
eff
H i /4πR2

s ∝ n
5/3
H . Assuming photoionization equilibrium

xH i(Rs)Γ(Rs) = nHαR , we demonstrate that

xH i(Rs) = nHαR

Γ(Rs)
∝ n

−2/3
H . (9)

3.2. Two Self-regulated Modes of Accretion: Collapsing I-front
versus Quasi-steady I-front

One of the most interesting aspects of the radiation-regulated
accretion onto BHs is the qualitative change of the period and
duty cycle of the luminosity bursts observed in the high-density
regime. As argued in Paper I and confirmed by further sim-
ulations in this work, the physical reason for this transition
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Figure 6. Illustration of the two different modes of oscillations found at different ambient densities. The panels show the time evolution of gas density and ionization
fraction in 2D simulation for a BH of mass Mbh = 100 M
, gas density nH,∞ = 106 cm−3 (top panels), and nH,∞ = 107 cm−3 (bottom panels). In each panel, top
halves show the density and the bottom halves show the ionization fraction, xH ii = nH ii/nH. When the density is nH,∞ � ncr

H,∞ � 5 × 106 cm3, the collapse of
ionization front onto the BH leads to a burst of accretion luminosity (mode-I). For densities nH,∞ > ncr

H,∞ the size of Strömgren sphere does not change much with
time (mode-II). Note the different oscillation modes of the accretion rate and luminosity are driven by the collapse of a dense shell (mode-I) and by a density wave
(mode-II).

(A color version of this figure is available in the online journal.)

is a change of the dominant mechanism depleting the gas in-
side the Strömgren sphere between two consecutive bursts. In
the low-density regime, gas is pushed outward toward the ion-
ization front by a pressure gradient (hereafter, mode-I accre-
tion). At higher-densities gas accretion onto the BH becomes
the dominant gas depletion mechanism (hereafter, mode-II ac-
cretion). Incidentally, as discussed below, simulations show that
radiation pressure becomes important near the transition from
mode-I to mode-II, at least for most of the initial conditions we
have simulated. In Paper I, we have observed mode-II accretion
only for our highest density simulation (for nH,∞ = 107 cm−3

and Mbh = 100 M
). In this paper, to better understand this
regime, we have extended the parameter space to higher den-
sities and higher BH masses. Figure 6 shows snapshots of
the density (top halves in each panel) and ionization fraction
(bottom halves in each panel) for two-dimensional simula-
tions including radiation pressure, for nH,∞ = 106 cm−3 (top
panels) and nH,∞ = 107 cm−3 (bottom panels). The snap-
shots are taken for each simulation at the moment of a burst
of the accretion rate (left panels), in between two bursts (middle
panels), and just before a burst (right panels). For ambient den-
sity nH,∞ = 106 cm−3, the Strömgren sphere collapses onto the
BH which leads to a strong luminosity burst. On the contrary,
the size of Strömgren sphere does not change much during the
oscillation period for ambient density nH,∞ = 107 cm−3. In this
latter case, the oscillation of the accretion luminosity is driven
by density and pressure waves originating at the I-front, while
in the former case, the collapse of the I-front onto the BH leads
to a much more intense accretion burst. In Figure 7(left), we
compare the accretion rate onto the BH as a function of time for
nH,∞ = 106 cm−3 (top panel) and nH,∞ = 107 cm−3 (bottom

panel). For nH,∞ = 106 cm−3, the collapse of I-front leads to
a strong burst of gas accretion, with λrad, max about ×20〈λrad〉.
Hence, the duty cycle f I

duty ≡ 〈λrad〉/λrad, max is about 6%. The
pressure gradient inside Strömgren sphere supports the gas shell
accumulating at the I-front from collapsing until the accretion
rate drops four to five orders of magnitude compared to the
accretion during the burst. However, the Strömgren radius re-
mains remarkably constant before its collapse due to the de-
cline of gas density inside the H ii region. In contrast, in the
nH,∞ = 107 cm−3 simulation the accretion rate peaks at a few
times 〈λrad〉 before decreasing by about two orders of magni-
tude. The duty cycle approaches f II

duty ∼ 50% for this mode of
accretion. As shown in Figures 3 and 4, simulations that do not
include radiation pressure also show a rapid decrease of the pe-
riod τcycle and λrad, max with increasing gas density and BH mass,
but the mean accretion rate 〈λrad〉 does not. Thus, the reduced
value of λrad, max/〈λrad〉 ≡ 1/f II

duty explains the longer duty cycle
observed for mode-II accretion. A more detailed illustration of
the qualitative difference between mode-I and mode-II accretion
is shown in Figure 7(right). The figure shows the time evolution
of the gas density profile (top panels), the temperature profile
(middle panels), and the hydrogen ionization fraction (bottom
panels) for the nH,∞ = 106 cm−3 and nH,∞ = 107 cm−3 simu-
lations. Small variations of the density, temperature, and ioniza-
tion fraction profiles are observed for nH,∞ = 107 cm−3, while
clear collapses of I-front are observed in the evolution of the
profiles for nH,∞ = 106 cm−3. Note that this quasi-stationary
profile is not produced by the effects of radiation pressures. The
same effect is found for nH,∞ = 107 cm−3 without including
radiation pressure effects.
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Figure 7. Left: accretion rates as a function of time for nH,∞ = 106 cm−3 and nH,∞ = 107 cm−3 assuming η = 0.1, Mbh = 100 M
, and T∞ = 104 K. Different
modes of oscillations occur at different density regimes. Mode-I oscillation at nH,∞ = 106 cm−3 shows about five orders of magnitude in range between peak and the
minimum accretion rate, while mode-II oscillation at nH,∞ = 107 cm−3 shows only two orders of magnitude in range. Right: evolution of radial profiles for density (top
panel), temperature (middle panel), and neutral/ionization fractions (bottom panel) of the same simulations in the left figure. Note the change of physical properties
inside Strömgren sphere during a period of mode-I oscillation (nH,∞ = 106 cm−3), while mild changes are observed for mode-II oscillation (nH,∞ = 107 cm−3).

(A color version of this figure is available in the online journal.)

Interestingly, for our fiducial case simulations (Mbh =
100 M
, T∞ = 104 K, η = 0.1, and α = 1.5), the critical
density at which the mean accretion rate becomes Eddington-
limited nearly coincides with the critical density for transition
from mode-I to mode-II accretion. This explains why the mean
accretion rate and the peak accretion rate become Eddington-
limited at nearly the same density. Indeed, if while increasing
nH,∞, the duty cycle remained at about 6% as in mode-I ac-
cretion, the mean accretion rate would not be able to approach
the Eddington limit, even though the peak accretion can be
mildly super-Eddington. We will show below that the transition
to mode-II accretion depends on the free parameters in the prob-
lem and may take place at much lower densities than the critical
density for Eddington-limited accretion.

The quasi-stationary I-front observed for the nH,∞ =
107 cm−3 simulation is also important to understand why a clear
transition to the Eddington-limited regime exists with increasing
density or BH mass. For mode-I accretion, radiation pressure
may become comparable to the gravity near the Strömgren ra-
dius, but this effect dominates only for a short time, during
the peaks of luminosity. The peak accretion can indeed become
moderately super-Eddington for a short time, also because of
the broken spherical symmetry of the collapsing shell due to
Rayleigh–Taylor instability of the accreting gas. However, for
mode-II accretion, the geometry of accretion from large scales
is quasi-spherical and radiation pressure effects are significant
during the most of the duration of oscillations; hence the accre-
tion rate is Eddington limited.

Figure 8 shows the relationship between the period of
accretion bursts and the average size of the Strömgren sphere
produced by the accreting BH. When the gas depletion inside
the H ii region is dominated by the outward flow of gas toward
the I-front, τ I

cycle shows a linear relation with 〈Rs〉 (solid
line). This linear relation is almost identical to the results in
Paper I, where helium cooling/heating was not included. By
increasing the ambient gas density, eventually the gas depletion

becomes dominated by accretion onto the BH. In this latter case,
assuming that the dimensionless accretion rate 〈λrad〉 is constant
(a valid assumption in the sub-Eddington regime), τcycle scales
as 〈Rs〉3 (dotted line). However, the simulation results at high
ambient gas density shown in Figure 8 are not well fitted by
τcycle ∝ 〈Rs〉3, and indeed seem to follow a linear relationship
τcycle ∝ 〈Rs〉, similar to the low-density one but with an offset.
This can be explained because at high densities the accretion
rate becomes Eddington-limited soon after the transition to
mode-II accretion for which τcycle ∝ 〈Rs〉3. It follows that
the assumption 〈λrad〉 ≈ constant becomes invalid and instead
τ II

cycle ≡ tin ∝ ρ〈Rs〉3/ṀEdd. In this regime, since the Strömgren

radius is 〈Rs〉3 ∝ ηṀEdd/ρ
2, we get ρ ∝ Ṁ

1/2
Edd〈Rs〉−1.5 and

τ II
cycle ∝ M−0.5

bh 〈Rs〉1.5. (10)

As shown by the dashed lines in Figure 8, this model is in good
agreement with the results of the simulations for different values
of Mbh.

Thus, the small offset in τcycle observed in Figure 8 when the
density is increased can be understood because ncr

H,∞, at which
the transition from mode-I to mode-II accretion takes place, is
nearly equal to nEdd

H,∞, the critical density at which the mean
accretion rate becomes Eddington limited. But, in general, the
ratio of these critical densities may depend on all of the free
parameters of the model.

Our analytical model of feedback-regulated feeding of the BH
can help understand the dependence of the critical density on all
of the parameter space, not fully covered by the simulations. We
found that the cycle period τcycle is the shortest time between the
gas depletion timescales tin = MH ii/Ṁ , where MH ii ∼ ρin〈Rs〉3

is the mass inside the H ii region, and tout ≈ 3〈Rs〉/cs,in (see
Paper I). Thus, by definition, when the density approaches
the critical density we have tin � tout, but this condition also
implies that the mean Strömgren radius approaches the effective

7
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Figure 8. Relationship between the period of the accretion bursts, τcycle, and the
time-averaged size of the Strömgren radius 〈Rs〉. τcycle shows a linear relation
with 〈Rs〉 when the gas depletion inside the Strömgren sphere is dominated by
a pressure gradient inside the H ii region that push the gas toward the I-front.
Instead, τcycle ∝ 〈Rs〉3 (dotted lines for each Mbh) when the gas depletion is
dominated by accretion onto the BH. With increasing density of the ambient
gas, for each Mbh, the transition to mode-II oscillation and the transition to
Eddington-limited regime happen at similar densities nH,∞ = ncr

H,∞ ∼ nEdd
H,∞.

In the Eddington-limited regime τcycle becomes proportional to 〈Rs〉3/2 for each
BH mass (dashed lines).

accretion radius:

〈Rs〉cr ≈ 10 × rb,eff . (11)

Equation (11), is derived setting Ṁ = 〈Ṁ〉 ≡ 4πρincs,inr
2
b,eff ≡

〈λrad〉ṀB in the relationship for tin. Since in our model we have
ρinTin � ρ∞T∞, it follows that rb,eff ≈ (Tin/T∞)1/4〈λrad〉1/2rb,
and 〈Rs〉cr � 2T∞,4T

−7/4
in,∗ rb, where rb ≡ GM/c2

s,∞ is the Bondi
radius, T∞,4 ≡ T∞/104 K, and Tin,∗ ≡ Tin/6 × 104 K is the
mean temperature at the accretion radius inside the H ii region
(normalized to the value found for α = 1.5). Thus, 〈Rs〉cr and
period of the bursts are

〈Rs〉cr ≈ (0.01 pc)Mbh,2T
−7/4

in,∗ , (12)

τ cr
cycle ≈ (1000 yr)Mbh,2T

−9/4
in,∗ , (13)

with Mbh,2 ≡ Mbh/100 M
.
Applying naively the analytical expression for the Strömgren

radius produced by a source of luminosity L ≡ ηc2〈Ṁ〉 in a
gas of density ρ∞ gives 〈Rs〉 ∝ M2/3n

−1/3
H,∞ T

1/3
∞ η1/3. However,

using the simulation data, we find that the mean radius of
the Strömgren sphere in the sub-Eddington regime is nearly
independent of T∞, and if 〈Rs〉 ∼ 〈Rs〉cr, is also independent of
η:

〈Rs〉 ≈ (0.015 pc)M2/3
bh,2

( nH,∞
106 cm−3

)−1/3
(

Ē

41 eV

)−5/8

,

(14)

Figure 9. Temperature Tin at the effective inner Bondi radius, located inside
the H ii region produced by the accreting BH, as a function of the mean energy
of ionizing photons Ē of the spectrum of radiation emitted near the BH by
the accretion disk. We have assumed a gas of nearly zero-metallicity and a
power-law spectrum Fν ∝ ν−α .

where Ē ≡ L0/S0 is the mean energy of ionizing photons, and
we have assumed a hydrogen recombination coefficient αR =
(4 × 1013 cm3/s)T −1/2

in,∗ . In addition, we find that 〈Rs〉 ∝ η1/3

as expected for 〈Rs〉 
 〈Rs〉cr. The deviation from the naive
expectation is not surprising, as the BH luminosity and the
density inside the Strömgren sphere are not constant with time.
Indeed, although both the maximum and mean luminosities of
the BH are ∝ η, the simulations show that the luminosity at
the minimum of the cycle, Lmin, is nearly independent of η.
Typically Lmin � L, but when nH,∞ approaches the critical
value Lmin ∼ L. Similarly, assuming an effective mean density
(ρinρ∞)1/2 in the Strömgren radius expression would explain
the temperature dependence in Equation (14).

Finally, setting 〈Rs〉 = 〈Rs〉cr we derive the critical density

ncr
H,∞ ∼ (5 × 106 cm−3)M−1

bh,2T
7/4

in,∗

(
Ē

41 eV

)−1

. (15)

The critical density ncr
H,∞ as well as other scaling relationships

in our model depends on Ē ≡ L/S0 and Tin, but for a gas of zero
metallicity (including helium), these quantities are determined
only by the spectrum of the radiation. Assuming a power-law
spectrum with index α it is easy to show that

Ē = 13.6 eV

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α/(α − 1) if α > 1,

ln(hνmax/13.6 eV) if α = 1

α/(1 − α)(hνmax/13.6 eV)α if α < 1.

(16)

We have estimated hνmax = 0.2 keV as the frequency at which
the mean free path of the photons equals 〈Rs〉. The points in
Figure 9 show Tin as a function of Ē for simulations with
α = 0.5, 1, 1.5, 2, 2.5 taken from Figure 9 in Paper I. The
line shows the fit to the points:

Tin,∗ ≈
(

Ē

41 eV

)1/4

. (17)

For our fiducial model, for which Ē ∼ 41 eV, the value of the
critical density is very close to nEdd

H,∞ given in Equation (7):

ncr
H,∞

nEdd
H,∞

≈ η−1T∞,4

(
Ē

41 eV

)−9/16

. (18)
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Figure 10. Dependence of the period between bursts τcycle on the time delay between the accretion rate at Rmin and the BH output luminosity. The time delay is
produced by the presence of the accretion disk that is unresolved in our simulations. The two panels show τcycle in units of τcycle,0 ≡ τcycle(tdelay = 0) as a function
of tdelay for nH,∞ = 105 cm−3 (left panel) and 107cm−3 (right panel). The bottom axis shows tdelay in units of the free-fall time at Rmin and the top axis in units of
τcycle,0. The introduction of a time delay does not change τcycle when the gas density is nH,∞ = 105 cm−3, while τcycle increases by approximately the amount of time
delay introduced for nH,∞ = 107 cm−3. In this density regime, the largest time delays introduced are comparable to the oscillation period τcycle,0. In both cases, the
oscillatory behavior of the accretion luminosity does not disappear.

From an inspection of Equation (18) it is evident that the
only cases in which ncr

H,∞ can be larger than nEdd
H,∞ are those

assuming the largest realistic values of unity for T∞,4 and η−1,
and assuming a spectrum of radiation from the BH softer than
α = 1.5 that would reduce Ē with respect to the fiducial
value. Vice versa, a hard spectrum, low radiative efficiency and
accretion from a gas colder than 104 K would decrease the
ratio ncr

H,∞/nEdd
H,∞ below unity, making mode-II accretion sub-

Eddington for a wider range of densities. For these cases the
period of the cycle could become very short with increasing
density as τcycle ∝ 〈Rs〉3 ∝ n−1

H,∞.

3.3. Effect of Non-zero Angular Momentum of Gas

As discussed in Paper I, the introduction of small angular
momentum in the flow, which is realistic in most astrophysical
problems, can modify the time-dependent behavior of accretion
rate presented in this series of papers. Angular momentum
of gas leads to the formation of an accretion disk near the
Schwartzshild radius of a BH. This disk is not resolved in
our simulations. Thus, the accreted gas may experience a time
delay before it is converted to radiation. Here, we test how the
introduction of time delay would affect the feedback loops of
accretion.

As mentioned in Section 2, it is important to estimate
physically motivated time delays. Here, we explore the time
delay of 1–300 times tff(Rmin), which is large enough with an
assumption of α-disk model. On the other hand, no matter how
long the time delay is, what really matters is how the time
delay compares to the oscillation period, which depends mainly
on the gas density for a fixed mass of BH. We investigate
this issue in the low- (nH,∞ = 105 cm−3) and high-density
(nH,∞ = 107 cm−3) regimes where the oscillation pattern
and the periods are different. At low densities a time delay
of a few hundred free-fall times is much smaller compared to
the oscillation period, whereas at high densities the maximum
time delay that we have tested is comparable to the oscillation
period. In the left panel of Figure 10 which shows the result for

nH,∞ = 105 cm−3, τcycle does not increase at all as a function of
time delay since the introduced time delay is much smaller than
the original oscillation period. In the right panel of Figure 10 for
nH,∞ = 107 cm−3, the maximum time delay that we introduce
is comparable to the original oscillation period, and we see that
τcycle increases approximately by the amount of time delay. In
both cases, we still observe oscillations. Thus, only in the case
of accretion from a high-density gas which produces shorter
oscillation period, and for an accretion disk with Rdisk ∼ Rmin,
may the time delay have an important effect on the accretion
rate.

Indeed, the accretion disk may not only introduce a time delay
but also smooth out the accretion rate on a timescale of the order
of the viscous timescale. In this case for cases in which the disk
is large (Rdisk ∼ Rmin) and τcycle is short (i.e., for mode-II
accretion), the disk may further smooth out or completely erase
the periodic low-amplitude oscillations in the accretion rate from
large scales.

4. SUMMARY AND DISCUSSION:
SCALING RELATIONSHIPS

We have presented a systematic study on how the classic
Bondi problem of spherical accretion onto a compact object is
modified by the effects of radiation feedback. We solve radiative
transfer equations in the radial direction for the hydrogen and
helium ionizing radiation emitted by the BH. Gas is optically
thin inside the Strömgren radius while it becomes optically thick
for gas outside the ionized gas. In this paper, the second in a
series, we have focused on the effects that radiation pressure and
angular momentum have on the gas supply and accretion rate
onto the BH. The simulations focused on accretion onto IMBHs
but the analytical scaling relationships we have derived are
rather general, and although the initial conditions are somewhat
idealized, should describe reality more accurately than the
classical Bondi formulae.

Here, we summarize the main results and scaling relationships
we found in the first two papers of this series for non-moving
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BHs accreting from a uniform medium. In our models we
have assumed that the BH accretes from a uniform density
and temperature reservoir, significantly larger than the Bondi
radius and 〈Rs〉. This assumption is well motivated for accretion
onto stellar and IMBH, but for SMBH there could be a supply
of gas to the BH from stars within 〈Rs〉 (stellar winds) or
other astrophysical objects (merger-driven accretion, etc). The
scaling relationships can be applied to problems involving a
wide range of masses of the accretor, from stellar mass objects
(e.g., Wheeler & Johnson 2011) to supermassive BHs. One
caveat is that we are neglecting the effects of self-gravity of the
gas (see Li 2011) and the gravitational potential due to the dark
matter halo of the host galaxy, which may play an important
role for the case of accretion onto supermassive BHs. Indeed,
a simple calculation shows that at the I-front gravity due to the
mass of the gas inside the Strömgren sphere exceeds the BH’s
gravity if Mbh � 106 M
/(η−1T∞,4). Our model predicts scaling
relationships for the period, duty cycle, peak and mean accretion
onto the BH, as well as relevant critical densities and size of the
Strömgren sphere around the BH. In the following summary
of the scaling relationships, we express Tin in the equations in
terms of Ē given by Equation (17) that is valid for a gas of low-
metallicity. Ē is related to the spectral index α by Equation (16).
For higher values of the gas metallicity, the coefficients in the
equations can be different due to changes in the relationship
between Tin and the spectrum of the radiation. A caveat is that
our simulations have explored a large but limited parameter
space for the masses of the BHs, temperature and density of
the ambient gas, etc. So, the proposed scaling relationships,
although they are based on a physically motivated model we
inferred from the simulations, should be used with caution for
sets of parameters that are significantly different from the range
confirmed by simulations.

The main qualitative result of our study is that radiation
feedback produces periodic oscillations of the accretion rate
from large scales onto the BH, and thus periodic short-lived
bursts of the BH luminosity. We found two modes of self-
regulated accretion, determined by

ncr
H,∞ ∼ 5 × 106 cm−3

Mbh,2

(
Ē

41 eV

)−9/16

. (19)

If nH,∞ < ncr
H,∞ (mode-I), the accretion luminosity of the

BH has regular bursts with period τ I
cycle during which the BH

increases its brightness by about five orders of magnitude but
only for a short fraction of the cycle period: the duty cycle is
f I

duty ≡ τon/τcycle ∼ 6%T
1/2
∞,4. During the quiescent phase in the

accretion cycle the gas accumulates in a dense shell in front
of the H ii region rather than accreting directly onto the BH.
As the luminosity decreases after the burst, the density inside
the H ii region also decreases because it is pushed outward
by a pressure gradient, thus maintaining the I-front radius
nearly constant. Eventually the density and pressure inside the
H ii region cannot sustain the weight of the dense shell that
collapses producing a burst of accretion. The cycle repeats
regularly. If nH,∞ > ncr

H,∞ (mode-II) the cycle is qualitatively
different: the duty cycle is about f II

duty � 50% and the peak
accretion rate is only a few times the mean. There is no collapse
phase of the dense shell and the H ii region remains roughly
stationary while the accretion rate oscillates. The physical
motivation for mode-II accretion is that the timescale for the
depletion of the gas inside the H ii region becomes dominated

by accretion onto the BH. Only for mode-II accretion can the
BH growth rate approach the Eddington limit, given that the
density exceeds the critical density

nEdd
H,∞ ∼ 4 × 106 cm−3

Mbh,2
T −1

∞,4η
−1
−1. (20)

For nearly all realistic cases nEdd
H,∞ � ncr

H,∞.
For Mbh = 100 M
, at densities of 105 cm−3 � nH,∞ �

nEdd
H,∞, the mean accretion rate onto the BH, in units of the

Bondi rate is 〈λrad〉 ∼ 1%T 2.5
∞,4(Ē/41 eV)−1, independent of all

the other parameters. For nH,∞ < 105 cm−3 instead, 〈λrad〉 ∼
1%(nH,∞/105 cm−3)1/2T 2.5

∞,4(Ē/41 eV)−1, depends weakly on
the gas density. One caveat is that in Paper I the dependence on
the free parameters of the transition density nH,∞ = 105 cm−3

has been only partially explored. As shown in Figure 4 of
the present paper, the simulation results are consistent with a
transition density inversely proportional to the BH mass. Hence,
if 105M−1

bh,2 cm−3 � nH,∞ � nEdd
H,∞ the mean accretion rate is

proportional to the thermal pressure nH,∞T∞ of the ambient gas:

〈Ṁ〉 ≈ (4 × 1018 g s−1)M2
bh,2

( nH,∞
105 cm−3

)
T∞,4

(
Ē

41 eV

)−1

.

(21)

If nH,∞ > nEdd
H,∞ then 〈Ṁ〉 = LEdd(ηc2)−1. The duty cycle is

fduty =
⎧⎨
⎩

f I
duty ≈ 6%T

1/2
∞,4 if nH,∞ � ncr

H,∞

f II
duty � 50% if nH,∞ > ncr

H,∞,

(22)

and the maximum accretion luminosity which depends on the
duty cycle thus is

Lmax

LEdd
≈ min

[
1,Aη−1Mbh,2

( nH,∞
105 cm−3

)
T∞,4

(
Ē

41 eV

)−1
]
,

(23)

where LEdd = 1.3 × 1040Mbh,2 erg s−1, and

A =
⎧⎨
⎩

AI ≈ 0.5 T
−1/2
∞,4 if nH,∞ � ncr

H,∞

AII ≈ 0.06 if nH,∞ > ncr
H,∞.

(24)

The cycle of the oscillations also falls into two regimes:

τcycle =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ I
cycle ≈ (0.1 Myr)M2/3

bh,2η
1/3
−1

( nH,∞
1 cm−3

)−1/3
(

Ē

41 eV

)−3/4

,

if nH,∞ � ncr
H,∞

τ II
cycle ≈ (1 Gyr)η−1

( nH,∞
1 cm−3

)−1
(

Ē

41 eV

)−7/8

,

if nH,∞ > ncr
H,∞.

(25)

The astrophysical applications of this model are innumerable
and are beyond the aim of this paper to discuss them in
detail. However, one of the most obvious results is that the
luminosity of an accreting BH should be smaller than the
value inferred applying the Bondi formula, not only because
the mean accretion rate is always �1% of the Bondi rate, but
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also because if nH,∞ < ncr
H,∞, 94% of the time is about five

orders of magnitude lower than the Bondi rate inferred from
the ambient medium temperature and density. Thus, this simple
argument could have interesting consequences to interpret the
observed quiescence of SMBH in ellipticals and Sgr A∗. Also,
the duty cycle of ∼6%T

1/2
∞,4 we found for mode-I accretion is

interestingly close to the fraction of galaxies with AGNs ∼3%
found in deep field surveys (e.g., Steidel et al. 2002; Luo et al.
2011). For SMBHs of about 106 M
, ncr

H,∞ ∼ 500 cm−3.
In this paper we also found that IMBH can grow at near

the Eddington limit if nH,∞ > max(nEdd
H,∞, ncr

H,∞). This has
potentially important consequences on the ability of seed IMBH
from Population III stars to grow by accretion into SMBH during
the first gigayears of the universe age. This possibility seemed
to be precluded if the duty cycle of the burst was 6% as found
in previous works.

Finally, although the nature of ULXs is unknown, there are
indications that they may host an IMBH (e.g., Strohmayer &
Mushotzky 2009). An IMBH accreting from an interstellar
medium (ISM) with high pressure such as a dense molecu-
lar cloud (nH,∞T∞ ∼ 105–107 cm−3 K) would be Lmax ∼
1037–1039 erg s−1 for Mbh = 1000 M
, which is comparable to
the luminosity of ULXs. However, this assumes that the IMBH
is at rest with respect to the ISM. We will focus on gas accretion
onto moving BHs with radiation feedback in the third paper of
this series (K. Park & M. Ricotti 2012, in preparation). Clearly,
more work is needed to address each of the aforementioned
topics in detail, but the basic ground work presented in the
present paper may allow the re-visitation of a few longstanding
problems still unsolved in astrophysics.
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