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ABSTRACT

All dark matter structures appear to follow a set of universalities, such as phase-space density or velocity anisotropy
profiles; however, the origin of these universalities remains a mystery. Any equilibrated dark matter structure can be
fully described by two functions, namely the radial and tangential velocity distribution functions (VDFs), and once
these two are understood we will understand all the observed universalities. Here, we demonstrate that if we know
the radial VDF then we can derive and understand the tangential VDF. This is based on simple dynamical arguments
about properties of collisionless systems. We use a range of controlled numerical simulations to demonstrate the
accuracy of this result. We therefore boil the question of the dark matter structural properties down to understanding
the radial VDF.
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1. INTRODUCTION

A growing number of seeming universalities have been
identified in numerical simulations of dark matter structures.
Most of these are integrated quantities, such as the density profile
(Navarro et al. 1996; Moore et al. 1998), the pseudo-phase-space
density (Taylor & Navarro 2001), and the velocity anisotropy
(Hansen & Moore 2006). The cause of these universalities
remains, however, essentially unknown.

The origin of the universalities may lie in some fundamen-
tal property of dark matter, be it some statistical mechanics
(Lynden-Bell 1967; Hjorth & Williams 2010) or optimization
of some generalized entropy (Plastino & Plastino 1993; Hansen
et al. 2005; He & Kang 2010; He 2012). It may also be associated
with dynamical effects, like radial orbit instability (Henriksen
2009; Bellovary et al. 2008), or phase mixing or violent relax-
ation (Lynden-Bell 1967; Kandrup et al. 2003). Alternatively,
it could just be a “coincidence,” since all structures have been
built up through similar processes of mergers and accretion
(González-Casado et al. 2007; Salvador-Sole et al. 2007).

A first step toward answering the question of the origin of
the integrated universalities is to look at the actual distribution
of velocities. Also, the actual shape of the velocity distribution
function (VDF) has been suggested to be universal (Hansen
et al. 2006), which naturally could explain all the integrated
universalities.

Asking the question about what dark matter structures fun-
damentally want is different from asking what dark matter
structures in an expanding universe actually end up doing. We
will therefore not be considering structures from cosmologi-
cal simulations, since their profiles often have merger history
and environment dependent profiles. We will instead consider
a range of numerical simulations where we have better con-
trol of their evolution. We will repeatedly perturb the struc-
tures in controlled manners, as well as giving the structures
sufficient time that phase mixing between individual perturba-
tions may be more complete than is the case in cosmological
simulations.

A non-trivial dark matter VDF also has direct implications for
direct dark matter experiments (see, e.g., Vergados et al. 2008;

Fairbairn & Schwetz 2009; Kuhlen et al. 2010 for discussions
and references).

We present here numerical evidence that the origin of the
shape of the tangential VDF is simple dynamics, hence sup-
porting the idea that dark matter wants to follow very sim-
ple dynamical rules. This explains the origin of the velocity
anisotropy profile in the inner region of dark matter structures,
with no seeming need for advanced statistical mechanical or
generalized entropic principles. However, as we will point out,
we are still left with an unknown origin of the radial VDF and
hence the density profile and the pseudo-phase-space density
profile are also not yet explained.

Below, we will explain the surprisingly simple dynamical
reason for the full shape of tangential part of the VDF and
perform numerical simulations supporting this conclusion.

Some of these physical arguments have been presented
previously (Hansen 2009); however, the simulations presented
here are significantly improved. In particular, we create a set
of controlled perturbations using energy exchange reminiscent
of violent relaxation and dynamical friction, which allows the
particle distributions to change significantly, without having the
structure depart from spherical symmetry. At the same time,
the structures are analyzed only after convergence to a fully
stable configuration has been achieved.

2. DECOMPOSITION

Let us consider a particle moving in the smooth and spherical
potential of many collisionless particles. The velocity of this
particular particle can be decomposed into three components,
namely the radial and the two tangential components. With such
a decomposition, we can consider all particles in a given radial
bin and get the VDF in both the radial and tangential directions.
If the structure is non-rotating, then the two tangential VDFs
will be identical.

It has long been known that the radial and the tangential
VDFs are different, and physically this difference may seem very
reasonable for equilibrated systems, as we will now explain.

We will first discuss the radial VDF. Consider a thin spherical
bin at a radius r. If we consider the velocity components moving
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outward in the radial direction, then those must be compensated
by particles further out moving inward. This compensation must
depend on the particular density profile of the structure. This is
most clearly seen in the Eddington inversion method (Eddington
1916; Binney & Tremaine 1987), from which one can easily
derive the full radial VDF from the full density profile.

Now, let us instead consider the tangential velocity compo-
nents. Instantaneously, the components are moving in the tan-
gential plane. For particles with circular speed, this means that
the component is moving in constant density and constant po-
tential. Particles moving slowly in the tangential plane will still
be near the same density and potential after a short time inter-
val. That implies that equilibrium can be achieved simply by
having other components in the same radial bin moving in the
opposite direction. Therefore, whereas the radial VDFs depend
on the full radial density profile, the tangential VDFs apparently
do not have to concern themselves with other radial bins. The
tangential VDF could therefore, in principle, be the same at all
radii.

This argument only holds instantaneously. Particles whose
tangential velocity components are high will, after a longer time
interval, Δt , be moving outward into lower density regions,
and will therefore later have converted their tangential com-
ponent into both radial and tangential velocity components.
Effectively, this implies that the argument that the tangen-
tial velocity component moves in constant potential and con-
stant density only holds for low-velocity particles. Below, we
will use numerical simulations to show that the breakdown of
this argument effectively happens around 70% of the escape
velocity, vesc.

2.1. Low-velocity Component

We have argued above that the low-velocity component of
the tangential VDF should have a simple shape, which should
be the shape of collisionless particles moving in a constant
potential and constant density. To simulate a uniform medium
is rather difficult using N-body simulations, because any power
or noise will induce gravitational collapse, which leads to a
departure from homogeneity. Instead, one can make a very
simple analytical argument which allows one to derive the VDF
of a homogeneous medium.

Let us consider a spherical structure which has a known
density profile, ρ(r). If one has β = 0, then we can use
Eddington’s method to derive the VDF,

f (E) = 1√
8π2

∫ E

0

d2ρ

dΨ2

dΨ√
E − Ψ

, (1)

where Ψ(r) is the relative potential as a function of radius and
E is the relative energy, E = Ψ − mv2/2. Eddington’s method
provides the unique ergodic distribution function (Binney &
Tremaine 1987). We use this method to find the VDF at all
radii.

Imagine that the structure is particularly simple, namely with
a constant density slope, γ = dlogρ/dlogr , over a very large
radial range. To be concrete, say that γ = −2 over 20 orders
of magnitude in radius, and is then truncated abruptly inside
and outside this range. Eddington’s method shows us that this
(isothermal sphere) has a VDF which is a Gaussian at all radii
(except for the details arising from the truncation).

Now, consider a more shallow slope, e.g., γ = −1.2 or −0.4.
For any value of γ we can use Eddington’s method to calculate
the VDF, and at any radius it will have exactly the same shape as

a function of vr/σr . For each density slope, we use this method
to find the unique distribution function.

Finally, we can extrapolate this approach to γ = 0, which is
identical to the case of constant density and constant potential.
The shape of the VDF for this case is

f (v) ∼
(

1 +
v2

3σ 2

)−5/2

. (2)

γ = 0 is the condition for a particle moving in constant density
and potential, and this is therefore the shape for the tangential
VDF. In the case with γ = 0 there is no difference between the
radial and tangential directions, and the assumption of β = 0
in the derivation is therefore correct, and the technique is thus
self-consistent.

We now have an analytical expression for the shape of the
tangential VDF at small velocities, and only the normalizations
are unknown. These are the overall normalization (which must
be related to the density at that radius) and the normalization
of the velocity (which is related to the tangential velocity
dispersion).

2.2. High-velocity Component

The high-velocity components are possibly even simpler to
describe. If a velocity component is purely tangential at a given
time, then a short time later it will be a combination of tangential
and radial (unless it happens to have exactly the circular speed).
We should therefore expect that the shape of the tangential and
radial components are similar at high velocities.

There is only one complication, namely the normalization.
The overall normalization must be identical between the radial
and tangential components (since this is just the local density);
however, as opposed to the low-velocity component discussed
above, the normalization of the high-velocity components must
be absolute, i.e., vrad ∼ vtan.

2.3. The Transition

The transition from the low- to the high-velocity components
in a real system must be smooth, and is probably rather
non-trivial. However, for simplicity, we will here make the
approximation that the transition is abrupt, and we make no
attempt to make it smooth. Practically, we simply assume that
the transition always happens near 0.7 vesc. We will address this
issue further in the discussion section.

3. SIMULATIONS

The first simulation is a cold collapse, where the inclusion
of substructure breaks the spherical symmetry. We distributed
5 × 105 particles according to a Hernquist density profile
(Hernquist 1990) with scale radius 1 and a cutoff at 200. In
addition 5 × 105 particles, with the same mass as the main halo
particles, were distributed in 24 identical subhalos, also having
Hernquist density profiles, but with a scale radius of 0.5 and a
cutoff radius of 5. The centers of the subhalos were sampled in
the same way as the particles in the main halo. The velocities
of all the particles were initially zero. The total mass in the
simulation was 1. We ran the simulation for 200 time units,
which corresponds to 200 dynamical times at the scale radius
for the initial structure. Such a cold collapse is similar to the
simulations by van Albada (1982).

For all the non-cosmological simulations discussed here, we
used the parallel N-body simulation code, Gadget2 (Springel
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Figure 1. Radial (blue stars) and tangential (green diamonds) VDFs for three
radial bins in the cold collapse simulation. From top to bottom the radial
bins are at γ = −1.6,−2.0, and −2.4, and the bins are shifted vertically
to improve readability. The red (solid) lines are all of the same theoretical shape
as Equation (2), and are seen to provide an acceptable fit in the low-velocity
region.

(A color version of this figure is available in the online journal.)

Figure 2. Same as Figure 1, only linear-log to see details of the high-energy
tail. Radial (blue stars) and tangential (green diamonds) VDFs for three radial
bins in the cold collapse simulation. From top to bottom the radial bins are
at γ = −1.6,−2.0, and −2.4, and the bins are shifted vertically to improve
readability. The red (solid) lines are of the theoretical shape for the low-velocity
region. For high velocities, it is clearly seen that the radial and tangential VDFs
approach each other rapidly.

(A color version of this figure is available in the online journal.)

2005). For further details on the cold collapse, see Sparre &
Hansen (2012).

To sample the VDFs, we distribute the particles in radial bins
with the same number of particles in each bin. In Figure 1
we show both the radial (blue stars) and tangential (green
diamonds) VDFs for three radial bins, chosen near a slope of
γ = −1.6,−2.0, and −2.4 (from top to bottom). We also show
the predicted shape of the tangential VDF (solid line), which
is clearly seen to provide an acceptable fit in the low-velocity
region. It is also clear that the radial and tangential VDFs are
very different in the low-velocity region.

To see the details of how the radial and tangential VDFs start
agreeing in the high-velocity region, we plot the VDFs from the
same three radial bins in a linear-log space in Figure 2. It is clear
that for high-velocity particles the radial VDFs (blue stars) are

Figure 3. Radial and tangential VDFs for three radial bins in the G-perturbation
simulation. From top to bottom the radial bins are at γ = −1.8,−2.3, and −3,
and the bins are shifted vertically to improve readability. All the red (solid) lines
are of the same theoretical shape as Equation (2) for the low-velocity region.
For high velocities, it is clearly seen that the radial and tangential VDFs are very
similar.

(A color version of this figure is available in the online journal.)

in good agreement with the tangential VDFs (green diamonds).
Interestingly, the tangential VDFs can be approximated with the
theoretical solid curve for low energies, and with the radial VDFs
for high velocities. For the radially innermost bins (at slopes
shallower than −2), this transition happens to be just around
v = 0.7 vesc. Only for radial bins further out than γ = −2 does
it seem necessary to use a smoother transition.

3.1. G-perturbations

In order to test further the theoretical claims for the tangential
VDF, we wish to construct a perturbation/equilibration scheme,
which allows the VDFs to change significantly, without having
the structure depart from spherical symmetry.

We set up structures in perfect equilibrium. These structures
may have any density profile, and have zero anisotropy or follow
an Osipkov–Merritt beta profile (Binney & Tremaine 1987).
Now, we increase the value of the gravitational constant by 20%.
This increases the potential and makes the structure contract, and
after a few dynamical times a new equilibrium is reached. Next,
we repeatedly increase or decrease the gravitational constant,
and between each change we allow the structure to phase-mix
and find a new equilibrium. After 20 such perturbations we use
the standard value of G, and let the structure relax completely.
For further details, see Sparre & Hansen (2012).

In Figure 3, we show three radial bins from a simulation
which initially was constructed as an isotropic Hernquist profile.
This in particular means that the initial conditions (before the
G-perturbations were executed) had identical radial and tangen-
tial VDFs. Now, after the perturbations and subsequent relax-
ation there is a large difference between the radial and tangential
VDFs for small velocities. In contrast, at high velocities the tan-
gential and radial VDFs quickly approach each other. As is also
visible from the figure, the tangential VDF is well fitted by the
theoretical prediction for small velocities.

3.2. Explicit Energy Exchange

Collisionless particles experience different kinds of energy
exchange between each other, in particular through violent re-
laxation (where the changing potential implies that the particle
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Figure 4. Radial and tangential VDFs for three radial bins after perturbations
by explicit energy exchange. From top to bottom the radial bins are at
γ = −1.7,−2.4, and −3.0, and the bins are shifted vertically to improve
readability. The red (solid) lines are of the theoretical shape for the low-velocity
region. For high velocities, it is clearly seen that the radial and tangential VDFs
rapidly approach each other.

(A color version of this figure is available in the online journal.)

energies change) and through dynamical friction (which trans-
fers energy from the fast to the slower particles). We therefore
consider a perturbation where the spherical symmetry is again
conserved; however, we allow the particles to exchange energy
amongst each other. This is done in such a way that each ra-
dial bin conserves energy, whereby both density and dispersion
profiles are unaffected by the perturbation itself. This energy
exchange is instantaneous and the subsequent evolution is with
normal collisionless dynamics. After each perturbation we again
allow for sufficient phase mixing (see Hansen et al. 2010, for
details). After sufficiently many perturbations (typically 20 or
30) the structures have converged to a stable state, which will not
change when exposed to further similar perturbations (Hansen
et al. 2010, HJS; Barber et al. 2012).

In Figure 4 we present the VDFs from three radial bins
in the final structure, which are taken at density slopes of
γ = −1.7,−2.4, and −3.0. Again, we see that the final VDFs
agree well between the radial and tangential for high-velocity
components and that the low-velocity components are well fitted
by the analytical expression.

4. DISCUSSION

We have demonstrated that three extremely different artificial
and controlled perturbations all lead to a tangential VDF which
is in good agreement with the theoretical prediction. This result
is in good agreement with earlier studies including head-on
collisions and galaxy formation (Hansen et al. 2006; Hansen
2009), and provides very strong evidence that the origin of
the shape of the dark matter tangential VDF is indeed as
simple as explained in Section 2.1. An important difference
from earlier studies is that we have here been investigating
structures which have been exposed to controlled perturbations,
and analyzed only after convergence to a stable configuration
has been achieved.

Let us recall the idea behind this paper. If we know the radial
and tangential VDFs, then we know everything else, such as
the phase-space density, the velocity anisotropy, and the density
profiles. For some idealized structures it is possible to derive
the radial VDF directly from the density profile, and our results

Figure 5. Radial variation of β as function of radius for the structures considered
in Figures 1–4 (solid line: HJS 2010 perturbation; dashed line: G-perturbation;
dot-dashed line: infall simulation). The structures all have a strong variation,
going from essentially isotropic toward the central region, to radial orbits in the
outer regions.

(A color version of this figure is available in the online journal.)

here imply that in that case we can derive the tangential VDF. If
we have the radial VDF, then we can derive the tangential VDF.

In the derivation of the tangential VDF we made no assump-
tions about the anisotropy of the system, and the tangential
VDF should therefore be the same for all systems and at all
radii, irrespective of their anisotropy profiles. This statement
naturally only holds for realistic systems which have been per-
turbed and allowed to relax. One can always create systems in
quasi-equilibrium states which may even have highly different
distribution functions. Systems created away from an equilib-
rium state most often also have very different tangential dis-
tribution functions. However, as we are demonstrating in this
paper, all systems which are exposed to sufficient perturbations
and subsequently allowed to relax to a quasi-equilibrium state
will indeed have a tangential VDF of exactly this shape. In Fig-
ure 5, we present the anisotropy profiles for the three systems
considered. In particular, we see that the anisotropy has a strong
radial variation, going from essentially isotropic in the central
region to radially dominated orbits in the outer regions. Yet the
shape of the tangential VDF is the same at all radii.

It has previously been suggested that possibly the radial
VDF is sufficiently close to a rescaled VDF resulting from
the Eddington method (Hansen 2009). We have tested this
suggestion by fitting the density profile and then using the
Eddington method to extract the radial VDF at all radii.
However, the resulting VDF is not an accurate representation
of the actual radial VDF. This means that we are still not at the
point of understanding the radial VDF.

One interesting aspect of the arguments presented for the
shape of the tangential VDF is that for γ = 0 it should be
identical to the radial one. That trend is already clear from the
figures, namely that the tangential VDF is suggestively close to
the radial one for the innermost bins (upper curves in all figures).
To test this further, we selected a radial bin in the inner region
(outside of five times the softening length for each structure,
and also outside a further 30,000 particles). The result is seen in
Figure 6, where the tangential (dashed) and radial (solid) VDFs
are seen to be very similar. The local density slope at these bins
ranged from γ = −0.4 to −1 (bottom to top in Figure 6).
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Figure 6. Radial (solid) and tangential (dashed) VDFs for an inner bin (but not
including approximately 35,000 of the most central particles). It is clear that for
all the structures the radial and tangential VDFs are very similar. We add the same
theoretical shape of Equation (2) in red (dot-dashed) lines, just to demonstrate
the agreement. The structures included here are the cold collapse, two different
G-perturbations, and three different HJS2010 perturbations, covering a range
of initial density and anisotropy profiles. In particular, here we present results
for structures which were initially set up with a shallow central density profile.
Velocities are scaled by the escape velocity and shifted vertically to improve
readability. For this figure we selected structures which were created with zero
inner slope, γinitial = 0, before perturbations were applied.

(A color version of this figure is available in the online journal.)

We have discussed that the transition between high and low
velocity may be approximated as a rather sharp transition.
This is certainly a good approximation for the inner region
(inside a slope of γ = −2). However, at larger radii it is
clear that a smoother transition would provide a more accurate
representation of the tangential VDF. For all the radial bins
and structures considered in this paper, we have estimated the
best velocity for the transition, vtrans, and it appears that this
transition is in the range 0.6 vesc < vtrans < 0.8 vesc. Thus, in
order to avoid unnecessary fitting parameters, it is a rather good
approximation to fix this at vtrans = 0.7 vesc.

5. CONCLUSIONS

We have demonstrated that half of the distribution function
(specifically, the tangential VDF) for dark matter structures can
be understood from simple dynamical arguments. This implies
that when we are eventually able to derive the other half (namely
the radial VDF) we will understand all the properties of dark

matter structures, including the seeming universalities of the
density, phase-space density, and velocity anisotropy profiles.

We saw that the derivation of the tangential VDF did not
require any reference to statistical mechanics or generalized
entropy, but instead appears as a result of very simple dynamics.
It now remains to derive the radial VDF, and it will be interesting
to see if this will also be possible based on similar basic
dynamical arguments.

The Dark Cosmology Centre is funded by the Danish National
Research Foundation. The simulations were performed on
the facilities provided by the Danish Center for Scientific
Computing.
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2007, ApJ, 666, 181
Sparre, M., & Hansen, S. H. 2012, J. Cosmol. Astropart. Phys.,

JCAP07(2012)042
Springel, V. 2005, MNRAS, 364, 1105
Taylor, J. E., & Navarro, J. F. 2001, ApJ, 563, 483
van Albada, T. S. 1982, MNRAS, 201, 939
Vergados, J. D., Hansen, S. H., & Host, O. 2008, Phys. Rev. D, 77, 023509

5

http://dx.doi.org/10.1111/j.1365-2966.2012.21249.x
http://adsabs.harvard.edu/abs/2012MNRAS.424.1737B
http://adsabs.harvard.edu/abs/2012MNRAS.424.1737B
http://dx.doi.org/10.1086/591120
http://adsabs.harvard.edu/abs/2008ApJ...685..739B
http://adsabs.harvard.edu/abs/2008ApJ...685..739B
http://adsabs.harvard.edu/abs/1987gady.book.....B
http://adsabs.harvard.edu/abs/1916MNRAS..76..572E
http://adsabs.harvard.edu/abs/1916MNRAS..76..572E
http://adsabs.harvard.edu/abs/2009JCAP...01..037F
http://www.arxiv.org/abs/astro-ph/0702368
http://dx.doi.org/10.1088/0004-637X/694/2/1250
http://adsabs.harvard.edu/abs/2009ApJ...694.1250H
http://adsabs.harvard.edu/abs/2009ApJ...694.1250H
http://dx.doi.org/10.1016/j.newast.2005.01.005
http://adsabs.harvard.edu/abs/2005NewA...10..379H
http://adsabs.harvard.edu/abs/2005NewA...10..379H
http://dx.doi.org/10.1088/2041-8205/718/2/L68
http://adsabs.harvard.edu/abs/2010ApJ...718L..68H
http://adsabs.harvard.edu/abs/2010ApJ...718L..68H
http://dx.doi.org/10.1016/j.newast.2005.09.001
http://adsabs.harvard.edu/abs/2006NewA...11..333H
http://adsabs.harvard.edu/abs/2006NewA...11..333H
http://adsabs.harvard.edu/abs/2006JCAP...01..014H
http://dx.doi.org/10.1111/j.1365-2966.2011.19830.x
http://adsabs.harvard.edu/abs/2012MNRAS.419.1667H
http://adsabs.harvard.edu/abs/2012MNRAS.419.1667H
http://dx.doi.org/10.1111/j.1365-2966.2010.16869.x
http://adsabs.harvard.edu/abs/2010MNRAS.406.2678H
http://adsabs.harvard.edu/abs/2010MNRAS.406.2678H
http://dx.doi.org/10.1088/0004-637X/690/1/102
http://adsabs.harvard.edu/abs/2009ApJ...690..102H
http://adsabs.harvard.edu/abs/2009ApJ...690..102H
http://dx.doi.org/10.1086/168845
http://adsabs.harvard.edu/abs/1990ApJ...356..359H
http://adsabs.harvard.edu/abs/1990ApJ...356..359H
http://dx.doi.org/10.1088/0004-637X/722/1/851
http://adsabs.harvard.edu/abs/2010ApJ...722..851H
http://adsabs.harvard.edu/abs/2010ApJ...722..851H
http://dx.doi.org/10.1046/j.1365-8711.2003.06466.x
http://adsabs.harvard.edu/abs/2003MNRAS.341..927K
http://adsabs.harvard.edu/abs/2003MNRAS.341..927K
http://adsabs.harvard.edu/abs/2010JCAP...02..030K
http://adsabs.harvard.edu/abs/1967MNRAS.136..101L
http://adsabs.harvard.edu/abs/1967MNRAS.136..101L
http://dx.doi.org/10.1086/311333
http://adsabs.harvard.edu/abs/1998ApJ...499L...5M
http://adsabs.harvard.edu/abs/1998ApJ...499L...5M
http://dx.doi.org/10.1086/177173
http://adsabs.harvard.edu/abs/1996ApJ...462..563N
http://adsabs.harvard.edu/abs/1996ApJ...462..563N
http://dx.doi.org/10.1016/0375-9601(93)90195-6
http://adsabs.harvard.edu/abs/1993PhLA..174..384P
http://adsabs.harvard.edu/abs/1993PhLA..174..384P
http://dx.doi.org/10.1086/520325
http://adsabs.harvard.edu/abs/2007ApJ...666..181S
http://adsabs.harvard.edu/abs/2007ApJ...666..181S
http://dx.doi.org/10.1088/1475-7516/2012/07/042
http://adsabs.harvard.edu/abs/2012JCAP...07..042S
http://dx.doi.org/10.1111/j.1365-2966.2005.09655.x
http://adsabs.harvard.edu/abs/2005MNRAS.364.1105S
http://adsabs.harvard.edu/abs/2005MNRAS.364.1105S
http://dx.doi.org/10.1086/324031
http://adsabs.harvard.edu/abs/2001ApJ...563..483T
http://adsabs.harvard.edu/abs/2001ApJ...563..483T
http://adsabs.harvard.edu/abs/1982MNRAS.201..939V
http://adsabs.harvard.edu/abs/1982MNRAS.201..939V
http://dx.doi.org/10.1103/PhysRevD.77.023509
http://adsabs.harvard.edu/abs/2008PhRvD..77b3509V
http://adsabs.harvard.edu/abs/2008PhRvD..77b3509V

	1. INTRODUCTION
	2. DECOMPOSITION
	2.1. Low-velocity Component
	2.2. High-velocity Component
	2.3. The Transition

	3. SIMULATIONS
	3.1. G-perturbations
	3.2. Explicit Energy Exchange

	4. DISCUSSION
	5. CONCLUSIONS
	REFERENCES

