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ABSTRACT

Results on the obliquity of exoplanet host stars—the angle between the stellar spin axis and the planetary orbital
axis—provide important diagnostic information for theories describing planetary formation. Here we present the
first application of asteroseismology to the problem of stellar obliquity determination in systems with transiting
planets and Sun-like host stars. We consider two systems observed by the NASA Kepler mission which have multiple
transiting small (super-Earth sized) planets: the previously reported Kepler-50 and a new system, Kepler-65, whose
planets we validate in this paper. Both stars show rich spectra of solar-like oscillations. From the asteroseismic
analysis we find that each host has its rotation axis nearly perpendicular to the line of sight with the sines of the
angles constrained at the 1σ level to lie above 0.97 and 0.91, respectively. We use statistical arguments to show that
coplanar orbits are favored in both systems, and that the orientations of the planetary orbits and the stellar rotation
axis are correlated.
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1. INTRODUCTION

The obliquities of the host stars in exoplanetary systems
display a surprising diversity, including low obliquities remi-
niscent of the solar system, strongly tilted stars, and retrograde
systems in which the directions of stellar rotation and planetary
orbital revolution are opposite. Most of these results have been
obtained by detecting the Rossiter–McLaughlin (RM) effect, a
spectroscopic anomaly that is observed during a planetary tran-
sit (Queloz et al. 2000; Winn et al. 2005). In addition, for some
systems the obliquity has been determined through the detec-
tion and interpretation of transits of a planet over starspots (e.g.,
Deming et al. 2011; Désert et al. 2011; Nutzman et al. 2011;
Sanchis-Ojeda et al. 2011), and for one system (Barnes et al.
2011; Szabó et al. 2011) it has been estimated using the sig-
natures of gravity darkening from rapid stellar rotation (Barnes
2009).

Almost all of the previous results pertain to host stars with
hot Jupiters. The diversity of obliquities seen in those systems
has been taken as evidence that the process of converting a
“normal” Jupiter into a hot Jupiter can tilt the inclination of
the planetary orbit (see, e.g., Winn et al. 2010b; Triaud et al.

2010; Albrecht et al. 2012). It would be interesting to extend
these measurements to systems with longer-period planets, and
multiple-planet systems, to test whether the high obliquities are
indeed confined to the hot-Jupiter systems. Unfortunately, the
long-period and multiple-planet systems tend to involve smaller
planets and intrinsically fainter host stars (Latham et al. 2011;
Steffen et al. 2012), making it difficult to apply the RM and
starspot techniques. This is why only two such systems have
been examined to date (Sanchis-Ojeda et al. 2012; Hirano et al.
2012a). It would be advantageous to develop a technique that
does not depend so critically on the signal-to-noise ratio (S/N)
of the transit data. One possibility is to use a combination of
the measured rotation period (Prot), the projected rotation rate
(v sin is), and the stellar radius (R) to determine sin is, the sine of
the angle is between the stellar rotation axis and the line of sight
(see, e.g., Hirano et al. 2012b). However, this method is usually
limited by the relatively poor accuracy of v sin is measurements
for cool stars.

Asteroseismology provides another potentially powerful
method. The detection and interpretation of the solar-like os-
cillations shown by solar-type stars is well known to provide
accurate fundamental properties of host stars (e.g., Bazot et al.
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2005; Bouchy et al. 2005; Vauclair et al. 2008; Soriano &
Vauclair 2010; Christensen-Dalsgaard et al. 2010; Ballot et al.
2011b; Batalha et al. 2011; Gilliland et al. 2011; Howell et al.
2012; Borucki et al. 2012; Carter et al. 2012; Escobar et al. 2012;
Barclay et al. 2013). Less well known is that in some cases the
rotationally induced splittings of oscillation modes can be used
to determine is (Gizon & Solanki 2003). When the host star also
has a transiting planet, the inclination ip of the planetary orbit
can be determined, and therefore the difference in inclination
between the star and planetary orbit can be calculated.

In contrast to the RM and starspot techniques, the applica-
bility of the asteroseismic method depends predominantly on
the stellar parameters and hardly at all on the planetary pa-
rameters, giving the asteroseismic method a decisive advan-
tage in measuring the stellar obliquities in systems with small
planets or long-period planets. The asteroseismic analysis does,
however, require bright targets and long-duration, high-cadence
photometric time series to give the requisite S/N and frequency
resolution for extracting clear signatures of rotation from the
oscillation spectrum, and hence the stellar inclination angle.

Here we present the first application of asteroseismology to
the problem of stellar obliquity determination for Sun-like exo-
planet hosts with transiting planets. Both of the systems consid-
ered in this paper have solar-type stars hosting multiple, small
(super-Earth sized) transiting planets. The identification of the
two-planet Kepler-50 system (KOI-262, KIC 11807274), along
with the validation of the transit signals as arising from plan-
ets, was previously reported by Steffen et al. (2013). Kepler-65
(KOI-85, KIC 5866724) is a three-planet system that is herein
identified and validated for the first time. Both systems involve
F-type stars at the brighter end of the Kepler target list, hav-
ing apparent magnitudes of Kp = 10.42 and Kp = 11.02,
respectively.

Previously, asteroseismic methods have been applied to
host stars with single, non-transiting large planets discovered
using the Doppler method—HD 52265, a solar-type host with
asteroseismic data from CoRoT (Ballot et al. 2011b; and
HR 8799, an A-type host showing γ Doradus pulsations in
ground-based observations (Wright et al. 2011)—with only
moderate constraints returned on the stellar inclinations.

The rest of the paper is organized as follows. We begin in
Section 2 by estimating the fundamental stellar properties, using
the solar-like oscillations detected in the Kepler light curves and
complementary spectroscopic data. Section 3 presents the planet
properties of both systems, including validation of the planets
orbiting Kepler-65 and discussion of the mutual inclinations
of the planetary orbits of both systems. The asteroseismic
estimation of the stellar obliquities, which depends on extracting
signatures of rotation from the oscillation spectra, is presented
in Section 4. Section 5 compares the asteroseismic results on
rotation with independent estimates of the surface rotation
based on the quasi-periodic variations seen in the Kepler
light curves, and measurements of the sky-projected surface
rotational velocity based on spectroscopic line broadening. We
finish in Section 6 with a discussion of the implications of our
results for theories of planetary formation.

2. FUNDAMENTAL PROPERTIES OF THE STARS

We determined the fundamental stellar properties of
Kepler-50 and Kepler-65 by comparing a few key asteroseis-
mic and spectroscopic observables to the outputs of stellar-
evolutionary models.

The asteroseismic results are based on the Kepler short-
cadence (SC) data (Gilliland et al. 2010), whose one-minute
sampling is needed to detect the short-period oscillations ob-
served in solar-type stars (see also Chaplin et al. 2011b). The
light curve for Kepler-50 spans 18 months, from Kepler ob-
serving quarters 6 through 11 inclusive. The light curve for
Kepler-65 spans 27 months, from quarters 3 through 11.

Before computing power spectra, the planetary transit sig-
nals were removed from the time series by applying a median
high-pass filter of width appropriate for the transit durations
(see, e.g., Christensen-Dalsgaard et al. 2010). The clear sep-
aration of the relevant timescales—i.e., periods of days as-
sociated with the transits versus periods of minutes associ-
ated with the dominant oscillations—means that this approach
cleans the frequency-power spectrum in such a way as to al-
low the asteroseismic analysis to proceed unhindered. Figure 1
shows frequency-power spectra of the light curves of Kepler-50
(top panel) and Kepler-65 (bottom panel). The spectra were
computed using a Lomb–Scargle periodogram (Scargle 1982),
and calibrated to satisfy Parseval’s theorem. Both stars present
clear patterns of peaks due to solar-like oscillations, which
are small-amplitude pulsations that are stochastically excited
and intrinsically damped by the near-surface convection. Many
acoustic (pressure, or p) modes of high radial order, n, are ex-
cited to observable amplitudes. Solar-type stars oscillate in both
radial and non-radial modes. The modes may be decomposed
onto spherical harmonic functions of degree l. Both stars show
detectable overtones of modes with l � 2.

2.1. Spectroscopic Data and Analysis

Estimates of Teff and [Fe/H] were obtained by analyzing
high-resolution optical spectra. The observations were made
as part of the Kepler Follow-up Observing Program. Spectra
were collected for both stars using the High Resolution Echelle
Spectrometer spectrograph on the 10 m Keck telescope on
Mauna Kea. In the case of Kepler-50 spectra were also collected
with the fiber-fed Tillinghast Reflector Echelle Spectrograph on
the 1.5 m Tillinghast Reflector at the Fred Lawrence Whipple
Observatory, and the Tull Coudé Spectrograph on the 2.7 m
Harlan J. Smith Telescope at the McDonald Observatory, Texas.
For Kepler-65, additional spectra were collected by the FIber-
fed Echelle Spectrograph on the 2.5 m Nordic Optical Telescope
on La Palma.

The Keck data were analyzed using the Spectroscopy Made
Easy (SME) pipeline (Valenti & Piskunov 1996; Valenti &
Fischer 2005). Data from the other telescopes were ana-
lyzed with the Stellar Parameter Classification (SPC) pipeline
(Buchhave et al. 2012). Good agreement was found between
the SME and SPC estimates of Teff and [Fe/H]. For subsequent
analysis we adopted the SME values. The SME and SPC analy-
ses also provided estimates of v sin i based on the observed line
broadening (see Torres et al. 2012 for further details). Section 5
discusses the comparison of those results with the asteroseismic
estimates of stellar rotation rates.

A well-known problem with the analysis of high-resolution
spectra of solar-type stars is that log g is difficult to pin
down, and subject to systematic errors that propagate into
the uncertainties of other parameters such as Teff and [Fe/H].
For this reason, an iterative procedure was used to refine the
estimates of the spectroscopic parameters (e.g., see Bruntt et al.
2012; Torres et al. 2012). In this procedure, the initial values
of the spectroscopic parameters are used together with the
asteroseismic parameters to compute log g (see next section).
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Figure 1. Frequency-power spectra of Kepler-50 (top panel) and Kepler-65 (bottom panel) showing rich spectra of overtones of solar-like oscillations. The main plots
in both figures show six overtones, with modes tagged according to their angular degree, l. The so-called large frequency separation between one pair of adjacent
l = 0 modes is also marked. The insets show the full frequency extent of both observable p-mode spectra. The Gaussian-like power envelope of each spectrum is
readily apparent, which peaks at νmax. Plots rendered in black are the power spectra after smoothing with a 1.5 μHz filter. The light gray curves show the spectra after
applying lighter smoothing.

(A color version of this figure is available in the online journal.)

The spectroscopic analysis was then repeated with log g fixed
at this asteroseismic value, to yield the revised values of Teff
and [Fe/H]. Convergence of the inferred properties (to within
the estimated uncertainties) was achieved after just a single
iteration. The final, iterated spectroscopic results are presented
in Table 1.

2.2. Asteroseismic Estimation of Stellar Properties

A two-stage procedure was adopted to estimate the fundamen-
tal properties of the stars, using as input asteroseismic parame-
ters and complementary spectroscopic results. At the first stage
for each star we sought initial estimates of the stellar properties

3



The Astrophysical Journal, 766:101 (19pp), 2013 April 1 Chaplin et al.

Table 1
Estimated Stellar Properties

Star Teff [Fe/H] M R 〈ρ〉 log g Age
(K) (dex) (M�) (R�) (g cm−3) (dex) (Gyr)

Kepler-50 6225 ± 66 0.03 ± 0.06 1.24 ± 0.05 1.58 ± 0.02 0.441 ± 0.004 4.132 ± 0.005 3.8 ± 0.8
Kepler-65 6211 ± 66 0.17 ± 0.06 1.25 ± 0.06 1.41 ± 0.03 0.621 ± 0.011 4.232 ± 0.006 2.9 ± 0.7

by searching among grids of stellar-evolutionary models to
get a best fit to two global oscillation properties, the spectro-
scopically estimated effective temperature Teff , and metallicity,
[Fe/H]. The two asteroseismic properties were 〈Δν〉, the average
of the large frequency separations between consecutive over-
tones n of the same angular degree l; and νmax, the frequency of
maximum oscillation power. The average large separations scale
to very good approximation as 〈ρ〉1/2, where 〈ρ〉 ∝ M/R3 is the
mean density of the star with mass M and surface radius R (see,
e.g., Christensen-Dalsgaard 1993). The frequency of maximum
oscillation power has been shown to scale to good approxima-
tion as gT

−1/2
eff (Brown et al. 1991; Kjeldsen & Bedding 1995;

Belkacem et al. 2011), where g is the surface gravity. Several
analysis codes (Christensen-Dalsgaard et al. 2010; Hekker et al.
2010; Huber et al. 2009; Verner et al. 2011) were applied to the
frequency-power spectra to extract the required estimates. A fi-
nal value of each parameter was selected by taking the individual
estimate that lay closest to the median. The uncertainty on the
final value was given by adding (in quadrature) the uncertainty
on the chosen estimate and the standard deviation over the set
of results. For Kepler-50 we obtained 〈Δν〉 = 76.0 ± 0.9 μHz
and νmax = 1496 ± 56 μHz, while for Kepler-65 we obtained
〈Δν〉 = 90.0 ± 0.5 μHz and νmax = 1880 ± 60 μHz.

The grid-based search codes that we then applied to these
results are described by Stello et al. (2009), Basu et al. (2010),
Quirion et al. (2010), and Gai et al. (2011).

In the second stage we used estimates of the individual oscil-
lation frequencies, along with the revised spectroscopic data, as
inputs to a detailed modeling performed by three members of the
team (S.B., J.C.D., and T.M.). The procedure used to estimate
the frequencies—which also provided information on the inter-
nal rotation and angle of inclination of each star—is discussed in
detail in Section 4. More details on the detailed modeling used
to estimate the stellar properties is given in the Appendix, which
followed the methodology applied in, for example, Christensen-
Dalsgaard et al. (2010), Howell et al. (2012), and Carter et al.
(2012). Estimated properties from the first, grid-based stage
were used either as starting guesses or as a guideline check for
initial results. The final properties presented in Table 1 come
from the analysis made by J.C.D. (which provided the median
solutions). Uncertainties on the final properties include a contri-
bution from the scatter between the three different sets of results.
We note that the properties from the first stage showed excellent
agreement with the final estimated properties (i.e., to within the
estimated uncertainties).

3. CHARACTERIZATION OF THE
PLANETARY SYSTEMS

It is important to establish whether the transit-like photo-
metric signals represent actual transits of a system of planets
across the disk of the intended target star, as opposed to a
“false positive” such as a system of eclipsing stars blended
with the intended target star. For Kepler-50, transit timing vari-
ations (TTVs) have been observed for both of its planets and

are anti-correlated, a clear sign that the planets are interacting
with each other and hence orbit the same star (Steffen et al.
2013). Kepler-65 has not been confirmed in this manner; in the
following section we validate the system by other means.

3.1. Validation of Kepler-65

To validate the Kepler-65 system, in this section we will
demonstrate that: (1) background eclipsing binaries are unlikely
to be responsible for any of the three candidate transit signals;
(2) all three transiting objects are likely orbiting the same star,
which must have a mean density very similar to that of the
intended target star; and (3) planets c and d are near a 7:5
mean-motion commensurability, and the smaller planet in this
pair (planet d) exhibits a significant TTV signal of the nature
expected for such a configuration.

3.1.1. Excluding Background Binary Scenarios

Lissauer et al. (2012) considered the question of how many
of Kepler’s multiple-planet candidates actually represent true
multiple-planet systems, as opposed to unresolved blends of
systems each having only one eclipsing object. For example, a
candidate two-planet system could actually be a single-planet
system along nearly the same line of sight to a background
eclipsing binary, or there could be two eclipsing binaries along
the same line of sight whose eclipses are diluted to planet-
like proportions by the constant light of a foreground star.
Lissauer et al. (2012) recognized that false positives of this
nature would be randomly distributed among the target stars,
and that the number of multiple-planet candidates is much
larger than would be expected if the candidates were assigned
randomly to target stars. From this analysis they concluded
that the vast majority of Kepler’s multiple-planet candidates
do not represent superpositions of singly eclipsing systems.
For the population of three-transit candidates such as Kepler-
65, Lissauer et al. (2012) estimated the chance that at least
one of the candidates represents an unrelated eclipsing system
is 0.07% (an expectation of 0.13 such false positives out of
178 candidates).

These general considerations show that Kepler-65 is very
likely a true multiple-planet system, as opposed to unrelated
singly eclipsing systems that are blended together in the Kepler
photometric aperture. In the remainder of this section we
examine the specific circumstances and follow-up observations
of Kepler-65 that also support this conclusion.

The photometric aperture used for the star changes from
quarter to quarter, but in all cases has a size of approximately
4 × 4 pixels. With a detector scale of 3.98 arcsec pixel−1,
stars within a radius of about 12 arcsec from Kepler-65 could
contribute light to the aperture and could in principle be the
source of some of the transiting signals. We checked for possible
contaminating stars using two different data sets.

First, we consulted the catalog by Adams et al. (2012) of
adaptive optics (AO) images of a large sample of Kepler Objects
of Interest (KOIs). The range of star magnitudes that can be
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Figure 2. Left-hand panel: centroid shifts during transits divided by the transit depth for each candidate during each SC quarter. This is an estimate of the distance
between the source of the transit signal and the center of light of the system. Based on these data the transit signal must originate from within a 6 arcsec radius (blue
circle; see text). Right-hand panel: parameter space for the possible blend scenarios. Plotted on the abscissa is the distance from the center of light in the aperture,
and on the ordinate the difference in magnitude with respect to Kepler-65. In addition to the centroid-shift-excluded region (blue), any star just over 9 mag fainter
than Kepler-65 is excluded because it would not contribute enough light on the aperture to produce the observed transit depths. This limit is marked by the horizontal
dotted line, which was computed assuming an eclipse depth of 50%. The AO imaging excludes the region above the continuous black line, which was obtained by
extrapolation of a best-fitting hyperbolic function, fitted to the limits (black dots) given in Table 2 of Adams et al. (2012). Only the red region is still allowed; in this
sense the “radius of confusion” is 0.7 arcsec.

(A color version of this figure is available in the online journal.)

detected depends on the distance to the star, such that one loses
the ability to detect faint stars very close to the main star. These
images have a range of 6 arcsec, outside of which no information
was provided17 Only one other star was detected on the AO
image, at a separation of 2.9 arcsec from Kepler-65. Adams
et al. (2012) estimated that the Kepler apparent magnitude of
this star is Kp ≈ 21, i.e., about 10 mag fainter than Kepler-65.

Second, to seek companions outside the 6 arcsec radius, we
consulted the Naval Observatory Merged Astrometric Dataset
(Zacharias et al. 2004). In this catalog, 11 stars are detected
within a box of 30 arcsec centered on the position of Kepler-65.
Only three stars were found that could be candidates for a
background blend; one at a separation of 7.2 arcsec with an
R-band magnitude of 18.6 (compared to 10.5 for Kepler-65),
a second star at a separation of 11.5 arcsec with an R-band
magnitude of 14.1, and a third star at a separation of 11.8 arcsec
with a B-band magnitude of 19.3 (11.6 for Kepler-65).

If one of these objects were a background binary star
mimicking a transiting planet, then the spatial, first-moment
centroid of the light gathered on the aperture would be displaced
during eclipses by an amount approximately equal to the
observed transit depth multiplied by the projected distance from
the object to Kepler-65. Therefore, since the transit depth is
known independently with high precision, an upper bound on
the centroid displacement can be used to set a maximum distance
at which a contaminating binary can be located (also known as
the radius of confusion). This notion has been applied to detect
background binaries among the KOIs (see, e.g., Batalha et al.
2010), to estimate false alarm probabilities (FAPs) for particular
KOIs (Morton & Johnson 2011) and to validate individual
candidates using the BLENDER technique (Torres et al. 2011).

In the case of Kepler-65, one pixel of the stellar image
is saturated, and consequently the distribution of light does
not follow the standard point-spread function. Rather than
attempting to model the saturated point-spread function, we used
the flux-weighted column and row centroids produced by the

17 The FWHM of the ARIES observation used was 0.1 arcsec.

Kepler pipeline. With this method of computing centroids we are
only sensitive to displacements larger than ≈1 pixel (≈4 arcsec),
but this is sufficient for our purpose. For each transit observed
at SC, we selected a window in time of width 4.8 hr centered
on each transit. Transits that occurred within 6 hr of another
were excluded. To eliminate the effects of outliers we omitted
data points differing by more than 3σ from a median-smoothed
version of the time series, where the smoothing was performed
over 30 minute intervals. We found that the centroid motion was
approximately a linear function of time, presumably because of
the continuous pointing drift of the telescope. We corrected for
this effect by fitting the out-of-transit portions of the data set with
a linear function of time. All the centroid information for each
candidate in a given quarter was then phase-folded using a linear
transit ephemeris from the KOI input catalog (Batalha et al.
2013). The sequences of in-transit and out-of-transit centroids
were approximated as Gaussian distributions, and the centroid
displacement was computed as the difference between the means
of the distributions, with an uncertainty based on standard error
propagation.

The left-hand panel of Figure 2 shows the measured centroid
displacements after dividing by the corresponding transit depths,
so that implied physical distances are plotted. The signals cannot
originate from a source outside the 6 arcsec radius (shown in
blue) since no points lie outside that range. The right-hand
panel of Figure 2 shows this constraint, in combination with
constraints from other considerations, which together limit the
radius of confusion to 0.7 arcsec. One constraint is the AO
imaging described previously. Another is that binary stars just
over 9 mag fainter than Kepler-65 cannot decrease the total
amount of light by 100 ppm (the depth of the shallowest transit),
even were they to have eclipses of 50% depth, i.e., as given by
ΔKp = −2.5 log10[100×10−6/0.5] � 9.2. This limit is marked
as the horizontal dotted line in right-hand panel of Figure 2.
No stars brighter than that limit and within 0.7–6 arcsec from
Kepler-65 were detected within the AO image. With such a small
radius of confusion, the probability that any of the signals come
from background binaries is small. We estimate this probability
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to be �0.15% for each candidate of Kepler-65, based on the work
by Morton & Johnson (2011), who calculated the local surface
density of eclipsing binaries whose properties could mimic those
of each Kepler candidate. Specifically we took their estimated
false-positive probability of �1%, which assumed a radius of
confusion of 2 arcsec, and scaled it by (0.7/2.0)2 (because
we have demonstrated that the true radius of confusion for
Kepler-65 is 0.7 arcsec).

Finally there is the “multiplicity boost,” as discussed at the
beginning of this section. Since there are three-transit candidates
for a single Kepler target, the false alarm probability of each
individual transiting object is further reduced, according to the
statistical argument of Lissauer et al. (2012). Here the boost
factor is approximately 50, which would reduce the individual
false-positive probabilities from �0.15% to �3 × 10−5.

3.1.2. Evidence That the Three Planets Orbit Kepler-65

We have demonstrated that it is unlikely that any of the transit
candidates arises from a background eclipsing binary. We next
ask whether the signals represent three planets all orbiting the
intended target star Kepler-65, or whether any of them could
actually be orbiting a companion star that is gravitationally
bound to it. To address this question we searched for a pattern
in the transit observables that would suggest that all the planets
orbit the same star; namely, transit durations scaling as the cube
root of the orbital period, which is a sign that they transit a star
with similar density (see, e.g., Fabrycky et al. 2012; Lissauer
et al. 2012). If some of the transit signals represented transits
across a different star, then such a pattern would occur only by
coincidence.

To measure transit durations, we constructed phase-folded
transit light curves for each of the three candidates using the
SC data and assuming a constant orbital period. Transits that
occurred within 6 hr of another were excluded, removing all
possible overlapping transits. The data were binned into 7.5 s
intervals to increase the speed of subsequent computations. We
used a standard description of the loss of light due to a transiting
planet (Mandel & Agol 2002) to model the binned light curves
simultaneously. We adopted a quadratic limb-darkening law,
with the two coefficients left as free parameters (and shared by
all three candidates). The free parameters describing each light
curve were the squared planet-to-star radius ratio (Rp/R)2, the
impact parameter, b, and the stellar radius divided by the orbital
distance, R/a. We then found the best-fitting model parameters
that minimized the standard χ2 function, with uncertainties on
the measurements defined as the standard deviation of the points
outside transit for each of the folded light curves. A Markov
Chain Monte Carlo (MCMC) code was then used to explore the
range of allowed parameters.

From the best-fitting model parameters we computed the
transit durations, defined as the interval over which the center
of the planet is projected in front of the stellar disk. This
parameter is generally well constrained, and does not change
much in the presence of a small TTV signal (whereas the
ingress duration would experience larger fractional variations).
The transit durations are plotted in Figure 3, as a function of
orbital period. We compared these values with those expected
for planets in circular orbits around a star with a mean density
equal to 0.621 g cm−3, which is the mean density of Kepler-65
as estimated from the asteroseismic analysis (see Table 1 and
Section 2). The measured durations agree well with a model
in which all planets have the same orbital inclination, which is
good evidence that the planets have nearly coplanar and circular
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Figure 3. Measured transit durations of the three planets orbiting Kepler-65
(filled colored circles). The solid black line shows the expected durations for
planets transiting Kepler-65 in circular orbits with inclination 90◦ (zero impact
parameter). The dashed lines show the durations for different orbital inclinations.
The durations are consistent with the three planets orbiting Kepler-65 in coplanar
circular orbits.

(A color version of this figure is available in the online journal.)

orbits around a single star with a density similar to that of
Kepler-65.

Another way to perform this test is to use the transit observ-
ables to compute the implied mean density of the host star, and
compare the result to the mean density obtained from astero-
seismology. To this end we performed a second fit to the data in
which the R/a value for Kepler-65c (the candidate with the high-
est S/N) was a free parameter, and the R/a values for the other
two planets were fixed according to the assumption of circular
orbits around the same star (i.e., by scaling according to or-
bital period and Kepler’s third law). This effectively introduces
a constraint that all three planetary signals agree on the mean
stellar density (Seager & Mallén-Ornelas 2003). We found the
photometrically derived mean density to be 0.57+0.06

−0.07 g cm−3,
in agreement with the asteroseismically derived mean density
of 0.621 ± 0.011 g cm−3 (see Table 1 and Section 2). Therefore,
the transit observables are consistent with a system of three plan-
ets on nearly circular orbits around a star with the same mean
density as the star that is the source of the observed p-mode
oscillations.

A devil’s advocate would raise the possibility that this
agreement is a coincidence, and that one or more of the planets
actually orbit a secondary companion star. This seems unlikely
indeed although we do not attempt to assign a quantitative
false-positive probability to this scenario. To establish the
probability of such a coincidence one would need to consider
a realistic distribution of companions, along with their planets,
transit probabilities (which may be correlated with the transit
probabilities of the primary star), and transit durations. One
would then need to exclude cases in which the companion would
have been detectable in the optical spectrum, the spectrum of
p-mode oscillations18 (i.e., by contributing signatures of its own

18 The asteroseismic analysis allows us to rule out the presence of a bound
companion having the same density as Kepler-65, since we would have
detected a second set of oscillations in the frequency-power spectrum,
overlapping in frequency with the oscillations of Kepler-65. In fact, given the
observed background noise level, and using the asteroseismic detection
prediction code in Chaplin et al. (2011a), we can rule out a bound companion
having a density up to ≈1.5 times that of Kepler-65 (since it would still have
shown detectable oscillations).
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Table 2
TTV Signals of Kepler-65

Planet N Error Scale Period Amplitude Δχ2 k ln N

b 356 2.5 32.6 days 4.6 minutes 13.9 17.6
c 121 1.3 49.7 days 0.9 minutes 8.8 14.4
d 81 1.6 44.5 days 9.2 minutes 31.9 13.2

Notes. Summary of the search for sinusoidal TTV signals in the transit times
of Kepler-65b, c, and d. After correcting the timing error bars to account for
correlated noise and low S/N, we find that only Kepler-65d has a significant
detection.

oscillations), or through excessively diluted transit depths, and
then compute the integrated probability of the allowed phase
space. This is beyond the scope of this study.

3.1.3. Detection of a TTV Signal for Kepler-65d

The detection of TTVs have proven to be useful for validat-
ing planets as well as constraining the masses of the transiting
planets. We performed a transit-timing analysis of Kepler-65
as follows. To measure individual transit times for each planet
we employed a phase-folded light curve as a template func-
tion. Specifically we used a phase-folded light curve that was
obtained by fitting all of the transits under the assumption of
a circular orbit with a constant period. The template was then
fitted to the data from each transit observed at SC, with three
free parameters: the central time of the transit, the out-of-transit
flux level, and a constant gradient in the out-of-transit flux level.
An MCMC code was used to obtain the posterior distribution
for the time of transit. Since no SC data were available in Q0,
Q1, or Q2, for those quarters we used the transit times from
the Kepler TTV catalog (J. F. Rowe et al. 2013, in preparation),
measured as described by Ford et al. (2011).

The individual transit times were then fitted with a linear
function of epoch, and this function was subtracted from the
timing data to isolate any timing residuals. A visual inspection
showed no obvious TTV signal in the residuals. We fitted these
residuals with a sinusoidal model with three parameters: a TTV
period, phase, and amplitude. To facilitate the exploration of
the parameter space, we divided the range of periods into small
intervals covering periods from 10 to 500 days, and for each
period we optimized the other two parameters. For the three

planets, the best-fitting sinusoids gave unacceptably high χ2

values relative to the number of degrees of freedom (2200, with
356 points for planet b, 198 with 121 points for planet c, and 200
with 81 points for planet d). The uncertainties on the individual
transit times are likely underestimated due to correlated noise in
the photometric time series (due to some combination of stellar
granulation, p-modes, and instrumental noise). We proceeded
by enlarging the uncertainties by a scale factor (see Table 2)
such that the minimum χ2 was equal to the number of degrees
of freedom.

To search for a sinusoidal TTV signal for each of the planets,
we used the Bayesian information criterion. The criterion
requires that when k new parameters are introduced in a model,
one needs to achieve a decrease in χ2 larger than k ln N , where
N is the number of data points, to justify the addition of the extra
parameters. Table 2 shows that the additional three parameters
are only justified for Kepler-65d, and not for the other two
planets. That planet d is singled out in this test is consistent
with the hypothesis that all three planets orbit Kepler-65, as
this planet has the longest orbital period and is closest to the
largest and presumably most massive planet (Kepler-65c; see
Section 3.2 and Table 3), factors which enhance the amplitude
of the TTV signal. Its orbital period is 1.39 times that of
Kepler-65c, making it near a 7:5 ratio. This has been observed
in many other multiplanet systems (Fabrycky et al. 2012).

Even though the TTV signal of Kepler-65c did not satisfy the
Bayesian information criterion for detection, the measured TTV
period of the best-fitting sinusoid is close to the value expected
from the formula of Agol et al. (2005), which for the c and d pair
is 50 days (in agreement with the detected period). With more
data one might be able to establish this signal more securely.
Using the 0.9 minute amplitude of this hypothetical signal as
a reference, one would estimate a mass (or upper bound; see
Lithwick et al. 2012) for Kepler-65d of approximately 10 ME.

We conclude that Kepler-65 is indeed transited by a system
of three planets, based on the low FAP for each individual
transit, the unlikely coincidence that would be required for
a spurious system to produce the observed trend of transit
durations versus orbital periods, the agreement between the
photometric and asteroseismic estimates of the mean stellar
density, and the detection of a physically reasonable TTV signal
for at least one of the planets. However, as in many other cases,
we acknowledge the fact that we cannot completely rule out

Table 3
Transit Parameters

Parameter Kepler-50b Kepler-50c Kepler-65b Kepler-65c Kepler-65d

(Rp/R)2 (ppm) 99+5
−11 159+10

−11 85.0+1.6
−1.1 282+5

−2 98+2
−2

Impact parameter b 0.74+0.07
−0.36 0.94+0.02

−0.06 0.16+0.20
−0.11 0.42+0.10

−0.02 0.53+0.07
−0.02

R/a 0.095+0.015
−0.025 0.084+0.013

−0.022 0.188+0.011
−0.002 0.097+0.006

−0.001 0.078+0.005
−0.001

LD coefficient u1 0.28+0.08
−0.08 · · · 0.25+0.07

−0.08 · · · · · ·
LD coefficient u2 0.29+0.08

−0.07 · · · 0.37+0.11
−0.10 · · · · · ·

Transit duration T1.5–3.5 (hr) 3.80+0.05
−0.03 2.06+0.03

−0.03 3.077+0.07
−0.007 3.928+0.008

−0.007 4.10+0.02
−0.03

Orbital period (days) 7.81254(10) 9.37647(4) 2.154910(5) 5.859944(3) 8.13123(2)

Time of transit (BJD−2,454,900) 74.376(7) 69.958(3) 66.4990(13) 65.0391(3) 70.9905(16)

Planet radius (RE) 1.71+0.05
−0.10 2.17+0.07

−0.08 1.42+0.03
−0.03 2.58+0.06

−0.06 1.52+0.04
−0.04

Semi-major axis (AU) 0.077+0.012
−0.020 0.087+0.014

−0.023 0.035+0.002
−0.001 0.068+0.004

−0.002 0.084+0.006
−0.002

Notes. Summary of planetary parameters. The first five parameters were estimated from the folded light curve analysis, and the
durations were obtained from those parameters. Uncertainties come from an MCMC analysis. Orbital periods and times of transit
come from a fit to the transit times, with a sinusoidal component in the case of Kepler-50 and only a linear term for Kepler-65.
Estimation of planetary radii and semi-major axes also made use of the stellar radii from the asteroseismic analysis.
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Figure 4. Left-hand panels: the black dots show the binned SC (one-minute cadence) data for each of the Kepler-50 planets, and the lines show the best-fitting transit
models. Right-hand panel: TTVs and uncertainties. The sinusoidal anti-correlated signals are plotted with thick lines.

(A color version of this figure is available in the online journal.)

the unlikely companion scenario, in which one or more of
the planets orbits a fainter, bound companion having a higher
density than Kepler-65.

3.2. Transit Parameters for Kepler-50 and Kepler-65

TTVs are quite significant for Kepler-50. For this reason,
care was needed in producing a phase-folded transit light curve
for subsequent analysis. In addition to the three-transit model
parameters (R/a, b, (Rp/R)2) for each candidate and the two
limb-darkening coefficients, we modeled the interval between
transits as a constant plus a sinusoidal function of time. We
fitted this model to SC data (Q6–Q11) for transits separated
from each other by at least 6 hr and, using the best-fitting
model, we folded the data and binned it to a cadence of 7.5 s.
This template was then used to obtain the transit timings with
uncertainties as described in the previous section. The new TTV
signal, including the long-cadence (LC) timings from the Kepler
catalog, was then fitted to improve the sinusoidal component of
the ephemeris, which in turn was used to properly fold the data.
This iterative process converged when the sinusoidal component
did not change significantly from one step to the next.

The final phase-folded light curves and the best-fitting models
are shown in Figure 4. The two planets have very similar orbital
periods, with a period ratio close to 1.2. We see in the figure
that the transits of the outer planet are much shorter in duration
than those of the inner planet. This indicates that the transits of
planet c have a high impact parameter. In this situation there is
a risk of bias in the determination of the planet radius due to

poorly constrained limb-darkening coefficients. To avoid this,
we introduced Gaussian priors on each coefficient with values of
0.3 ± 0.1, based on the theoretical coefficients given by Claret &
Bloemen (2011) for stars similar to Kepler-50. Since the orbits
are so close to each other, we assumed circular orbits around the
same star, essentially linking all of the R/a parameters for the
two planets (see Section 3.1.2). The resulting planet parameters
are given in Table 3. The stellar density derived from this transit
model has a large uncertainty due to the low S/N of the transits,
but the final value 0.40+0.6

−0.10 g cm−3 is nevertheless compatible
with the much more precisely determined asteroseismic density
of 0.441 ± 0.004 g cm−3 (see Table 1 and Section 2).

For Kepler-65 we used the analysis discussed in the previous
section to construct the phase-folded light curves. Since no TTV
signal was detected for planets b and c, a constant period was
assumed in constructing the phase-folded light curves based on
SC data. For planet d, the best-fitting sinusoidal TTV model
was used to fold the transits. An individual analysis for each
planet showed that the ingress duration of planet d was still
larger than expected, by a factor of about two. This long ingress
duration implies a large impact parameter, which again leads
to large uncertainty and possible bias in the planetary radius.
As for Kepler-50, we assumed the planets to be on circular
orbits around the same star. The phase-folded light curves of all
three transiting planets are shown in Figure 5, along with the
best-fitting models.

Final values of the planet parameters are presented in Table 3.
With the improved folded light curve for planet d, the stellar
mean density (assuming circular orbits) is 0.61+0.02

−0.10 g cm−3,
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Figure 5. Similar to Figure 4 but for the Kepler-65 system.

(A color version of this figure is available in the online journal.)

which also agrees with the value obtained from asteroseis-
mology. One could use the asteroseismic density as a prior on
our model, but this would not necessarily lead to greater accu-
racy because non-zero eccentricities cannot be ruled out for this
system.

Finally, we note that in the transit analysis for both
Kepler-50 and Kepler-65 we have assumed that the light from
blended stars is negligible (i.e., a contamination factor of zero).
This is well justified by the AO images (Adams et al. 2012).
The contamination factors given in the Kepler Input Catalog are
very low for both systems, and the uncertainties in the planetary
radii are dominated by statistical uncertainties rather than the
systematic effects of possible contamination.

3.3. Discussion of the Coplanarity of the Systems

In order to interpret the measured stellar obliquity in the
context of the formation and evolution of the system, it is
important to decide whether the planets are in coplanar orbits
(Sanchis-Ojeda et al. 2012). The low S/N of the transit signals
makes it difficult to use transit observables to constrain the
mutual inclination, but the fact that we have found several
planets transiting each star already tells us that these systems are
likely to be coplanar (Lissauer et al. 2011). The probability that
a planet on a randomly oriented circular orbit will transit a star is
given by R/a. Using the values from Table 3 we may evaluate the
probability for two extreme cases: (1) the planets have coplanar
orbits; and (2) their orbital orientations are uncorrelated. In the
first case, if the most distant planet transits the star, the other
planets in the system will also transit and so the probability of

all planets transiting is equal to p1 = R/aq , where q refers to
the most distant planet. If the planets’ orbits have independent
random orientations, then the probability p2 that all planets will
transit is then equal to the product of the individual probabilities
for each planet. Evaluating these probabilities p1 and p2 for
Kepler-50, we find that p1/p2 = 10.5, i.e., the likelihood for
coplanar orbits is 10 times higher. For Kepler-65 the ratio is
55, favoring coplanar orbits even more strongly. Thus, both
systems are likely to be nearly coplanar, although moderate
mutual inclinations cannot be ruled out by this analysis. More
definitive results might eventually be achieved through transit-
timing studies or the detection of planet–planet eclipses (see,
e.g., Hirano et al. 2012a).

4. ASTEROSEISMIC DETERMINATION OF
STELLAR ANGLE OF INCLINATION

4.1. Principles of the Method

Asteroseismic estimation of the stellar angle of inclination, is,
rests on our ability to resolve and extract signatures of rotation
in the non-radial modes from the oscillation spectrum. Detailed
descriptions of the principles of the asteroseismic method may
be found in Gizon & Solanki (2003) and Ballot et al. (2006,
2008). Here, we summarize the key points.

Rotation lifts the degeneracy in the oscillation frequencies
νnl, so that the frequencies of non-radial modes (l > 0) depend
on the azimuthal order, m. For the fairly modest rates of rotation
typical of solar-like oscillators we may ignore, to first order, the
effects of the centrifugal distortion (e.g., see Reese et al. 2006;
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Ballot 2010). The 2l + 1 rotationally split frequencies may then
be written:

νnlm ≡ νnl + δνnlm, (1)

with

δνnlm � m

2π

∫ R

0

∫ π

0
Knlm(r, θ )Ω(r, θ )r dr dθ. (2)

Here, Ω(r, θ ) is the position-dependent internal angular velocity
(in radius r, and co-latitude θ ), and Knlm is a weighting kernel
that reflects the sensitivity of the mode to the internal rotation as
a function of depth. For modest rates of differential rotation
(in latitude and radius) and absolute rotation, the splittings
δνnlm of the observable high-n, low-l p-modes will take very
similar values, hence tending to the approximation of solid-
body rotation (Ledoux 1951). Here, we found no evidence for
significant mode-to-mode variation of the frequency splittings
in the oscillation spectrum of either star. In what follows we
therefore modeled all splittings as being equal, i.e., δνnlm = δνs.
The above also neglects any contributions to the splittings
from near-surface magnetic fields, which give rise to frequency
asymmetries of the observed splittings. The levels of activity in
both stars—as revealed by signatures of rotational modulation
of spots and active regions in the Kepler light curves—are
notably lower than those displayed by the active Sun (see later,
in Section 5). Since magnetic contributions to the solar low-l
splittings are small in size and very hard to measure in Sun-as-
a-star data of much higher S/N (e.g., see Gough & Thompson
1990; Chaplin 2011, and references therein), asymmetries here
should not be a cause for concern for the analysis.

The determination of the inclination of the stellar rotation axis
relies on the fact that the mode patterns of the non-radial modes
are not spherically symmetric. The disk-integrated amplitudes
of the m components in any given non-radial multiplet will
therefore depend on the viewing angle. Figure 6 shows a
snapshot of the intensity perturbations of the m = 1 (left-hand
column) and m = 0 (right-hand column) components of an
l = 1 mode viewed at different angles, is. The perturbations
are shown at a phase corresponding to extreme displacement
of each oscillation mode. The filled circles mark the pole of
the rotation axis and the lines show the stellar equator. Note
that m = −1 perturbations are π out of phase with the m = 1
(and have not been plotted here). When the rotation axis lies
in the plane of the sky (is = 90◦), the m = ±1 components
presents their strongest observable amplitudes. In contrast, the
m = 0 component cannot be detected because the intensity
perturbations in the northern and southern hemispheres cancel
at all phases of the pulsation cycle, giving no disk-averaged
signal. The situation is reversed at is = 0◦, when the rotation
axis lies along the line of sight and perturbations due to the
m = ±1 components are no longer visible owing to geometric
cancellation.

This dependence (measured in power) may be written
explicitly as

Elm(is) = (l − |m|)!
(l + |m|)!

[
P

|m|
l (cos is)

]2
, (3)

where P
|m|
l is the Legendre function, and the sum over Elm(is)

is normalized to unity. Measuring the relative power of the
azimuthal components of different |m| in a non-radial multiplet
therefore provides a direct estimate of the stellar angle of
inclination, is, or more properly |is| since symmetries inherent

Figure 6. Intensity perturbations for l = 1 mode components, at a phase
corresponding to extreme displacement of the oscillations. Plotted are patterns
for m = 1 (left-hand column) and m = 0 (right-hand column) modes viewed at
different angles, is = 90◦ (top row), 60◦ (second row), 30◦ (third row), and 0◦
(bottom row). The filled circles mark the pole of the rotation axis and the lines
the stellar equator.

(A color version of this figure is available in the online journal.)

in Equation (3) mean we cannot discriminate between is and
−is, and π − is, and π + is.

The above discussion rests on two assumptions. First, that
contributions to the observed stellar intensity across the visible
stellar disk depend only on the angular distance from the
disk center. This is valid for photometric observations, where
limb darkening controls the weighting. Second, that there is
equipartition of energy between the different m components.19

19 While the case for stochastically excited and intrinsically damped solar-like
oscillations leads to energy equipartition, for observations made over a
sufficient number of lifetimes, this is not so for classical “heat-engine”
pulsators (e.g., the γ Doradus, δ Scuti, and white-dwarf classes).
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Figure 7. Theoretical profiles of an l = 1 mode observed at different stellar inclination angles, is. The m = ±1 components are plotted in blue, the m = 0 components
in red, and the thick black line shows the combined multiplet profile. The peak linewidth of each component is Γ = 3.0 μHz and the rotational frequency splitting is
δνs = 1.5 μHz. Panels in the left-hand column show the appearances of the multiplet for each of the angles illustrated in Figure 6.

(A color version of this figure is available in the online journal.)

This should be valid except in very rapid rotators where rotation
can affect convection, which excites and damps the modes. The
predicted power asymmetries (Belkacem et al. 2009) of our stars
are of the order of 1%, which are negligible for our analysis.

Figure 7 shows the appearance in the frequency-power
spectrum of an idealized l = 1 multiplet as a function of the
angle is (see also Gizon & Solanki 2003). Panels in the left-
hand column correspond to the cases shown in Figure 6. The
l = 1 modes are approximately three times more prominent
in the frequency-power spectrum than the l = 2 modes (see,
e.g., Ballot et al. 2011a). Hence, it is these modes that largely
constrain our ability to infer is.

The individual components in Figure 7, which are plotted in
blue (m = ±1) and red (m = 0), were modeled as Lorentzian
functions, the underlying function used to describe the damped
p-modes. The width Γ of each Lorentzian—which is propor-
tional to the mode damping rate—is 3.0 μHz, which corre-
sponds approximately to the linewidths observed in the most
prominent l = 1 modes of Kepler-50 and Kepler-65. The split-
ting is δνs = 1.5 μHz, which corresponds to a rotation period
of 7.7 days, and so matches approximately what we observe for
the two stars. The thick black lines show the combined multiplet
profiles.

Given sufficient resolution in frequency and good S/N in the
modes, it is the ratio δνs/Γ of intrinsic stellar properties that

determines whether it is possible to resolve the components,
hence to infer the true underlying Elm(is) and hence the value of
is. As noted previously, at angles close to 90◦ the m = 0 com-
ponent has insignificant visibility and the overall appearance is
dominated by the |m| = 1 components (the converse being true
at angles close to 0◦). Uncertainties in the inferred angle will be
largest when the is matches these extreme cases, all other factors
being equal (Ballot et al. 2008). This is because there are then
only modest variations in the overall appearance of the mode
multiplet with changing is.

4.2. Estimation of Stellar Inclination Angles

Extracting the required information from the rotationally split
components proceeds via a careful fitting of the modes in the
observed frequency-power spectrum, sometimes referred to as
peak-bagging (see Appourchaux et al. 2012, and references
therein, for further results on Kepler targets).

Frequency splittings δνs due to rotation are clearly visible
in the oscillation spectra of both stars. Figure 8 shows two
prominent l = 1 modes in each star. The light gray lines plot the
observed spectra after applying a light amount of smoothing.
The thick dark gray lines follow the spectra after they have
been smoothed with a filter of width 1.5 μHz, which provides
an approximate representation of the underlying (noise-free)
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Figure 8. Prominent l = 1 modes in the frequency-power spectra of Kepler-50 (top panels) and Kepler-65 (bottom panels). Light gray lines: observed spectra after
applying light smoothing. Thick dark gray lines: observed spectra after applying a heavier smoothing of width 1.5 μHz. Dark-blue lines: best-fitting models from
MCMC analysis.

(A color version of this figure is available in the online journal.)

profiles. Even without a detailed analysis it is apparent that
the observed modes bear a striking resemblance to the high-
inclination cases in Figure 7. The dark-blue lines follow the
best-fitting Lorentzian models, which we describe below.

The observed frequency-power spectrum P(ν) of each star
was modeled as

P(ν) = O(ν) + B(ν), (4)

where O(ν) describes the oscillations and B(ν) contains back-
ground terms due to granulation, activity, and photon shot noise.
The oscillations O(ν) were modeled as a series of Lorentzian
profiles describing the stochastically excited and intrinsically
damped modes. We adopted a global description, in which we
modeled simultaneously all the observable modes instead of
modeling and analyzing the spectrum one order at a time. This
approach improves the accuracy of the modeling because it
takes proper account of the power from the slowly decaying
Lorentzian peaks that bleeds in frequency between the neigh-
boring modes. The modeled oscillations’ spectrum was thus
described by

O(ν) =
∑
n′,l

l∑
m=−l

Elm(is)Hn′l

1 + 4/Γ2
n′ (ν − νn′l − mδνs)2

, (5)

The inner sum in the above runs over the m components of each
rotationally split multiplet, while the outer sum runs over all
observed modes, in radial order n, and degree l. Note that the
dummy variable n′, which tags the radial order, takes values
n′ = n for l = 0 and l = 1 modes, and n′ = n − 1 for
l = 2 modes (which lie adjacent in frequency to l = 0 modes of
n′ = n). The angle is and single splitting parameter δνs are two of
the parameters to be optimized, along with the frequencies νitnl

used to estimate the fundamental stellar properties (Section 2).
The parameters Hnl and Γn describe the height (maximum

power spectral density) and linewidth of each mode. We fit a
single linewidth parameter to each order. The relative heights
of the components in each non-radial multiplet are controlled
by is through the function Elm(is) (Equation (3)). The heights
are constrained by the relation Hn′l = Hn′0V

2
l , where the

parameter V 2
l describes the visibilities of modes of different

l, relative to l = 0. The visibilities are given by integrating the
spherical harmonic functions over the visible disk with suitable
allowance made for limb darkening and the spectral bandpass of
the observations (Ballot et al. 2011a). We adopted fixed values
of V 2

0 = 1.0, V 2
1 = 1.5, and V 2

2 = 0.5 in our analysis.
The background was modeled as the sum of three com-

ponents: a flat photon shot-noise component, W, and two
frequency-dependent components to describe contributions

12



The Astrophysical Journal, 766:101 (19pp), 2013 April 1 Chaplin et al.

from granulation and activity. For the latter components, we
used functions based on the Lorentzian-like forms proposed by
Harvey (1985), which provide a good description of the ob-
served backgrounds in solar-type stars (e.g., see Metcalfe et al.
2012). The composite background was then described by

B(ν) = W +
2∑

k=1

4σ 2
k τk

1 + (2πτkν)2 + (2πτkν)4
, (6)

with k = 1 associated with the granulation component, and
k = 2 associated with the activity component. The granulation
and activity components each have two free parameters to be
optimized: σk is related to the rms amplitude of the signal in
the time domain, while τk is the characteristic timescale of the
decaying autocorrelation function. For granulation, σ and τ are
smaller than the corresponding activity parameters.

We adopted two different approaches to the fitting, and hence
to estimation of is. In the first approach the parameters of the
model in Equation (4) were optimized using a MCMC approach,
as described by Handberg & Campante (2011). We adopted a
flat prior for is between 0◦ and 90◦. In order to avoid the rejection
of sample jumps close to the boundaries—i.e., those that would
jump beyond the range set by the prior—in practice we selected
from samples in the range −90◦ to 180◦ and modified accepted
jumps that went beyond the allowed range by reflecting about
the is = 0◦ and 90◦ boundaries. A flat prior was imposed on
δνs, running between 0 and 2.5 μHz for Kepler-50, and 0 and
5 μHz for Kepler-65. Besides making it possible to incorporate
relevant prior information through Bayes’ theorem, the MCMC
approach also gave the marginal probability density function
(PDF) of each of the model parameters (e.g., see discussion in
Appourchaux 2011). In order to provide a cross-check we also
used maximum likelihood estimation (MLE) to fit the spectrum
(e.g., see Duvall & Harvey 1986; Toutain & Appourchaux 1994),
using the so-called pseudo-global fitting described by Fletcher
et al. (2009). Rather than fit the is directly with MLE, we
instead performed a series of MLE fits with the angle fixed
at different values, the aim being to sample the maximized
likelihood of the best-fitting model as a function of the chosen
is. Even though is is independent of the splitting parameter
δνs, the measured values are often highly correlated (e.g., see
Ballot et al. 2006, 2008). In order to constrain the two individual
parameters, or their combination the so-called reduced splitting
(i.e., δνs sin is), it is desirable to have access to the corresponding
maximized likelihood in two-dimensional parameter space. We
therefore performed fits with both is and δνs taking values on a
dense grid. This yielded a two-dimensional grid of maximized
likelihoods, making possible inference on the inclination and
splitting from construction of confidence intervals based on the
likelihood surface. The MLE approach had the advantage of
being more computationally efficient than the MCMC analysis.
However, given that the input values for the inclination and
splitting are fixed prior to the fitting, one cannot extract a bona
fide posterior probability distribution. The MCMC and MLE
approaches returned results in excellent agreement. Here, we
present those given by the MCMC approach.

Table 4 lists the final MCMC estimates of the inclinations and
splittings, together with their corresponding 1σ credible regions.
The estimated is of both stars are consistent with 90◦, to within
the uncertainties. We note that the final values for the splittings
were given by the median of each posterior distribution, while
for the angles we opted to use the mode of each distribution.
The rationale behind this decision was twofold. First, the PDF

Table 4
Estimated Stellar Inclinations and Rotational Splittings

Star is sin i δνs ≡ Ω/2π

(deg) (μHz)

Kepler-50 82+8
−7 0.99+0.01

−0.02 1.51+0.09
−0.08

Kepler-65 81+9
−16 0.99+0.01

−0.08 1.30+0.19
−0.16

of the inclination is truncated at is = 90◦ and the median is
thus not a representative statistic of the distribution. Second, in
each case the model of the oscillations’ spectrum built by using
the mode for the inclination, together with the median for all
the remaining parameters (including the splitting), has a higher
posterior likelihood than the models made using exclusively
either the median or the mode for all parameters.

As noted above, the thick black lines in Figure 8 show best-
fitting models from the MCMC analysis across frequency ranges
occupied by two l = 1 modes in each star. Figures 9 and 10 show
the correlation maps in the angle and splitting, as well as the
PDFs obtained after marginalization. Binwidths for the PDFs
were fixed by following the procedure given in Scott (1979; see
also Handberg & Campante 2011).

5. COMPARISON WITH MEASURES
OF SURFACE ROTATION

We have compared the asteroseismic results from Section 4.2
with two independent estimates of the surface rotation: one
extracted from signatures of rotational modulation in the Kepler
light curves, and another extracted from spectroscopic data on
both stars.

If a star has spots on its surface then rotation will carry the
spots in and out of view, inducing quasi-periodic flux variations.
Such variations have been detected for many stars, and it is not
unusual to see activity in stars as hot as our host stars (Basri
et al. 2011). The rotation period of Kepler-50 has already been
detected in Kepler data (Hirano et al. 2012b) and Kepler-65 also
shows clear signs of rotational modulation in its light curve.

The raw Kepler data are known to suffer from systematic
trends that appear to be shared by most of the stars on a given
CCD detector module. The absolute effect of these trends on the
measured stellar fluxes is much larger than the activity levels for
both stars, so we needed to choose an appropriate detrending
algorithm that would suppress the unwanted systematics without
removing the astrophysical signal. One such algorithm available
to us is PDC-MAP (Stumpe et al. 2012; Smith et al. 2012),
which was developed by the Kepler team. Principal component
analysis is used to extract a basis of co-trending vectors that
capture the systematic trends in each module. Each stellar
flux datum may be decomposed into a linear combination of
the astrophysical variability and the co-trending vectors. One
could perform a least-squares fit to extract those coefficients but
PDC-MAP goes one step further. During a first pass on the data
it applies a least-squares approach to obtain the coefficients for
all stars that fall on a given detector module. The distributions
are then used as priors in a Bayesian sense, thereby mitigating
possible overcorrection of the time series for any individual
star. PDC-MAP appears to do a reasonable job of eliminating
the systematic trends in almost every quarter of data, but does
fail on a few occasions. From the available LC data (Jenkins
et al. 2010) collected through Q11, we discarded the Q3 and
Q11 data for Kepler-50, and the Q7 and Q8 data for Kepler-
65. Outliers were also removed by performing 3σ clipping
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Figure 9. Asteroseismic results on Kepler-50. Lower left-hand panel: correlation map in angle of inclination is and rotational frequency splitting δνs (highest likelihoods
rendered in red). Top and right-hand panels: PDFs obtained after marginalization. Note that the PDFs are normalized so that the integral under each curve is unity.
Bold crosses mark the final parameter estimates given in Table 4.

(A color version of this figure is available in the online journal.)

using a 10 hr long moving-median filter. The remaining data
were quite adequate to estimate robust rotation periods. The
left-hand panels of Figure 11 show three-month segments of
the data, in which intrinsic stellar variability on timescales of
days is evident. This variation is smaller than that displayed
by the active Sun (e.g., see Basri et al. 2010, 2011), for which
the semi-amplitude of the variability reaches levels close to
1 part in 103.

To extract estimates of the surface rotation periods we
followed the analysis described by Hirano et al. (2012b). We
first calculated the Lomb–Scargle periodogram of each set of
processed data, which are plotted in the right-hand panels of
Figure 11. Both stars show significant peaks around 8 days due
to rotational modulation of spots. We checked that our results
did not depend on the detrending, as follows. First, we used
the simple least-squares fit to the co-trending vectors described
above. Second, we applied a 20 day median smoothing filter
to divide the raw data. Both approaches led to periodograms in
good agreement with our main results.

Both stars show several significant, closely spaced peaks in
their periodograms. The spread in period of the peaks will
have contributions from the finite spot lifetimes and might also
suggest the presence of surface differential rotation. Figure 11
also shows periodograms obtained from particular subsets of

the data, which suggest that the rotation periods might be
evolving with time. Again, this might be associated with
stochastic variability due to the spot lifetimes, or it could
have a contribution due to changes in the spot latitudes.
These signatures are not unexpected for such hot stars (Collier
Cameron 2007) but the low S/N of the stellar variability in the
light curves makes it hard to test the results in greater detail. It is
worth adding that we also checked that the spread of significant
periods was not an artifact of the observational window function.
We sampled commensurate sine waves of period 8 days at the
same time stamps as the real, cleaned PDC-MAP light curves,
and found that the resulting periodograms displayed a much
smaller width of significant periods than the real data (of order
0.2–0.4 days).

As in Hirano et al. (2012b), for each star the continuous
range of periods containing all peaks with more than half the
power of the highest peak was taken as the uncertainty on the
surface rotation period, with the center of the range adopted
as the quoted period, Prot. The rotation periods obtained in
this way were 8.4 ± 1.0 days for Kepler-50 and 8.4 ± 0.3 days
for Kepler-65. The rotational frequency splittings δνs given by
the asteroseismic analysis are equivalent to rotation periods
Prot = 1/δνs of 7.7+0.5

−0.4 days for Kepler-50 and 8.9+1.3
−1.1 days

for Kepler-65. The close agreement between the surface and
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Figure 10. Similar to Figure 9, but for Kepler-65.

(A color version of this figure is available in the online journal.)
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Figure 11. Left-hand panels: three-month segments of the long-cadence PDC-MAP data (from Q5), in which intrinsic stellar variability on timescales of days is
evident. The dots show the de-trended data (see text), and the thick line represents a smoothed version (10 hr boxcar). Right-hand panels: Lomb–Scargle periodograms
of the PDC-MAP data of both stars. Thick black lines: periodograms from using all corrected data. Dashed, colored lines: periodograms of three independent
three-quarter-long segments of data. Confidence intervals on the quoted average periods are marked by the vertical dotted lines.

(A color version of this figure is available in the online journal.)
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internal rotation rates is consistent with the expectation that
the frequency splittings of p-modes observed in main-sequence
stars are largely determined by the rotation profile in the stellar
envelope (as in the case of the Sun).

We can also compare our results with v sin is estimates
extracted from the spectroscopic data (see Section 2). For
Kepler-50 the spectroscopic analyses gave 8.6 ± 0.8 km s−1

(SME) and 10.3 ± 0.5 km s−1 (SPC), while for Kepler-65 they
gave 9.8 ± 0.8 km s−1 (SME) and 11.9 ± 0.5 km s−1 (SPC).
To compare with the asteroseismic results, we converted the
estimated rotational frequency splittings to projected rotational
velocities using

v sin is ≡ 2πR δνs sin is, (7)

with the stellar radii R given by the asteroseismic analysis dis-
cussed in Section 2. These conversions gave equivalent aster-
oseismically determined projected velocities of 8.0+1.2

−1.0 km s−1

for Kepler-50 and 10.4 ± 0.6 km s−1 for Kepler-65. Again, we
find agreement between the asteroseismic and surface estimates.
We note that the SPC v sin is values are higher than the SME
values by about 20%, in agreement with the findings by Torres
et al. (2012).

Finally, we may combine the spot modulation and v sin is
results to provide independent estimates of is, via

sin is = Prot(v sin is)/(2πR). (8)

When we used the SME results for v sin is we found that sines
of the angles were constrained at the 1σ level to lie above 0.89
for Kepler-50 and 0.90 for Kepler-65, again implying that both
stars have their rotation axes nearly perpendicular to the line of
sight. When the SPC v sin is were used we obtained sin is > 1.0
for both systems suggesting that (at least for these systems) the
SPC results are overestimated.

6. DISCUSSION

Our central result is that the host stars of the Kepler-50 and
Kepler-65 planetary systems have their rotation axes nearly
perpendicular to the line of sight, with sin is constrained at the 1σ
level to lie above 0.97 and 0.91, respectively. Expressed in terms
of angles, we have |90◦ − is| < 15◦ for Kepler-50 and <25◦ for
Kepler-65. The orbital inclinations of the planets in each system
are also near 90◦, with a deviation of only ≈5◦ for the planets of
Kepler-50 and ≈2◦ for the planets of Kepler-65. Therefore our
observations are consistent with small differences in the stellar
and orbital inclination angles, and low stellar obliquities.

A limitation of the results is that it is possible for the obliquity
to be large but for the difference in inclination angles to be small.
Spherical geometry dictates that the three-dimensional obliquity
angle ψ between the stellar spin axis and the planetary orbital
axis is given by

cos ψ = cos is cos ip + sin is sin ip cos λ, (9)

where λ is the projected angle on the sky between the orbital and
rotational angular momentum vectors, which the asteroseismic
method cannot provide. This is the converse of the situation
with, for example, the RM and spot-occultation methods, for
which the data reveal λ but are generally insensitive to is.
To overcome this limitation, one would need to combine the
various measurement techniques to determine both λ and is for
the same system, or else conduct observations of many systems

and perform a statistical analysis of the ensemble (see, e.g.,
Fabrycky & Winn 2009). Measuring the RM effects given by
the planets in the two systems considered in this paper would
be very challenging, due to the small sizes of the planets. The
highest-amplitude RM signal for Kepler-50 would be around
�0.3 m s−1 (given by Kepler-50c), while for Kepler-65 it would
be �1.8 m s−1 (given by Kepler-65c).

While the two stars we have analyzed are special—in the
sense that they have transits—it is important to test the null
hypothesis that they are members of a population of stars
randomly oriented in space. Put another way: had the stars been
randomly oriented, what is the chance that the inclination angles
would have been as close to 90◦, as observed? For an isotropic
distribution, the probability of observing |90◦−is| < x is simply
sin x. Evaluating this for Kepler-50 and Kepler-65 we find the
chance to be 26% and 42% individually, and the chance of
observing both of them so close to 90◦ is 11%. In this sense
there is only an 11% chance we would have obtained our results
in the absence of any correlation between the orientations of the
stellar rotation and planetary orbits.

Despite these limitations, let us consider the implications
of low obliquities. The number of extrasolar multiplanet sys-
tems for which the stellar obliquity has been measured is now
four, with Kepler-50 and Kepler-65 joining the previously stud-
ied systems Kepler-30 (Sanchis-Ojeda et al. 2012) and KOI-94
(Hirano et al. 2012a). In all four cases, the obliquity is con-
sistent with zero. We have already summarized our results for
Kepler-50 and Kepler-65, and for the other two systems λ was
found to be consistent with 0 to within about 10◦.

Several years ago these results would have seemed mundane.
Low obliquities are expected in the standard picture in which the
star and planets have the same direction of angular momentum
originating from a common accretion disk. Furthermore, up until
2008, low obliquities had been observed in all the exoplanetary
systems that had been examined (all involving single hot
Jupiters). Since that time, systems with hot Jupiters have been
found to have host stars with a wide range of obliquities
(Albrecht et al. 2012). Those results have been taken as evidence
that the process that produces hot Jupiters also tilts their orbits
relative to the initial plane of their formation. Specifically, the
results have been taken to support theories for the origin of hot
Jupiters involving few-body dynamics and tidal circularization
(alternatively referred to as high-eccentricity migration) as
opposed to the formerly dominant paradigm of disk migration.

It has been pointed out, however, that this conclusion depends
critically on the assumption that the current stellar equatorial
plane is aligned with the original plane of the planetary or-
bits. Several papers have questioned this assumption. Bate et al.
(2010) suggested that the chaotic environment of a star-forming
region might lead to large mismatches between the direction of
stellar rotation and the orientation of the late-stage protoplane-
tary disk. Thies et al. (2011) proposed that inclined planets arise
from capture of gas from a neighboring star. Lai et al. (2011)
presented a theory of magnetic interaction between a young star
and the inner edge of its accretion disk that can tip the star by
a significant angle. Rogers et al. (2012) considered stars with
convective cores and radiative envelopes, and found that they
might be susceptible to a directional wandering of the outer-
most layers of the star due to transport of angular momentum by
internal gravity waves from the convective–radiative boundary.

In a few cases, it has been possible to compare the orientation
of stellar rotation and the orientation of a surrounding disk (Le
Bouquin et al. 2009; Watson et al. 2011), and the results have
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favored the hypothesis of close alignment and low obliquities.
However, more stringent tests are warranted, and are provided
by the results for the four multiplanet systems Kepler-30, 50, 65,
and KOI-94. The low obliquities suggest that high obliquities
are confined to the hot-Jupiter systems, or at least have not yet
falsified that hypothesis. The results are therefore starting to
provide support to the argument that most or all hot Jupiters are
formed through inclination-lifting processes and not via disk
migration.

All four of the stars are cool enough to have outer convective
zones (indeed, Kepler-50 and Kepler-65 must have convection
because they exhibit solar-like oscillations). It is unclear how
effective the model of Rogers et al. (2012) might be for stars with
thin convective envelopes (e.g., like Kepler-50, Kepler-65, and
KOI-94, which are all hotter than the Sun). It is worth noting that
this theory already has difficulty accommodating the hot-Jupiter
results involving cool, convective stars with high obliquities,
namely, HAT-P-11 (Winn et al. 2010a; Sanchis-Ojeda & Winn
2011), HD 80606 (Winn et al. 2009; Pont et al. 2009; Hébrard
et al. 2010), and WASP-8 (Queloz et al. 2010).

Of course, one should not be satisfied with a sample of only
four systems, especially given the limitations caused by projec-
tion effects as noted above. The asteroseismic technique that was
deployed in this work has the advantage that the detectability of
the signal is chiefly a function of the stellar properties, as op-
posed to the planetary properties, and therefore has no intrinsic
difficulty with small planets or long-period planets. We expect
it will be possible to apply this technique to a sample of at least
10 other Kepler systems in the near future. It will be possible to
draw stronger conclusions with these results in hand. Definitive
conclusions will also be possible on individual systems with
transiting exoplanets when asteroseismology demonstrates that
is is significantly different from 90◦.
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APPENDIX

ESTIMATION OF STELLAR PROPERTIES USING
OSCILLATION FREQUENCIES

In the second stage of the stellar properties estimation
(Section 2) three members of the team (S.B., J.C.D., and T.M.)
performed a detailed modeling of the stars using estimates of the

individual oscillation frequencies and the revised spectroscopic
data as inputs.

S.B. made use of the Yale stellar evolution code, YREC
(Demarque et al. 2008) to model both stars. The input physics
included the OPAL equation of state tables of Rogers &
Nayfonov (2002), and OPAL high-temperature opacities
(Iglesias & Rogers 1996) supplemented with low-temperature
opacities from Ferguson et al. (2005). All nuclear reaction
rates were from Adelberger et al. (1998), except for the rate
of the 14N(p, γ )15O reaction, which was fixed at the value of
Formicola et al. (2004). Models were constructed for two val-
ues of core overshoot, 0 and 0.2Hp. Two families of models
were constructed, one that included the diffusion and settling
of helium and heavy elements as per the formulation of Thoul
et al. (1994), and one that did not include any diffusion and
settling.

YREC was used in an iterative mode whereby the final Teff and
radius for a star of a given mass and metallicity was specified,
and for a given mixing length parameter α the code iterated over
the initial helium abundance Y0 until a model with the specified
Teff and radius was found. This is similar to the construction
of a standard solar model, although in the solar case iterations
are made over both the mixing length parameter and Y0 with
solar age a fixed independent constraint. Since the ages of the
Kepler stars are not known independently, iteration over Y0
were performed for many different values of the mixing length
parameter. All solutions for which the initial helium abundance
was less than the primordial helium abundance, Yp were rejected.
Yp was assumed to be 0.245.

Corrections for near-surface effects (the so-called surface
term) were handled in the following manner. The first step
was the construction of a standard solar model with exactly
the same physics as that used to model the Kepler stars. This
yielded the set νnl� of solar model frequencies. These were then
used to estimate a set of “surface term” frequency offsets, δνnl�,
for the Sun by computing differences between the solar model
frequencies and the solar low-degree frequencies observed by
the Birmingham Solar Oscillations Network (BiSON; as listed
in Basu et al. 2009).

For each stellar model, M′, νnl�, and δνnl� were then scaled
to the mass and radius of M′ using the homology scaling
r = 〈Δν(M′)〉/〈Δνnl�〉. The resulting rνnl�−rδνnl� relation
was then used to correct the stellar model for the surface term.
Using a least-squares minimization a factor β was selected
so as to minimize

∑
(νobs

nl − νcorr
nl )2/(σ obs

nl )2 over all observed
modes, where νcorr

nl = νM′
nl + β rδνnl�, with rδνnl� evaluated at

rνnl� = νobs
nl .

J.C.D. followed a prescription that has previously been ap-
plied to the Hubble observations of HD 17156 (Gilliland et al.
2011), and several Kepler exoplanet host stars, i.e., HAT-P-7
(Christensen-Dalsgaard et al. 2010), Kepler-10 (Batalha et al.
2011), and Kepler-36 (Carter et al. 2012). Stellar-evolutionary
models were computed with the ASTEC code (Christensen-
Dalsgaard 2008a). The calculations used the OPAL equation of
state tables (see Rogers et al. 1996) and OPAL opacities at tem-
peratures above 104 K (Iglesias & Rogers 1996); at lower tem-
perature the Ferguson et al. (2005) opacities were used. Nuclear
reactions were calculated using the NACRE parameters (Angulo
et al. 1999). Convection was treated using the Böhm-Vitense
(1958) mixing-length formulation. Frequencies were computed
for the models using ADIPLS (Christensen-Dalsgaard 2008b)
and then corrected for surface effects following the prescription
of Kjeldsen et al. (2008).
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For each evolutionary sequence in the grid of ASTEC
models, the model M′

min whose surface-corrected frequencies
provided the best χ2 match to the observations was selected.
The best match was obtained from application of homology
scaling, under the assumption that in the vicinity of M′

min
frequencies could be calculated using rνnl(M′

min), where r =
[R/R(M′

min)]−1.5, R being the surface radius of the model. A
best-fitting model was then determined by minimizing the sum∑

(νobs
nl − rνnl(M′

min))2/(σ obs
nl )2 over all observed modes, as a

function of r. The resulting minimum value of r defined an
estimate of the radius of the best-fitting model along the given
sequence. The other properties of this best-fitting model were
determined by linear interpolation in R, to the minimum of R.
Statistical analysis of the ensemble of best-fitting properties
from all evolutionary sequences then yielded the final stellar
properties, and their uncertainties (see Christensen-Dalsgaard
et al. 2010; Carter et al. 2012).

T.M. used the Asteroseismic Modeling Portal (AMP), a web-
based tool tied to TeraGrid computing resources that uses a
parallel genetic algorithm (Metcalfe & Charbonneau 2003) to
optimize, in an automated manner, the match to observational
data (see Metcalfe et al. 2009; Woitaszek et al. 2009 for more de-
tails). AMP employs the Aarhus stellar evolution code ASTEC
(Christensen-Dalsgaard 2008a) and adiabatic pulsation code
ADIPLS (Christensen-Dalsgaard 2008b). Models were made
using the OPAL 2005 equation of state and the most recent
OPAL opacities supplemented by Ferguson et al. (2005) opac-
ities at low temperature, nuclear reaction rates from NACRE
(Angulo et al. 1999), and helium diffusion and settling following
Michaud & Proffitt (1993). Convection was treated with stan-
dard mixing-length theory without overshooting (Böhm-Vitense
1958).

Each AMP model evaluation involved the computation of a
stellar evolution track from the zero-age main sequence through
a mass-dependent number of internal time steps, terminating
prior to the beginning of the red giant stage. The asteroseismic
age was optimized along each evolutionary track using a binary
decision tree under the assumption that 〈Δν〉 is a monotonically
decreasing function of age (see Metcalfe et al. 2009, and
references therein). The Kjeldsen et al. (2008) prescription was
again applied in an attempt to deal with the surface term. The
optimal model was then subjected to a local analysis that uses
singular value decomposition to quantify the uncertainties of
the final model parameters (see Creevey et al. 2007).
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