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ABSTRACT

We study the secular, hierarchical three-body problem to first-order in a post-Newtonian expansion of general
relativity (GR). We expand the first-order post-Newtonian Hamiltonian to leading-order in the ratio of the semi-
major axis of the two orbits. In addition to the well-known terms that correspond to the GR precession of the inner
and outer orbits, we find a new secular post-Newtonian interaction term that can affect the long-term evolution
of the triple. We explore the parameter space for highly inclined and eccentric systems, where the Kozai–Lidov
mechanism can produce large-amplitude oscillations in the eccentricities. The standard lore, i.e., that GR effects
suppress eccentricity, is only consistent with the parts of phase space where the GR timescales are several orders
of magnitude shorter than the secular Newtonian one. In other parts of phase space, however, post-Newtonian
corrections combined with the three-body ones can excite eccentricities. In particular, for systems where the
GR timescale is comparable to the secular Newtonian timescales, the three-body interactions give rise to a
resonant-like eccentricity excitation. Furthermore, for triples with a comparable-mass inner binary, where the
eccentric Kozai–Lidov mechanism is suppressed, post-Newtonian corrections can further increase the eccentricity
and lead to orbital flips even when the timescale of the former is much longer than the timescale of the secular
Kozai–Lidov quadrupole perturbations.
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1. INTRODUCTION

Triple stellar systems are believed to be very common in
nature (e.g., Tokovinin 1997; Eggleton et al. 2007). From dy-
namical stability arguments, these systems must be hierarchical
triples, in which the (inner) binary is orbited by a third body on
a much wider orbit. Probably, more than 50% of the bright stars
we see are at least (double) binary systems (Tokovinin 1997;
Eggleton et al. 2007). Given the selection effects against finding
faint and distant companions, we can be reasonably confident
that the number of triple systems is actually substantially greater
than that observed. Tokovinin (1997) showed that 40% of binary
stellar systems with period <10 days, in which the primary is
a dwarf (0.5–1.5 M�), have at least one additional companion.
He also found that the fraction of triples and higher multiples
among binaries with period (10–100 days) is ∼10%. Moreover,
Pribulla & Rucinski (2006) have surveyed a sample of contact
binaries, and noted that 42±5% of 151 of them brighter than 10
mag are at least triples. We can then conclude that many close
stellar binaries with two compact objects are likely produced
through triple evolution.

Long-term stability of triple system requires hierarchical
configurations: an “inner” binary (with masses m1 and m2) in
a nearly Keplerian orbit with semi-major axis (SMA) a1, and
an “outer” binary in which m3 orbits the center of mass of the
inner binary, with SMA a2 � a1. Another stability condition is
that the perturber does not make close approaches to the inner
binary orbit. In this stability regime, a highly inclined perturber
can produce large-amplitude oscillations in the eccentricity and
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inclination of the system, the so-called Kozai–Lidov mechanism
(Kozai 1962; Lidov 1962).

The Kozai–Lidov mechanism is an important example of
a secular effect (i.e., coherent interaction on timescales long
compared to the orbital period) that is common in hierarchical
triple systems but absent from two-body dynamics. This process
has been proposed as an important element in the evolution of
triple stars (e.g., Harrington 1969; Mazeh & Shaham 1979;
Kiseleva et al. 1998; Fabrycky & Tremaine 2007; Perets &
Fabrycky 2009; Thompson 2011; Naoz et al. 2013; Prodan
& Murray 2012; Sharpee & Thompson 2013) and extrasolar
planetary systems with an additional distant stellar companion
(e.g., Holman et al. 1997; Fabrycky & Tremaine 2007; Wu
et al. 2007; Takeda et al. 2008; Naoz et al. 2012). In addition,
the Kozai–Lidov mechanism has been suggested to play an
important role in both the growth of black holes (BHs) at
the centers of dense stellar clusters and the formation of
short-period binary BHs (Wen 2003; Miller & Hamilton 2002).
Furthermore, Ivanova et al. (2010) showed that the most
important formation mechanism for BH X-ray binaries in
globular clusters may be triple-induced mass transfer in a
BH–white-dwarf binary.

Given the hierarchical galaxy formation paradigm, and the
strong evidence that a high abundance of the local galaxies host
supermassive BHs (SMBHs), one expects that major galaxy
mergers should inevitably result in the formation of SMBH
binaries or multiples (Valtonen 1996; Hoffman & Loeb 2007;
Kulkarni & Loeb 2012; Dotti et al. 2012). Blaes et al. (2002)
showed that the Kozai–Lidov mechanism plays an important
role in the evolution of SMBH triples, where high eccentricity
induced by the outer perturber can lead to a more efficient merger
rate, due to gravitational wave (GW) emission (see also Seto
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2012). Also, recently Antonini & Perets (2012) showed that
secular three-body effects play an important role in the evolution
of binary compact objects near SMBHs.

GWs emitted during Kozai–Lidov-induced, highly eccentric
orbits of compact binaries might be detectable using LIGO5

and VIRGO6 (e.g., Wen 2003 but see Mandel et al. 2008
and O’Leary et al. 2006), pulsar timing arrays (e.g., Finn &
Lommen 2010; Amaro-Seoane et al. 2010; Kocsis et al. 2012),
and future space-based GW observatories, such as eLISA/NGO
(Amaro-Seoane et al. 2012, 2012b).7 In fact, GWs associated
with eccentric orbits are stronger and have a very different
spectrum relative to their circular counterparts for sources at
the same distance and with the same mass and spin. This may
allow for the GW detection of eccentric inspirals with higher
masses, larger SMAs or farther away from Earth relative to their
quasi-circular counterparts (Arun et al. 2007a, 2007b; Yunes
et al. 2009; O’Leary et al. 2009; Kocsis & Levin 2012). Using
GW information emitted by the close binary, it might be possible
to constrain the parameters of the third body, such as its
mass or distance, provided that the GW signal-to-noise ratio
is sufficiently high (Yunes et al. 2011; Galaviz & Brügmann
2011).

The Kozai–Lidov mechanism is therefore tremendously im-
portant and there is still much to be understood. Recently, Naoz
et al. (2011, 2013) showed that an eccentric outer orbit (and even
a circular one with comparable mass inner binary) can behave
significantly differently than previously assumed, the so-called
“eccentric Kozai–Lidov mechanism.” Specifically, they showed
that the inner orbits can flip from prograde to retrograde and
back, and can also reach extremely high eccentricities close to
unity, and the system behaves chaotically (Lithwick & Naoz
2011). Most previous secular three-body dynamics studies that
incorporated general relativity (GR) effects did so through a
pseudo-potential, constructed mainly to model accretion disks
and 1st post-Newtonian (1PN) shifts in the innermost stable
circular orbit (Nowak & Wagoner 1991; Artemova et al. 1996;
Miller & Hamilton 2002). It has been shown that the 1PN pre-
cession of the inner body may play an important role in secular
evolution (e.g., Ford et al. 2000b; Miller & Hamilton 2002;
Blaes et al. 2002; Mardling 2007; Fabrycky & Tremaine 2007;
Zhang et al. 2013). Here we expand our investigation to include
both the eccentric Kozai–Lidov mechanism and the three-body
1PN effects. We show here (Section 3 and Appendix A) that
although this pseudo-potential does capture some 1PN effects,
such as the precession rate, the full 1PN three-body Hamiltonian
introduces other corrections that cannot be modeled with this
potential.

In this paper, we study the consistent inclusion of 1PN terms
in the secular dynamical evolution of hierarchical triple systems.
We restrict attention to the 1PN approximation of the three-body
Hamiltonian. While it is well established that the eccentricity
and inclination are constant in the 1PN two-body problem
(Damour & Deruelle 1985), it is not true for hierarchical triples.
In addition to the standard GR precession of the inner and outer
orbits, the 1PN corrections lead to a new secular interaction
between the inner and outer binaries that affects their long-term
evolution. We find that the standard lore, i.e., that GR effects
suppress eccentricity, is only true when the GR timescales are
several orders of magnitude shorter than the secular Newtonian
ones. When the GR timescales are comparable to the secular

5 http://www.ligo.caltech.edu/
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Figure 1. Coordinate system used to describe the hierarchical triple system (not
to scale). Here “c.m.” denotes the center of mass of the inner binary, containing
objects of masses m1 and m2. The separation vector r points from m1 to m2;
R3 points from “c.m.” to m3. The angle between the vectors r and R3 is Φ. The
distances from the bodies to a field point are labeled by r1, r2, and r3.

(A color version of this figure is available in the online journal.)

Newtonian ones, we show that three-body interactions generally
give rise to a resonant-like eccentricity excitation (see also Ford
et al. 2000b). We will be using the term “resonance” here to
describe the rapid excitations of the inner orbit’s eccentricity,
which occurs when the 1PN timescales are comparable to
the secular Newtonian timescales. We demonstrate that even
for systems with comparable inner binary masses, where the
Kozai–Lidov mechanism is suppressed, and even when the GR
timescales are much longer than the secular Newtonian ones,
1PN corrections continue to excite the eccentricity.

This paper is organized as follows. We begin with a defi-
nition of the parameters used to describe a hierarchical triple
system based on Newtonian and 1PN three-body Hamiltonians
(Section 2). We then show that three-body evolution is mod-
ified by 1PN effects (Section 3). We discuss the different
timescales corresponding to the 1PN effects, and identify the
region in phase space where important deviations might arise
due to these terms (Section 4). We then show that 1PN terms can,
in many cases, excite the eccentricity of the inner orbit instead
of suppressing it (Section 5). We conclude with a discussion in
Section 6.

2. HAMILTONIAN PERTURBATION THEORY FOR
HIERARCHICAL TRIPLE SYSTEMS

A triple system consists of a binary (with masses m1 and m2)
and a third body (with mass m3) in orbit about the center of mass
of the former. It is convenient to describe the orbits using Jacobi
coordinates (Murray & Dermott 2000). Let r be the relative
position vector from m1 to m2 and R3 be the position vector of
m3 relative to the center of mass of the inner binary (see for
more details Naoz et al. 2013), as shown in Figure 1.

In the PN approximation, corrections to Newtonian mechan-
ics arise in powers of (v/c)n, where v is the orbital velocity and
c is the speed of light, with n � 2 an integer. Here we concen-
trate on the 1PN order corrections to Newtonian motion, which
are O(v2/c2) relatively smaller than the Newtonian terms. The
Hamiltonian can then be divided into a Newtonian part (HN)
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and a 1PN part (H1PN):

Htot,1PN = HN + H1PN , (1)

where the Newtonian part is simply

HN = 1

2

3∑
i=1

p2
i

mi

− 1

2

3∑
i,j �=i

k2mimj

rij

, (2)

and the 1PN part is (e.g., Schäfer 1987; Moore 1993; Lousto &
Nakano 2008):

H1PN = − 1

8c2

3∑
i=1

mi

(
p2

i

m2
i

)2

− k2

4c2

∑
i,i �=j

mimj

rij

×
{

6
p2

i

m2
i

− 7
(pi · pj )

mimj

− (nij · pi)(nij · pj )

mimj

}

+
k4

2c2

∑
i,j �=i,k′ �=i

mimjmk′

rij rik′
. (3)

In these equations, k2 is the gravitational constant, rij (rij) is
the relative position vector (magnitude) from mass mi to mj,
pi (pi) is the momentum vector (magnitude) of mass mi in
an arbitrary plane (we shall later transform to center-of-mass
coordinates). In the 1PN Hamiltonian, i, j and k′ run from 1
to 3 (the three masses), where k′ is an index while k2 is the
gravitational constant, and nij = rij /rij .

Many gravitational triple systems are in a hierarchical con-
figuration: two objects orbit each other in a relatively tight inner
binary while the third object is on a much wider orbit. If the third
object is sufficiently distant, an analytic, perturbative approach
can be used to calculate the evolution of the system over long
timescales (relative to the orbital period). In the usual secular
approximation (e.g., Marchal 1990), the three orbiting objects
torque each other and exchange angular momentum, but not
energy. Therefore, on timescales much longer than their orbital
periods, the eccentricity and orientation can change, but not
the SMA.

Given this, the orbital motion of a triple system can be divided
into two separate Keplerian orbits: the relative orbit of bodies
1 and 2, and the orbit of body 3 around the center of mass
of the system. The Hamiltonian for the system can then be
decomposed accordingly into two Keplerian Hamiltonians plus
a coupling term that describes the (weak) interaction between the
two orbits. Let the SMAs of the inner and outer orbits be a1 and
a2, respectively. Then, the coupling term in the Hamiltonian can
be written as a power series in the ratio of the SMAs α = a1/a2
(e.g., Harrington 1968). In a hierarchical system, by definition,
this parameter α is small.

The Newtonian part of the Hamiltonian, expanded in powers
of α, is (e.g., Harrington 1968)

HN = − k2m1m2

2a1
− k2m3(m1 + m2)

2a2

− k2

a2

∞∑
j=2

αjMj

(
r

a1

)j (
a2

R3

)j+1

Pj (cos Φ) , (4)

where Pj are Legendre polynomials, Φ is the angle between r1
and r2 (see Figure 1), and

Mj = m1m2m3
m

j−1
1 − (−m2)j−1

(m1 + m2)j
. (5)

Note that most secular studies follow the convention of Harring-
ton (1969) and choose the Hamiltonian to be the negative of the
total energy, so that H > 0 for bound systems. Here we did not
follow this convention. The equations of motion in Naoz et al.
(2013) did use this convention, and thus, a reader that wishes
to combine the two sets of equations need to introduce a minus
sign to one of the sets.

We adopt canonical variables, known as Delaunay’s elements,
which provide a particularly convenient dynamical description
of hierarchical three-body systems (e.g., Valtonen & Karttunen
2006). The coordinates are chosen to be the mean anomalies, l1
and l2, the arguments of periastron, g1 and g2, and the longitudes
of ascending nodes, h1 and h2, where subscripts 1, 2 denote the
inner and outer orbits, respectively. Their Newtonian conjugate
momenta are

L1 = m1m2

m1 + m2

√
k2(m1 + m2)a1 , (6)

L2 = m3(m1 + m2)

m1 + m2 + m3

√
k2(m1 + m2 + m3)a2 ,

G1 = L1

√
1 − e2

1 , G2 = L2

√
1 − e2

2 , (7)

and
H1 = G1 cos i1 , H2 = G2 cos i2 , (8)

respectively, where e1 (e2) is the inner (outer) orbital eccen-
tricity. Note that G1 and G2 are also the magnitudes of the
angular momentum vectors (G1 and G2), and H1 and H2 are the
z-components of these vectors. The following geometric rela-
tions between the momenta follow from the law of cosines:

cos itot = G2
tot − G2

1 − G2
2

2G1G2
, (9)

H1 = G2
tot + G2

1 − G2
2

2Gtot
, (10)

H2 = G2
tot + G2

2 − G2
1

2Gtot
, (11)

where Gtot = G1 + G2 is the (conserved) total angular mo-
mentum vector, and the angle between G1 and G2 defines the
mutual inclination itot = i1 + i2. From Equations (10) and (11)
we find that the inclinations i1 and i2 are determined by the
orbital angular momenta via

cos i1 = G2
tot + G2

1 − G2
2

2GtotG1
, (12)

cos i2 = G2
tot + G2

2 − G2
1

2GtotG2
. (13)

In addition to these geometrical relations we also have that

H1 + H2 = Gtot = constant (14)

since we are here neglecting dissipative effects such as GW
radiation-reaction, and thus, the Hamiltonian is conserved.
Given this parameterization, the Hamiltonian or canonical
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equations describe the orbital motion via

dLj

dt
= −∂H

∂lj
,

dlj

dt
= ∂H

∂Lj

, (15)

dGj

dt
= − ∂H

∂gj

,
dgj

dt
= ∂H

∂Gj

, (16)

dHj

dt
= − ∂H

∂hj

,
dhj

dt
= ∂H

∂Hj

, (17)

where j = 1, 2.
The secular Hamiltonian (both the Newtonian and the 1PN

parts) is given by taking Equation (1) expanded in powers of α
and averaging over the rapidly varying l1 and l2. The averaging
technique we use is known as the Von Zeipel transformation
(for more details, see Brouwer 1959; Naoz et al. 2013; also
see Appendix B) a canonical transformation that eliminates the
rapidly-oscillating parts of H. We apply this transformation
twice, leading to a Hamiltonian that is the double average
of the original Hamiltonian over both orbital periods. We
thus refer to the resulting quantity as the “double-averaged
Hamiltonian.”

The double-averaged Newtonian Hamiltonian (Equation (4)),
up to octupole order (i.e., up to O(α3) beyond the leading
order term proportional to a−1

1 , see Naoz et al. 2013)8 can be
written as

H̄N = H̄N
quad + H̄N

oct (18)

where

H̄N
quad = − C2

{(
2 + 3e2

1

)
(3 cos2 itot − 1)

+ 15e2
1 sin2 itot cos(2g1)

}
, (19)

H̄N
oct = 15

4
εMe1C2

{
A cos φ + 10 cos itot sin2 itot

× (
1 − e2

1

)
sin g1 sin g2

}
. (20)

Note that Equation (19) has a minus sign compared to Naoz et al.
(2013), which used the sign convention for which the Hamil-
tonian is positive. Here, we did not include the terms which
correspond to the Keplerian orbital energy of the three objects
which depend on only the SMAs, and are constant in the secular
approximation without dissipative effects. Furthermore, we have
defined

εM =
(

m1 − m2

m1 + m2

) (
a1

a2

)
e2

1 − e2
2

, (21)

C2 = k4

16

(m1 + m2)7

(m1 + m2 + m3)3

m7
3

(m1m2)3

L4
1

L3
2G

3
2

, (22)

A = 4 + 3e2
1 − 5

2
B sin i2

tot, (23)

B = 2 + 5e2
1 − 7e2

1 cos(2g1), (24)

8 Note that Krymolowski & Mazeh (1999) showed that the von Zeipel
transformation results in higher orders terms proportional to α7/2; however,
here we consider only O(α3) level of perturbations.

and

cos φ = − cos g1 cos g2 − cos itot sin g1 sin g2. (25)

Note that the octupole coefficient in Ford et al. (2000b), is
simply C3 = C2(εM/e2)15/4. Also, following our definitions
(see Figure 1) m1 and m2 refer to the component masses of the
inner orbit, while e2 refers to the eccentricity of the outer orbit.
In the test-particle limit (i.e., m1 � m2) εM (Equation (21))
reduces to the octupole coefficient introduced in Lithwick &
Naoz (2011) and Katz et al. (2011),

ε =
(

a1

a2

)
e2

1 − e2
2

. (26)

In these Hamiltonians (and in the following 1PN parts), we have
eliminated the nodes (i.e., h1 and h2) by using the conservation
of total angular momentum, which leads to h1 − h2 = π . As
shown in Naoz et al. (2013) this can be done only as long as one
does not conclude that the conjugate momenta are constant (e.g.,
Dirac 1950). The full equations of motion up to the Newtonian
octupole order are presented in Naoz et al. (2013).

The averaged 1PN Hamiltonian can be separated into different
terms. First, let us use the fact that for Keplerian orbits the
momentum can be related to the radius and SMA; for the inner
orbit, we can write pin = μin

√
k2(m1 + m2)(2/r − 1/a1), where

μin is the reduced mass of the inner orbit and a similar relation
can be written to the outer orbit. Second, we substitute this
relation into the three-body 1PN Hamiltonian, i.e., Equation (3).
After transforming to the center of mass frame, the 1PN
corrections is expanded in powers of α up to relative O(α3).
This produces a similar expansion to Equation (4) for the
1PN Hamiltonian, but due to its length we have chosen not
to present it here. To investigate the long-term dynamics of the
three-body system, we eliminate all terms with short periods in
the Hamiltonian, which depend on the rapidly changing l1 and
l2, using a double Von Zeipel transformation (Brouwer 1959),
see for more details Appendix B. In doing so, we must first
calculate the angle between the vectors pin · pout and pout · r and
pin · R3, where pin (pout) is the momentum of the inner (outer)
orbit, as defined in the invariable plane.

The leading-order term in an α 	 1 expansion is proportional
to a−2

1 in the double-averaged 1PN Hamiltonian. Keeping all
terms up to O(α3) beyond leading gives

H̄1PN = H̄1PN
a−2

1
+ H̄1PN

a1a2
+ H̄1PN

a−2
2

+̄H1PN
int (27)

where

H̄1PN
a−2

1
= k4μin

(
15m1

2 + 29m1m2 + 15m2
2
)

8a1
2c2

− 3k4m1m2(m1 + m2)

a1
2c2

√
1 − e1

2
, (28)

H̄1PN
a1a2

= k4m1m2m3(2(m1 + m2) + 3m3)

4a1a2c2(m1 + m2 + m3)
, (29)

H̄1PN
a−2

2
= k4μout

(
15(m1 + m2)2 + 29(m1 + m2)m3 + 15m3

2
)

8a2
2c2(m1 + m2 + m3)

− 3k4(m1 + m2)m3(m1 + m2 + m3)

a2
2c2

√
1 − e2

2
(30)
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H̄1PN
int = k2

4a3
2c

2(1 − e2
2)3/2(m1 + m2)

{
G1G2[8(m1 + m2)

+ 6m3] cos itot +
a1k

2m1m2m3

8(m1 + m2)

(
fme1 − 3fme1 cos2 itot

+ 9e1
2
(
m2

1 + m1m2 + m2
2

)
cos(2g1) sin2 itot

)}
, (31)

and where

μin = m1m2

m1 + m2
, (32)

μout = m3(m1 + m2)

m1 + m2 + m3
, (33)

fme1 = (
2 − 5e2

1

)(
m2

1 + m2
2

) − 3
(
2 − e2

1

)
m1m2. (34)

Here H̄1PN
int includes all terms of O(α5/2) and O(α3) be-

yond H̄1PN
a−2

1
, since G1 ∝ a

1/2
1 and G2 ∝ a

1/2
2 according to

Equations (6) and (7).
Not all of the different 1PN Hamiltonian terms affect the

dynamical evolution of the triple. The H̄1PN
a1a2

term only depends
on the masses and the SMAs, i.e., it does not depend on the
canonical coordinates, and thus, it does not affect the canonical
equations, although it does change the total energy of the
system. On the other hand, H̄1PN

a−2
1

and H̄1PN
a−2

2
do contribute to

the dynamical evolution, as they clearly depend on e1 and
e2. A possible, (intuitive) physical explanation for this is the
following. In the a2 → ∞ limit, one would expect only two
physical effects: precession of the inner orbit and precession
of the outer orbit about the inner binary. These two physical
effects arise because of H̄1PN

a−2
1

and H̄1PN
a−2

2
, and thus, H̄1PN

a1a2
, (which

satisfies H̄1PN
a1a2

� H̄1PN
a−2

2
for large a2/a1) cannot contribute to the

motion.
The quantity H̄1PN

int is an “interaction term,” in that it represents
the coupling between the outer and the inner orbits. Notice that
this term would not be present if we had truncated the α 	 1
expansion at O(α2). Notice also that the interaction term does
not depend on the argument of periapsis of the outer orbit, g2,
just like the quadrupole Newtonian Hamiltonian. Therefore, at
quadrupole order, e.g., for a circular outer perturber, the absence
of g2 in the Hamiltonian implies that the outer orbital angular
momentum, G2, is conserved (the so-called “happy coincidence”
of Lidov & Ziglin 1976).

3. TRIPLE BODY EVOLUTION IN
POST-NEWTONIAN THEORY

The secular evolution of a three-body hierarchical system to
Newtonian, octupole order was studied in Naoz et al. (2013).
As mentioned in Section 1, they showed that the commonly
assumed conservation of the z-component of the angular mo-
menta of the inner and outer orbits (H1 and H2) is only correct in
the test-particle approximation to quadrupole order. Newtonian
octupole terms further modulate the eccentricity and inclination
oscillations. Specifically, for an eccentric and inclined outer per-
turber, these terms can lead to extremely high eccentricities and
flip the inner orbit from prograde to retrograde. This type of
behavior also appears in the test-particle limit for an eccentric
orbit (e.g., Lithwick & Naoz 2011; Katz et al. 2011; Naoz et al.
2013).

Figure 2. An example of the evolution of a triple to Newtonian octupole
order neglecting PN contributions (red lines) and including them up to the
1PN interactions terms in the double-averaged Hamiltonian (blue lines). The
system has an inner binary of m1 = 1 M�, m2 = 0.001 M�, and the third
object mass is m3 = 104 M�. We set a1/R

g

1 = 104 and a2/R
g

3 = 202. We
set initially e2 = 0.6, e1 = 0.01 g1 = g2 = 0◦ and itot = 85◦. We consider,
from top to bottom, the inclination of the inner orbit, i1, the eccentricity of the
inner orbit in terms of 1 − e1, and the z-component of the angular momentum
normalized to the total angular momentum. Note that we do not plot G2 since in
configuration where m2 → 0, G2 → Gtot, (Lithwick & Naoz 2011). In this case,
the quadrupole Newtonian terms induce eccentricity–inclination oscillations,
modulated by the octupole terms, while the 1PN effect suppresses them.

(A color version of this figure is available in the online journal.)

Figure 2 presents the secular evolution of a three-body
hierarchical system to Newtonian, octupole order (red lines). We
chose a system with inner binary masses m1 = 1 M� and m2 =
0.001 M�, and an outer binary companion with mass m3 =
104 M�. For this system, we set a1/R

g

1 = 104 and a2/R
g

3 = 202,
where, R

g

1 = k2(m1 + m2)/c2 and R
g

3 = k2m3/c
2 are the

gravitational radii of the inner and the outer orbits, respectively.
We also set initially e2 = 0.6, e1 = 0.01, g1 = g2 = 0◦
and itot = 85◦. The Newtonian quadrupole terms induce the
“standard” eccentricity–inclination oscillations, while octupole
terms modulate it. As can be seen in the figure, the modulation
does not have a precise periodicity and, in fact, the octupole
terms introduce the chaotic aspects to the evolution (Lithwick
& Naoz 2011). When 1PN corrections become significant
however, the evolutionary orbital tracks can be significantly
different (already at quadrupole order).

Different 1PN terms have different effects on the evolutionary
orbital tracks, where the perturbations to the equations of motion
follow from Equations (15)–(17). H̄1PN

a−2
1

gives rise to the standard

GR precession of the argument of periapsis of the inner orbit,
while H̄1PN

a−2
2

is responsible for the precession of the argument of

periapsis of the outer orbit,

dg1

dt

∣∣∣∣
1PN(a−2

1 )

= 3k3(m1 + m2)3/2

a
5/2
1 c2

(
1 − e2

1

) , (35)

dg2

dt

∣∣∣∣
1PN(a−2

2 )

= 3k3(m1 + m2 + m3)3/2

a
5/2
2 c2

(
1 − e2

2

) . (36)

5



The Astrophysical Journal, 773:187 (16pp), 2013 August 20 Naoz et al.

These contributions can be recovered independently from the
individual two-body 1PN Hamiltonians of the inner and outer
binary (see Appendix A Equation (A1)), or from an effective
potential, or directly from the 1PN metric (e.g., Misner et al.
1973, chap. 25, p. 668–670). Other than this precession, H̄1PN

a−2
1

and H̄1PN
a−2

2
, do not directly affect the other orbital elements.9 The

H̄1PN
a1a2

term just modifies the total energy and does not modify
the long–term dynamical evolution at all, as long as dissipative
effects are neglected.

In the standard lore, if the GR precession rate of the inner orbit
is faster than the quadrupole secular Newtonian timescales, the
GR effect is presumed to suppress the eccentricity growth (for
an m2 test particle to quadrupole Newtonian order, see Fabrycky
& Tremaine 2007). In Figure 2 (blue lines) we show an example
where this is indeed the case, even when including all 1PN terms
(see below). In this example, eccentricity (and orbital flips) are
suppressed by the 1PN corrections (the variations shown by the
blue lines are shorter than red lines).

The usual precession term (Equation (35)) is not sufficient to
model the system, as one must also account for the precession of
the outer orbit (Equation (36)) and the other effects introduced
by the 1PN interaction terms (Appendix C). The inclusion of
these terms leads to qualitatively different behavior because they
directly drive the evolution of inner and outer orbital eccentricity
and inclination, while Equation (35) (Equation (36)) drives the
evolution of only the argument of periapsis of the inner (outer)
orbit. Figure 3 shows the evolution of the eccentricity when
different terms in the Hamiltonian are included. We considered
a system with parameters m1 = 1 M�, m2 = 1 MJ (essentially a
test particle), m3 = 106 M�, a1/R

g

1 = 5.06×105 corresponding
to 0.005 AU. In the left column we consider initial relative
inclination itot = 95◦ and a separation of the outer orbit
a2/R

g

3 = 5.2 × 103 corresponding to 51.4 AU. In the right
column, we consider initial relative inclination itot = 65◦ and a
separation of the outer orbit a2/R

g

3 = 4.8 × 103 corresponding
to 47.35 AU. For the calculation in the two columns, the initial
eccentricities are e1 = 0.001 and e2 = 0.7, and the initial
argument of pericenter of the inner and outer orbits is set to 240◦
and zero, respectively. This system configuration is such that
the 1PN(a−2

1 ) timescales for circular orbits (∼59 yr, for the left
column example, see Section 4 for more details) are shorter than
the Newtonian quadrupole ones (∼145 yr for the left column
example). Nevertheless, the secular eccentricity oscillations are
still present. The bottom panel shows that the interaction term
H̄1PN

int introduces a significant new periodic modulation to the
eccentricity evolution. We discuss in more details the conditions
in parameter space that lead to this behavior in Sections 4 and 5
(note that this system represents the resonance peak of the 95◦
and 65◦ cases of Figure 5 below).

The usual precession term (mostly for the inner) in the
presence of three-body secular evolution was compared to
direct N-body calculation in the literature before (e.g., Ford
et al. 2000b; Zhang et al. 2013). To resolve the effects of
the interaction term one needs to be in the regime where the
GR precession timescales are much shorter than the quadrupole
precession timescales (see Section 4). The examples considered
in Figure 3 represent ∼3 × 108 of the inner orbital period.
Numerical integrations algorithms that conserve the energy over
such long timescales in the three-body post Newtonian regime

9 Note, however, that the precession indirectly affects the evolution of the
other orbital elements through H̄N, as shown below.

Figure 3. Two examples of the time evolution of the system dominated by 1PN
effects; the right and left side panels differ only in the initial relative inclination
and the outer orbital separation. In the top panels we consider the three-body
orbit evolution due to Newtonian dynamics and the lowest-level 1PN correction,
i.e., HN + H1PN

a−2
1

. In the middle panels we add the next level of approximation

+H1PN
a−2

2
, and in the bottom panels we consider the approximation up to the highest

level discussed here, i.e., +H1PN
int . The inner binary contains an object of mass

1 M� and an object of mass 1 MJ (can be considered as a test particle), while
the outer object is a BH with mass of 106 M�. The inner orbital separation is
a1/R

g

1 = 5.06 × 105, corresponding to 0.005 AU. The initial eccentricities are
e1 = 0.001 and e2 = 0.7. The arguments of pericenter of the inner orbit initially
set to 240◦ and outer orbit initially is set to zero. In the left column, we consider
an initial relative inclination of itot = 95◦, and an outer orbital separation of
a2/R

g

3 = 5.2×103, corresponding to 51.4 AU. In the right column, we consider
an initial relative inclination of itot = 65◦, and an outer orbital separation of
a2/R

g

3 = 4.8 × 103, corresponding to 47.35 AU. Observe that as one includes
more 1PN effects, qualitatively different behavior emerges.

(A color version of this figure is available in the online journal.)

are not easy to implement or develop, and thus, they are left to
future work.

One might worry that a 1PN treatment might not be suf-
ficient to model certain regions of phase space, as we have
neglected 2PN and higher PN order terms in the evolution. Such
terms become important when the PN perturbation parameter,
v/c with v any system velocity, i.e., the pericenter velocities
(vp1/c)2 = (Rg

1 + R
g

2 )/[a1(1 − e1)] and similarly for the outer
orbit, are not sufficiently small. In most of our examples we en-
sured that our systems are well within the PN regime, however,
for very eccentric systems, 2PN and higher PN order terms may
be important. In fact, one might naively expect the 1PN correc-
tions accounted for here to be negligible if v/c 	 1. This is not
so, because although the 1PN terms are small at any point in
time, their effects may accumulate and become significant over
long timescales in the three-body problem.

4. TIMESCALES

In order to explore the regions of phase space where the 1PN
effects may be expected to become significant, we compare the
various timescales associated with the individual terms in the
Hamiltonian.

The timescale associated with the Newtonian quadrupole term
can be estimated from the canonical equations. More precisely,

6
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tN
quad ∼ 2πG1/C2, where C2 is given in Equation (22):

tN
quad ∼ 2πa3

2

(
1 − e2

2

)3/2√
m1 + m2

a
3/2
1 m3k

. (37)

The timescales associated with the Newtonian octupole terms
are more difficult to estimate due to their chaotic effect on the
orbits. For example, in Figure 2 the first modulation period is
shorter than the second (see Naoz et al. 2013 for more examples).
However, as demonstrated in Lithwick & Naoz (2011), although
the system is chaotic when the octupole terms are included, there
are two general features in the evolution: one associated with
an octupole timescale, defined below, and a shorter one (see for
example their Figure 7 of surfaces of section, which shows the
two different evolutionary behaviors). We define a timescale for
the regular part of the Newtonian octupole evolution through
the rough estimate tN

oct ∼ (4/15)tN
quad/εM for a given inner and

outer eccentricity,

tN
oct ∼ 2π

4

15

a4
2

(
1 − e2

2

)5/2
√

1 − e2
1(m1 + m2)3/2

a
5/2
1 e2k|m1 − m2|m3

. (38)

Note that when the inner binary is very eccentric, these
timescales can change by orders of magnitude. At octupole
order, the eccentricity of the outer orbit can also oscillate, al-
though usually these oscillations are small in magnitude. For the
remainder of this section, we employ a test-particle approxima-
tion for one of the components of the inner binary, i.e., m2 → 0,
for which e2 = const. (Lithwick & Naoz 2011). We will see that
this is sufficient to understand the regions of phase space where
1PN terms become important.

The 1PN timescale can be estimated as in Equation (37),
which gives

t1PN
a−2

1
∼ 2π

a
5/2
1 c2

(
1 − e2

1

)
3k3(m1 + m2)3/2

, (39)

t1PN
a−2

2
∼ 2π

a
5/2
2 c2

(
1 − e2

2

)
3k3(m1 + m2 + m3)3/2

, (40)

t1PN
int ∼ 16

9

a3
2c

2
(
1 − e2

2

)3/2
(m1 + m2)3/2

√
a1e1

√
1 − e2

1k
3
(
m2

1 + m1m2 + m2
2

)
m3

. (41)

All of these timescales depend on the secularly varying, inner
orbital eccentricity, which implies that we need to explore
different eccentricity values in phase space. Equations (38)–(41)
show that the Newtonian and 1PN timescales have a simple
dependence on the inner and outer orbital eccentricity, on the
mass ratio qm = m3/m1, and on the SMAs.

If any of the above timescales is much smaller than all
others, then the evolution of the triple is dominated by the
corresponding term in the Hamiltonian. Next, we examine the
three-body parameters where any two timescales are equal,
which defines the region where the corresponding two terms
are equally important. The corresponding regions are shown in
Figure 4 in the m2 → 0 limit.

Equating t1PN
a−2

1
to tN

quad (Equations (37) and (39)) gives a rela-

tion between the SMAs which normalized to the gravitational

radius of the inner and outer binaries, R
g

1 and R
g

3 , as defined
above, can be written as

a2

R
g

3

∣∣∣∣
quad=1PN(a−2

1 )

∼
(

1

3

)1/3 (
a1

R
g

1

)4/3 1

q
2/3
m

(
1 − e2

1

)1/3

√
1 − e2

2

. (42)

This relation is shown by the blue hatched area bounded by
solid blue lines in Figure 4 for 0 � e1 � 0.999. A resonant-like
1PN excitation of eccentricity is possible in this region, as we
will show in the next section. For much larger a2 or smaller a1,
t1PN
a−2

1
	 tN

quad, and thus the Kozai–Lidov eccentricity excitations

are suppressed by the 1PN effects.
Next, equating t1PN

a−2
2

to tN
quad gives

a2

R
g

3

∣∣∣∣
quad=1PN(a−2

2 )

∼ 3

(
a1

R
g

1

)3
qm

(1 + qm)3

1

1 − e2
2

. (43)

This is shown by a blue short–long-dashed line in Figure 4 on
the top and bottom panels for e2 = 0.5 and 0.7, respectively. For
a2/R

g

3 much larger than this value, the Kozai–Lidov oscillations
are suppressed and the 1PN effects dominate.

Let us next compare t1PN
int and tN

oct by setting them equal to
each other:

a2

R
g

3

∣∣∣∣
oct=1PN(int)

∼ 32

135π

(
a1

R
g

1

)2 1

qm

e1e2(
1 − e2

2

)(
1 − e2

1

) , (44)

shown by long-dashed brown lines in Figure 4. The 1PN effects
are equally important as the Newtonian ones in the gray shaded
area in Figure 4 for 0 � e1 � 0.999. This is the regime in
which the 1PN interaction term introduces qualitatively different
behavior in the orbital motion (i.e., modulation) as shown in
Figure 3. Outside the gray region in Figure 4, the interaction
term is negligible. Note that comparing t1PN

int with tN
quad leads to

a vertical line in the phase diagram of Figure 4. This is because
both timescales have the same dependence on the outer SMA
(∼a3

2), resulting in a1/R1 < 10 (not shown). In Section 5, we
explore the parameter space that also leads to excitations in the
eccentricity (as shown in Figure 3).

Comparing t1PN
a−2

2
to the octupole timescale gives usually a

longer timescale than the quadrupole (short-dashed purple lines
in Figure 4):

a2

R
g

3

∣∣∣∣
oct=1PN(a−2

2 )

∼
(

4

45

)1/3 (
a1

R
g

1

)5/3

× 1

q
1/3
m (1 + qm)5/3

e
2/3
2(

1 − e2
2

)(
1 − e2

1

)1/3 . (45)

This relation also provides a range of parameters for different
values of e1 and e2, but to avoid cluttering, we plot this timescale
only for a circular inner binary (e1 = 0). The boundary shifts to
larger a2 in the eccentric case. In the top left panel of Figure 4
(the qm = 0.01 case), we show the range of Equation (45) for
e2 ∈ (0, 0.999), since, in this case, this ratio is smaller than
Equation (44).

Figure 4 also shows the regime of validity of the hierarchical
triple approximation, where we choose ε > 0.1 as a rule of
thumb for stability (dotted magenta line). For the qm = 1
case, this rule of thumb seems to agree with the Mardling

7
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Figure 4. Regions of binary parameters where the various secular Newtonian and 1PN effects are expected to become significant. We show the SMAs where the
timescales, corresponding to individual terms in the Hamiltonian, are equal to each other for different a1/R

g

1 and a2/R
g

3 . We consider four mass ratios between the
outer object and the inner binary qm = m3/m1 = 0.01, 1, 104 and 106 (see labels in each panel) and two different choices for outer orbital eccentricity (e2 = 0.5,
top panels and e2 = 0.7 lower panels), setting m2 → 0 in all panels. We consider tN

quad = t1PN
a−2

1
(Equation (42); solid blue lines), tN

quad = t1PN
a−2

2
(Equation (43); thick

long–short-dashed blue lines), tN
oct = t1PN

int (Equation (44); long-dashed brown lines) and tN
oct = t1PN

a−2
2

(Equation (45); short-dashed purple lines). For the latter, we show

e1 = 0 (top purple line) in all panels and in the top left panel we also show the eccentric case e1 = 0.999 (bottom purple line). The gray and blue shaded areas cover
the range 0 � e1 � 0.999 between the brown shaded lines and the blue solid lines, respectively. In the top left panel and bottom right, we also show a green band for
which the timescale to shrink the inner orbit by a factor two, due to GW emission, is equal to the quadrupole timescale, which covers the range 0 � e1 � 0.999. This
line is generated by specifying m1 = 100 M� and m2 = m3 = 1 M� (top left panel) and m2 = m1 = 1 M� (bottom right panel). We also show two stability criteria,
ε = 0.1, dotted magenta lines and the Mardling & Aarseth (2001) criterion (Equation (46); in the top right panel). The green dot in the right top panel represents (up to
a factor three) the location in this phase space of the system considered in Figure 7, while the black dot in the bottom right panel represent the location of the example
considered in Figure 3. The rectangle in the top left panel shows the parameter space considered in Figure 6. The black rectangles in the top and bottom right panels
roughly represent the region in parameter space where planets in stellar binaries (top right) and stars in the galactic nuclei (bottom right) live.

(A color version of this figure is available in the online journal.)

& Aarseth (2001) stability criterion, which defines a stable
three-body system as one that obeys

a2

a1
> 2.8(1 + qm)2/5 (1 + e2)2/5

(1 − e2)6/5

(
1 − 0.3itot

180◦

)
, (46)

where in the top right panel we considered this criterion with
prograde itot = 0◦. Note that retrograde motions are usually
more stable (e.g., Innanen 1979, 1980; Morais & Giuppone
2012).

Another consistency requirement for the 1PN Kozai–Lidov
effects to operate is that gravitational radiation reaction does not
change the SMA significantly over this timescale. We define
tGW1, the GW in-spiral timescale of the inner binary for the
SMA to change by factor of two using Peters (1964) (see also
Arun et al. 2009). Note that tGW1 → ∞ when m2 → 0, but
the GW inspiral may become very important in the comparable-
mass limit and shut off the Kozai–Lidov effect. This is the
case above the green bands in the top left and bottom right
panels, which show the range of SMAs where tN

quad = tGW1

for m2 = m3 = 1 M� (top left panel) and m2 = m1 = 1 M�
(bottom right panel) for 0 � e1 � 0.999. Note that there is a

region below the green band where the 1PN approximation is
insufficient, and where 2PN and higher PN order corrections
need to be included; we leave this to future work. A similar
regime, were the 1PN level of approximation is insufficient,
was considered by Blaes et al. (2002) for which the evolution
was mostly affected by GW emission and resonant eccentricity
growth was not observed.

We conclude that 1PN effects may be important for a vast
range of parameters as shown in Figure 4. Note however,
that physical timescales are not shown there; this figure is
independent of an overall dimensional scale (e.g., total mass or
the scale of the SMAs). The physical timescale may be smaller
or larger than the Hubble time depending on the actual system
parameters considered.

5. EXCITATION OF THE INNER
ORBITAL ECCENTRICITY

As stated above the 1PN effects may suppress the Newtonian
Kozai–Lidov oscillations if the corresponding 1PN timescale
is much smaller than the Newtonian quadrupole one. How-
ever, we identify two regimes where the combined secular

8
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Newtonian and 1PN effects produce interesting different be-
havior in three-body systems: (1) if the quadrupole order terms
are comparable to or somewhat smaller than the 1PN ones, or
(2) for comparable-mass inner binaries where the 1PN effects
are subdominant relative to the Newtonian quadrupole terms but
they are comparable to the Newtonian octupole timescale. We
discuss these two regimes in detail below.

5.1. Eccentricity Peak in the Restricted Three-body Problem
for a Massive Perturber

The standard lore says that GR effects (or 1PN effects in
our case) suppress the eccentricity growth of the inner orbit in a
three-body system (e.g., Blaes et al. 2002; Fabrycky & Tremaine
2007). However, Ford et al. (2000b), studying the triple system
PSR B1620−26, showed that the Newtonian octupole and the
leading order 1PN corrections (i.e., Equation (35)) can lead to
the excitation of the eccentricity of the inner orbit. We repeat
and extend the investigations of that study for a broader range
of three-body systems and examine (1) whether the new 1PN
terms derived in Section 2 give rise to different behavior; and (2)
whether Newtonian octupole terms can significantly change the
evolution of the three-body system in the presence of the 1PN
terms by producing flips of the inner orbit and eccentricities
close to unity (Naoz et al. 2011, 2013). We begin by exploring
systems in which m3 � m1 (qm � 1), and investigate the
opposite limit in the next subsection.

Let us systematically examine the parameters where the com-
petition between the secular Newtonian Hamiltonian and 1PN
corrections lead to the excitation of the inner orbital eccentricity
as opposed to a suppression. We do this by preforming a large
number of simulations starting from a nearly zero eccentricity
for the inner binary and varying the following dimensionless
parameter:

R =
t1PN
a−2

1

tN
quad

∣∣∣∣∣∣
e1=0

= 1

3

(
a1

/
R

g

1

)4

(
a2

/
R

g

3

)3

1

q2
m

(
1 − e2

2

)3/2 , (47)

where we have substituted Equations (37) and (39) with e1 = 0.
The quantity in Equation (47) compares the timescales of the
leading order 1PN and secular Newtonian effects. We find that
a resonant-like eccentricity excitation can take place around
R = 1 for zero initial eccentricity as shown below. Note,
however, that another important ingredient to this resonant-like
behavior is the Newtonian octupole term, which is most obvious
in simulations with a low initial mutual inclination, for which the
quadrupole approximation is subdominant (see also Section 5.2
below and Ford et al. 2000b). In other words, neglecting the
contribution of the octupole-level of approximation, one would
miss entirely the resonant behavior.

Figure 5 shows the maximum eccentricity achieved during
the course of the evolution of the system studied, after 1000
quadrupole cycles10 as a function of R. We also examined
the effects of various 1PN terms by repeating the calculations
using H̄N + H̄1PN

a−2
1

(blue triangles), then adding H̄1PN
a−2

2
(green

crosses), and finally including H̄1PN
int (red circles). The fiducial

10 Each point in this figure corresponds to a separate, high-resolution
three-body evolution with 1PN effects, each of which takes approximately
three days to complete per computer core. We also preformed convergence
tests using longer integration times at high resolutions, and found that for this
type of systems at least 1000 quadrupole cycles are needed for convergence,
over the parameter range considered in the figure.

Figure 5. The maximum eccentricity in a triple system in the test-particle
approximation for different mass ratios (qm = 106, left-hand panels, and
qm = 104, right-hand panels) as a function of the relative timescales of the
1PN and secular Newtonian quadrupole effects (R; see Equation (47)). We
consider the 1PN evolution including terms only up to O(a−2

1 ), O(a−2
2 ) and the

interaction term (blue triangles, green crosses, and red squares, respectively).
We show three different initial outer orbital eccentricities: e2 = 0.7 (top panels)
e2 = 0.6 and 0.5, bottom right and left respectively. In all these examples, we
set m1 = 1 M�, m2 = 0.001 M�, m3 = qmm1 and we vary both the inner
and outer SMAs to match the different values of R, see Equation (47). The
system is initialized with e1 = 0.001, g2 = 0◦ and g1 = 240◦ (inset shows the
results for initializing g1 = 0◦ and 240◦). In all panels we set the initial mutual
inclination to 65◦. In the top left panel, we also set the initial inclination to 95◦
(left set of lines) and 50◦ (right set of lines). We compare the fiducial example
(qm = 106, itot = 65◦, e2 = 0.7), black lines in each panel, to systems with a
different mass ratio (qm = 104), right hand panels), and different eccentricities,
see labels top right panel. Observe the emergence of resonant-like eccentricity
excitations.

(A color version of this figure is available in the online journal.)

example chosen (black lines in all panels) has m1 = 1 M�,
m2 = 0.001 M�, and m3 = 106 M� (i.e., qm = 106) with
initial conditions e1 = 0.001, e2 = 0.7, itot = 65◦, g1 = 240◦
and g2 = 0◦. To generate Figure 5, we used different runs
and changed both a1 and a2. For a choice of mass ratio and
initial mutual inclination the parameter R collapses the different
runs with different SMAs into one curve. Note that changing
the initial value of the argument of periapsis does not change
the location of the resonance, but it does change its width,
as shown in the inset of Figure 5, where we compare the
fiducial example with an initial g1 = 240◦ to an initial g1 = 0.
The different panels show that the amplitude and width of the
resonance are different for different qm and e2, as they depend
on the Newtonian octupole terms. The top left panel shows
that different initial inclinations change both the location of the
resonance and its width (as a function of R), i.e., low initial
inclination leads to broad resonances. The time evolution of the
systems with parameters on the peak of the resonance of the
itot = 95◦ and 65◦ cases are shown in Figure 3.

To the left of the resonance peak, the maximum eccentricity
converges asymptotically to the initial inner eccentricity for
R 	 1 (i.e., in this case the eccentricity is not excited). This
was chosen to be e1 = 10−3 in Figure 5. Decreasing the initial
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eccentricity (not shown) changes the figure atR 	 1, but it does
not change the amplitude and location of the resonance and the
behavior at larger R. To the right of the resonance (R � 1),
the maximum eccentricity starts to increase when the eccentric
Kozai–Lidov mechanism begins to dominate. For qm � 1 and
R � 1, we find asymptotically e1 → 1 (see Section 5.2 for
small qm).

A binary that slowly shrinks due to GW emission, slowly
changes R and may sweep across the resonant regions of
eccentricity excitation shown in Figure 5. Thus, a resonant 1PN
eccentricity increase may take place in many inspiraling systems
some time during their evolution. Whether or not this occurs
depends on the masses and SMAs; a detailed analysis is left to
future work.

5.2. The Case of PSR B1620−26

Although the above discussion of the resonant behavior
assumed a test particle (m2 ∼ 0), general mass-ratio triples also
exhibit a similar effect (as was first considered by Ford et al.
2000b), provided t1PN

a−2
1

is shorter then tN
quad (see Equation (39)).

To find R in the general case, we can simply set

qm ≡ m3/(m1 + m2) (48)

in Equation (47). Ford et al. (2000b) observed a resonant-
like eccentricity increase while studying the triple system PSR
B1620−26, which is located near the core of the globular cluster
M4. They showed that this resonant behavior may explain the
unusually large eccentricity of the inner binary, which contains
a millisecond radio pulsar of m1 = 1.4 M� and a companion of
m2 = 0.3 M� (McKenna & Lyne 1988).

For completeness, we repeat and extend the calculation of
Ford et al. (2000b) by fixing the inner orbit’s SMA, changing the
outer orbit’s SMA, and including all 1PN terms. We choose two
different values for the inner binary to explore the sensitivity
to these parameters. First, following Ford et al. (2000a), we
consider a1/R1 = 5.6 × 107 (i.e., a1 = 0.77 AU). Additionally,
we consider a1/R1 = 3.6 × 108 (i.e., a1 = 5 AU). We adopt
parameters for the outer perturber from Ford et al. (2000a):
m3 = 0.01 M� and e2 = 0.45. We initialize the system with
g1 = g2 = 0◦, e1 = 10−4, and we also choose two different
initial inclinations, itot = 65◦ and itot = 0◦. A mutual inclination
of itot = 0◦ highlights that the perturbations of the outer orbit
affect the inner orbit due to the Newtonian octupole term, even
far from the nominal Kozai–Lidov regime. In this configuration,
the H̄1PN

a−2
1

term is the most significant 1PN effect, as shown in

Figure 4 (see the rectangle in the top left panel).
The left panel of Figure 6 shows the inner orbit’s maximum

eccentricity as a function of the outer orbit’s SMA (or equiva-
lently the R value for a1 = 0.77 AU). This figure confirms the
resonant-like increase in eccentricity found in Ford et al. (2000b,
their Figure 14). This figure also shows that the resonant-like
eccentricity increase is present for a large range of a2 values,
even for systems where the excitation of the eccentricity due to
the Newtonian octupole term is somewhat suppressed, due to
comparable masses for the inner orbit (e.g., Naoz et al. 2013).
Although changes in the outer orbit’s eccentricity (see the right
panels of Figure 6) do not change the location of the resonant
peaks, their amplitude does change for large inclinations. The
a1 = 5 AU case has irregular behavior and results in a higher
inner and outer orbital eccentricity. Note that H1PN

a−2
1

term is the

dominant one here and the other 1PN terms are negligible in

Figure 6. The maximum eccentricity as a function of the outer orbit’s SMA (left
panel) in a triple for the case of PSR B1620−26. The inner binary is a millisecond
pulsar of mass 1.4 M� with a companion of m2 = 0.3 M�, and the outer body
has mass m3 = 0.01 M�. The inner orbit has a1 = 5 AU and 0.77 AU, in two
different sets of simulations (see labels). The initial eccentricities are e1 = 10−4

and e2 = 0.45 and the initial relative inclination itot = 65◦ and itot = 0◦. The
argument of pericenter of the inner and outer orbits are initially set to zero. The
top axis show the value of R for the case of a1 = 0.77 AU; see Equation (47).
Note that the itot = 0◦ resonance happens when R ∼ 1. The thin black lines
show the results of integrating the system over a single Kozai–Lidov cycle. The
left thin black line is for the case of a1 = 0.77 AU and itot = 65◦, while the
right one is for a1 = 5 AU and itot = 0◦. Although we include all 1PN terms
described in previous sections, the curves corresponding to the lower order ones
exactly overlap the curves including the interaction term (i.e., the leading 1PN
term is the most dominant in the evolution of the system). In the right panels,
we show the time evolution of the eccentricity of the inner (blue line) and outer
binary (green line). Here we set a1 = 0.77 AU itot = 0◦, a2 = 48 AU in
the bottom and itot = 65◦, a2 = 22 AU in the top panel, respectively. In this
case, the resonant eccentricity excitation due to the 1PN terms reaches higher
values than the one achieved by the eccentric Kozai–Lidov mechanism for small
(large) a2 (R).

(A color version of this figure is available in the online journal.)

this configuration, as can be see from the black rectangle in the
top left panel in Figure 4.

The right panels of Figure 6 show the time evolution of the
inner and outer orbital eccentricity for the a1 = 0.77 AU case
with itot = 0◦ and a2/R3 = 4.9 × 1011 (a2 = 48 AU, bottom
panel) and itot = 65◦ and a2/R3 = 2.2 × 1011 (a2 = 22 AU,
top panel). Unlike the systems considered in Figure 5, the outer
orbit’s eccentricity oscillates slightly (see right-hand panels in
Figure 6). Furthermore, the eccentricity peak is even larger than
the eccentricity reached for R � 1, which shows that the 1PN
terms further increase the inner orbit’s eccentricity above the
excitation induced by the Newtonian eccentric Kozai–Lidov
mechanism. This was not the case in Figure 5 primarily because
there qm � 1.

Although we integrated the system for up to 1000
Kozai–Lidov cycles, the eccentric Kozai–Lidov process did not
seem to induce chaotic behavior in this configuration (since
m3 < m1 + m2). Numerical convergence was reached already
after a few hundred Kozai–Lidov cycles of evolution (in thin
black lines we show the results of integrating the system up to
1 Kozai–Lidov cycle). Note that this system was integrated
both using the calculation presented here and using direct
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three-body in Ford et al. (2000b, Figure 15); here we find perfect
agreement with their results.

The top right panel of Figure 6 shows that integrating over
only one Kozai–Lidov cycle, for the itot = 65◦ case, misses
the long timescale oscillation, since the largest eccentricity is
reached only after several Kozai timescales. This explains why
our eccentricity peaks are slightly higher than those of Ford
et al. (2000b), as we see for the itot = 65◦ case in the left
panel. This also explains the somewhat larger e1,max values we
found compared to Ford et al. (2000b) in the regime where the
1PN effects are subdominant and the eccentricity of the inner
orbit increases due to the eccentric Kozai–Lidov mechanism.
Note, however, that the lifetime of this system in the core of the
globular M4 is about one Kozai–Lidov cycle, which explains
why Ford et al. (2000b) did not bother to evolve over many
Kozai–Lidov cycles.

5.3. Orbital Flips and Eccentricity Excitation for
Comparable-mass Inner Binary

If the inner binary consists of comparable mass-objects, the
Newtonian octupole term is suppressed (see Equation (21)).
Recently, Sharpee & Thompson (2013) considered the evolution
of triple systems with comparable masses and showed that
the eccentric Kozai–Lidov evolution can be triggered if one
of the stars in the inner binary loses mass. We show here
that the eccentric Kozai–Lidov evolution can also be triggered
without mass loss, but accounting for 1PN effects, as shown in
Figure 7. For this figure, we set m1 = 10 M�,m3 = 30 M�,
a1/R

g

1 = 1 × 108 (corresponding to 10 AU), and a2/R
g

3 =
1.7 × 109 (corresponding to 502 AU). The initial eccentricities
were e1 = 0.001 and e2 = 0.7 and the initial relative inclination
itot = 94◦. The argument of pericenter of the inner and outer
orbits was initially set to 240◦ and zero, respectively. The two
panels in this figure differ in the choice of m2, i.e., in the left
panel m2 = 0.001 and in the right panel m2 = 8M�. While a
test-particle evolution is relatively insensitive to the 1PN terms
in this case, comparable mass systems present qualitatively
different behavior. In particular, while the Newtonian eccentric
Kozai–Lidov effect is suppressed for comparable masses, 1PN
effects can trigger it. A possible reason for the qualitative
difference is that changing m2 from zero to 8 M� resulted in
a configuration for which the leading order 1PN timescale is
closer to (but still slightly longer than) the octupole timescale.
In the test particle case, the octupole timescale is two orders of
magnitude shorter than the shortest 1PN timescale.

The excitation of the eccentricity depends on the importance
of the Newtonian octupole term. Without 1PN effects, compa-
rable mass triples result in εM → 0 (Equation (21)), which
suppresses the eccentricity excitations and the flipping of the
inner orbits. This can be seen in Figure 8 (black and gray lines)
for two examples, where we consider Δm = |m1 −m2| = 2 M�,
(black lines) and Δm = 0.2 M� (gray lines). For both of these,
m3 = 3m1 and the two systems were initialized with e2 = 0.7,
e1 = 0.001 and itot = 94◦. However, we find that although 1PN
effects are small during a single orbit, they can be significant
on much longer timescales, and can lead to significant eccen-
tricity growth and orbital-flips.11 The top panel shows that for
εM � 0.002 a flip is triggered due to the 1PN terms. In other
words, for εM � 0.002 the colored curves deviate (including

11 The choice of argument of periapsis does not change the outcome; the first
example was initialized with g1 = 240◦ while the second had g1 = 0◦, both
had g2 = 0◦.

Figure 7. Eccentricity excitation and orbital flips for the Newtonian octupole
and the 1PN approximations (up to the interaction term; see text for details)
as a function of time. We compare the test-particle case (m2 → 0, left panels)
to a comparable mass case (m2 = 8 M�, right panels) in the inner binary with
m1 = 10 M�, always with an outer object of mass m3 = 30 M�. The separation
of the inner orbit is a1/R

g

1 = 1 × 108 (corresponding to 10 AU and orbital
period P1 ∼ 10 yr), and the outer orbit’s separation is a2/R

g

3 = 1.69 × 109

(corresponding to 502 AU and P2 = 2.8 × 103 yr). The initial eccentricities
are e1 = 0.001 and e2 = 0.7 and the initial relative inclination itot = 94◦. The
arguments of pericenter of the inner and outer orbits are initially set to 240◦ and
zero respectively. For these examples R � 1. We show with red lines evolutions
without 1PN corrections (curves including only the lower order 1PN terms
simply overlap this). We also show the minimum eccentricity corresponding to
the detectable LIGO frequency range (horizontal lines in the bottom panels).
The 1PN corrections help to further increase the eccentricity and lead to orbital
flips for the inner binary for comparable masses.

(A color version of this figure is available in the online journal.)

1PN effects) from the black and gray ones (Newtonian effects
only). For larger εM , where the eccentric Kozai–Lidov mecha-
nism is triggered, the maximum eccentricity can be very close
to unity, and thus due to the chaotic nature of the system, the
maximum eccentricity shown should be considered as a lower
limit. For εM � 0.005 we could not reach convergence after
1000 quadrupole cycles, since the eccentricity is very close to
unity (see J. Teyssandier et al., in preparation).

In the above examples, a requirement for eccentricity exci-
tation is that the 1PN timescale, t1PN

a−2
1

, be shorter than or com-

parable to the octupole timescale tN
oct, (see Equation (38)), i.e.,

tN
quad � t1PN

a−2
1

∼ tN
oct. A possible explanation for the excitation

of the eccentricity in these cases is the following. Neglecting
1PN effects, comparable masses in the inner binary suppress
the Newtonian octupole effects and the outer potential is effec-
tively quadrupolar. However, GR precession of the inner orbit
breaks this symmetry. As long as GR precession occurs on a
timescale comparable to (or slightly smaller than) the octupole
one, the eccentric Kozai–Lidov mechanism is then triggered.

Let us now discuss the implications of these finding for
direct GW detections using Earth-based instruments like LIGO
and VIRGO. The characteristic frequency of the GW signal
is fp = vp/rp, where vp and rp are the orbital velocity and
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Figure 8. Excitation of the eccentricity and inclination due to 1PN effects
for Kozai–Lidov timescales much shorter than the lowest 1PN timescales (as
parameterized through εM ; see Equation (21)). We examine the maximum
eccentricity reached, and plot 1 − e1,max (bottom panel), and the maximum and
minimum inclination reached in the runs (top panel). We show two examples.
The first system is initialized with m1 = 10 M�, m2 = 8 M�, m3 = 30 M�,
and e2 = 0.7. We initialize the system with e1 = 0.001, g1 = 240◦, g2 = 0, and
itot = 94◦. We vary both the inner and outer SMAs to match the different values
of εM depicted in the figure. We consider the Newtonian approximation (filled
black squares) and the three 1PN level of approximations, O(a−2

1 ), O(a−2
2 )

and the interaction term (filled blue triangles, green crosses, and filled red
squares, respectively). In the second system, we set m1 = 1 M�, m2 = 1.2 M�
m3 = 3 M� and e2 = 0.7. We initialize the system with e1 = 0.001, g1 = 0◦,
g2 = 0 and itot = 94◦. We vary both the inner and outer SMAs to match the
different values of εM depicted in the figure. For this example, we consider the
Newtonian approximation (empty gray squares) and up to the interaction level
of the 1PN approximation (empty magenta circles). We also show the detectable
LIGO frequency limit for the first example, where we set a2 = 501 AU and
varied a1 between 5 AU and 15 AU (solid brown line).

(A color version of this figure is available in the online journal.)

radius at pericenter (Peters 1964). Thus, fp = 2π (1 + e)1/2(1 −
e)−3/2P −1, where P is the orbital period. We assume that the
GW signal is in the detectable frequency band if fp > 5 Hz.
For a comparable-mass inner binary, the Newtonian eccentric
Kozai–Lidov mechanism is suppressed12 and the eccentricity
remains smaller than in the test particle case. The GW frequency
emitted by a circular binary with an orbital period larger than
a second is too small for a LIGO detection. However, the 1PN
eccentricity excitations discussed in this paper lead to a much
larger fp and might lead to GWs in the LIGO band. In particular,
Figures 7 and 8 show examples where 1 − e1 can be as small as
10−5 to 10−6 for a comparable-mass inner binary. These sources
enter the LIGO GW frequency band if their orbital period is less
than 1–60 yr. However, note that this estimate is oversimplified
because it neglects the backreaction of GW emission on the
evolution. The latter strongly reduces the SMA of the binaries
during close approaches, and may lead to an eccentric inspiral
and merger within a Kozai–Lidov period. The GW inspiral may
deliver the binaries to the LIGO frequency band even if the signal
is outside the LIGO band during the Kozai–Lidov oscillations.
If the event rate of these sources is sufficiently large within the

12 Although suppressed, note that the eccentricity can still reach 0.999 in this
case.

LIGO detection range, these sources could constitute a distinct
population for LIGO (Wen 2003; Antonini & Perets 2012).

6. DISCUSSION

The Kozai–Lidov mechanism (Kozai 1962; Lidov 1962; see
below), has been shown to play an important role for highly
inclined hierarchical triples, from planetary systems to stellar
size and/or massive compact objects (e.g., Naoz et al. 2013,
and references therein). For an eccentric outer perturber, the
eccentricity of the inner orbit can reach values extremely close
to unity, and the inclination can flip from prograde to retro-
grade (Naoz et al. 2011, 2013). The quadrupole Kozai–Lidov
oscillations between the eccentricity and inclination still per-
sist at octupole order, but they are further modulated on long
timescales.

We have here studied how the Kozai–Lidov mechanism is
affected by 1PN corrections to the three-body Hamiltonian,
focusing on secular and hierarchical three-body systems. We
expanded the 1PN Hamiltonian in the ratio of SMAs (α) to third
order beyond leading, i.e., the leading-order terms in the 1PN
Hamiltonian perturbation scale here as a−2

1 and we carried out
an expansion up to relative O(α3). We also averaged over the
orbital timescale of the inner and outer binary to investigate
the long-term secular evolution of the system (Section 2).
We examined the effects of the different 1PN terms in this
expansion: 1PN precession of the inner orbit due to H̄1PN

a−2
1

(Equation (28)); 1PN precession of the outer orbit due to H̄1PN
a−2

2

(Equation (30)); and a new 1PN interaction term between the two
orbits, H̄1PN

int (Equation (31)), which introduces a new inclination
and eccentricity dependent modulation (e.g., Figure 3).

We compared the different timescales associated with the
secular Newtonian and different 1PN terms (see Figure 4). If
the timescales associated with the 1PN effects are much shorter
than the timescales associated with the eccentric Kozai–Lidov
mechanism, i.e., the secular Newtonian timescales, the growth
of the eccentricity in the inner orbit tends to be suppressed.
We confirm that the excitation of the eccentricity is indeed
suppressed for systems where the Kozai–Lidov timescale is
many orders of magnitude longer than the 1PN timescales.
However, if the timescales of the 1PN effects are comparable
to the secular Newtonian ones (see Figure 4), we found two
interesting regimes that present qualitatively different behavior.

The first regime is where the 1PN timescales are comparable
but slightly shorter than the Newtonian Kozai–Lidov timescale.
Ford et al. (2000b), studying the PSR B1620−26 triple system,
noted that the inner eccentricity may be greatly increased around
some critical value of the outer SMA, due to the H̄1PN

a−2
1

term and

the octupole term. We extended this calculation by including all
averaged 1PN terms up to O(α3) and the Newtonian octupole
term (Naoz et al. 2013), as well as exploring a wide region of
phase space. We confirmed Ford et al. (2000b) result and found
a resonant-like behavior, where the inner orbital eccentricity
is greatly increased compared to the Newtonian case. This
behavior exists also when including all averaged 1PN terms
and for a wide range of mass ratios and orbital parameters.
We parameterized the location of the resonant peak in terms of
the SMAs by defining a parameter, R in Equation (47), as the
ratio of the leading-order 1PN and secular Newtonian terms.
This parameter depends on the ratio of the mass of the outer
perturber to the total mass of the inner binary. The presence of
the octupole term is important for the resonant 1PN eccentricity
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excitation, which is most apparent in the examples with a small
mutual inclination. For systems where either the inner or the
outer binary shrinks, for example due to GW radiation reaction,
the triple may pass through this three-body 1PN resonance.
The amplitude and location of the resonance changes due to
1PN terms as a function of R. We found that lower mutual
inclinations in the prograde regime cause a wider peak (in terms
of R), while a less massive outer body tends to produce wider
and higher amplitude peaks. A detailed investigation of the
properties of the resonance is beyond the scope of this paper,
but could be the subject of future investigations.

It is important to note that the outer orbit precession and the
interaction term affect the overall time evolution (see Figure 3).
Since these terms are a result of the expansion of the three-
body 1PN Hamiltonian in α, it is not surprising that the
different terms affect the location of the resonant like behavior
(e.g., Figure 5). It is interesting, however, that they produce a
qualitatively different time evolution of the system (e.g., bottom
panels of Figure 3). This suggests that a system evolved under
GR effects in the presence of a third body has richness to it
that should be examined in more detail. This is the subject
of future investigation in the framework of direct three-body
integration.

The second regime that exhibits qualitatively different be-
havior from that obtained with a quadrupole Newtonian
Kozai–Lidov treatment is when the quadrupolar secular New-
tonian timescales are shorter than the 1PN ones and when the
inner binary has comparable mass components. The eccentric
Kozai–Lidov mechanism, neglecting 1PN effects, is suppressed
when m1 → m2, since the outer orbit’s potential is effec-
tively quadrupolar. As we showed in this paper, 1PN effects
can break symmetry and excite eccentricity, triggering the ec-
centric Kozai–Lidov mechanism. As long as 1PN precession
occurs on a comparable timescale (or lower) than the Newto-
nian octupole precession, i.e., tN

quad � t1PN
a−2

1
∼ tN

oct, the eccentric

Kozai–Lidov mechanism will be triggered.
Eccentricity excitations are particularly interesting in the

context of possible GW detections (Wen 2003; Brown &
Zimmerman 2010; Armitage & Natarajan 2005; Sesana 2010).

If such excitations were not present, the frequency of the GWs
emitted by the inner binary would be typically too low for
detection with LIGO (see however O’Leary et al. 2009; Kocsis
& Levin 2012, for eccentric binaries which form in the LIGO
band). However, if eccentricity is secularly excited through
a three-body interaction, the frequency of the GWs is also
increased during pericenter passage, thus bringing the signals
into the detector’s sensitivity band. Such large eccentricities
would then lead to GW-driven inspiral and the eventual merger
of binaries. Whether such eccentric signals can be detected or
not will depend on how close such sources are to Earth. But
if detections are made with sufficiently high signal-to-noise
ratio, then GWs could be used to measure the eccentricity of
the inner binary, and thus, distinguish between different source
populations.

We thank Alessandra Buonanno, Fred Rasio, and Gongjie
Li for useful discussions, and we also thank Cole Miller for
carefully reading the first draft of the paper and sending useful
comments. We thank our anonymous referee for useful remarks.
We thank Yoram Lithwick for the use of his allocation time
on the computer cluster Quest. This research was supported
in part through the computational resources and staff contri-
butions provided by Information Technology at Northwestern
University as part of its shared cluster program, Quest. S.N.
acknowledge partial supported by NASA through an Einstein
Post-doctoral Fellowship awarded by the Chandra X-Ray
Center, which is operated by the Smithsonian Astrophysi-
cal Observatory for NASA under contract PF2-130096. This
work was supported in part by NSF grant PHY-1114374 and
AST-0907890, as well as NASA grants NNX08AL43G and
NNA09DB30A and NNX11AI49G. B.K. acknowledges support
from NASA through Einstein Postdoctoral Fellowship Award
No. PF9-00063 issued by the Chandra X-Ray Observatory Cen-
ter, which is operated by the Smithsonian Astrophysical Ob-
servatory for and on behalf of the National Aeronautics Space
Administration under contract NAS8-03060. N.Y. also thanks
the Institute for Theory and Computation at the Harvard Smith-
sonian Center for Astrophysics for their hospitality.

APPENDIX A

TWO-BODY SYSTEMS—EFFECTIVE ONE BODY

GR pericenter precession has been studied in great detail and used to test Einstein’s theory in the solar system, for example with
observations of the perihelion precession of Mercury (e.g., Shapiro et al. 1972). The simplest method to derive such precession is
to consider test-particle motion in an effective potential, assuming that GR introduces small corrections to Newtonian dynamics and
small eccentricities (e.g., Misner et al. 1973, chap. 25, p. 668–670).13 The Hamiltonian (e.g., Artemova et al. 1996; Miller & Hamilton
2002) is simply derived by integrating over the precession rate. Although this Hamiltonian leads to the correct ISCO location, if one
uses the full expansion given in Artemova et al. (1996, Equation (4)), it is not equal to the 1PN Hamiltonian.

The purely orbital (non-spinning) 3PN Hamiltonian was derived in Jaranowski & Schäfer (1998, 2001) (in the center of mass
frame, and after subtraction of the total rest-mass term). Here, we focus only on expansions to 1PN order for a two-body system (with
masses m1 and m2 and momenta p1 and p2, respectively). The Hamiltonian is then (e.g., Buonanno et al. 2006)

H2body
1PN = −

(
m3

1 + m3
2

)
p4

8c2m3
1m

3
2

− k2
(
3m2

1 + 7m1m2 + 3m2
2

)
p2

2c2m1m2r
− k2(p · r)2

2c2r3
+

k4(m1 + m2)2μ

2c2r2
,

where r is the radius vector between the two bodies, with magnitude r, the linear momentum of the effective one body problem is
simply p = −p1 = p2 and μ = m1m2/(m1 + m2). Eliminating the short-period terms in the Hamiltonian, using the Von Zeipel
transformation (for more details, see Brouwer 1959) for an orbit with SMA a and eccentricity e, the double average Hamiltonian is

13 Note that the same precession rate can be also derived directly from the 1PN metric (e.g., Misner et al. 1973, chap. 40, p. 1100–1112).
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given by

H̄2body
1PN = k4μin

(
15m1

2 + 29m1m2 + 15m2
2
)

8a2c2
− 3k4m1m2(m1 + m2)

a2c2
√

1 − e2
, (A1)

which is the same as Equation (28).

APPENDIX B

THE VON ZEIPEL TRANSFORMATION

The technique, known as the Von Zeipel transformation (for more details, see Brouwer 1959) is being used in order to eliminate
the short-period terms in the Hamiltonian that depend of l1 and l2. The technique had been used to derive the double average
hierarchical three-body Hamiltonian (e.g., Kozai 1962; Harrington 1968, 1969; Krymolowski & Mazeh 1999; Naoz et al. 2013). Here
the Hamiltonian we consider is simply Htot,1PN = HN + H1PN (see Section 2). Following Naoz et al. (2013) Appendix A, we replace
H by our Htot,1PN. The equivalent of Equation (A7) at Naoz et al. (2013) is simply:

Htot,1PN = HK
1 + HK

2 + HN
2 + H1PN, (B1)

where HK
1 and HK

2 are the Kepler Hamiltonians that describe the inner and outer Newtonian orbits in the triple system, HN
2 describes

the Newtonian quadrupole interaction between the orbits (for the octupole interaction one can simply a HN
3 ), and H1PN describes

the 1PN correction up to O(α3). In this technique, we use a canonical transformation that can eliminate the l1 and l2 terms from the
HN

2 + H1PN parts (which depends on l1 and l2), where the momenta are pi ∈ {Li,Gi,Hi}, and the coordinates are qi ∈ {li , gi, hi}.
Replacing H2 from Naoz et al. (2013) Appendix A, with Htot

2 = HN
2 + H1PN, we find (after following their derivation) the equivalent

of their Equation (A22):

Htot,∗
2

(
q∗

i , p∗
i

) = 1

4π2

∫ 2π

0
dl∗1dl∗2 Htot

2

(
q∗

i , p∗
i

)
, (B2)

where the new momenta and coordinates have a superscript asterisk. Since Hamiltonian is an additive quantity, and the integral is an
additive operation, the overall new Hamiltonian after the canonical transformation is simply

Htot,∗
2 = 1

4π2

(∫ 2π

0
dl∗1dl∗2 HN

2 +
∫ 2π

0
dl∗1dl∗2 H1PN

)
. (B3)

Therefore we can simply use the double averaged Newtonian Hamiltonian derived in Naoz et al. (2013) and separately derive the
double averaged 1PN Hamiltonian.

APPENDIX C

EQUATION OF MOTIONS FOR THE 1PN INTERACTION

Using the canonical relations (Equation (15)), we find the equations of motion for the interaction part of the 1PN Hamiltonian:

dg1

dt

∣∣∣∣
1PN(int)

= k4m1m2m3

16a3
2c

2
(
1 − e2

2

)3/2
(m1 + m2)2(m1 + m2 + m3)

{
a1

G1
(m1 + m2 + m3)

[(
1 − e2

1

)(
5m2

1 − 3m1m2 + 5m2
2

)

− 9fm1m2

((
1 − e2

1

)
cos 2g1 + 2 cos2 itot sin2 g1

)]
+

1

G2
[−8fLL + fi]

}
(C1)

where L̃1,2 = L1,2/μin,out ,
fm1m2 = m2

1 + m1m2 + m2
2, (C2)

fLL = L̃1L̃2(m1 + m2)(4(m1 + m2) + 3m3), (C3)

fe1 = (
2 − 5e2

1

)
m2

1 + 3
( − 2 + e2

1

)
m1m2 +

(
2 − 5e2

1

)
m2

2, (C4)

and also
fi = 3a1(m1 + m2 + m3) cos itot

(
fe1 + 3e2

1 fm1m2 cos 2g1
)

(C5)

dg2

dt
= − k4m1m2m3

16a3
2c

2
(
1 − e2

2

)3/2
(m1 + m2)2(m1 + m2 + m3)

×
{

1

G1
[8fLL − fi] − 1

2G2
[2 cos itot(−8fLL + fi) − 16(m1 + m2)2 cos itotL̃1L̃2

[
16(m1 + m2)L̃1L̃2(7(m1 + m2) + 6m3) cos itot

+
3

2
a1(m1 + m2 + m3)

( − fe1 [1 + 3 cos 2itot] + 18e2
1 fm1m2 cos 2g1 sin2 itot

)]}
(C6)
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de1

dt

∣∣∣∣
1PN(int)

=
9a1e1

√
1 − e2

1k
4m1m2

(
m2

1 + m1m2 + m2
2

)
m3 sin2 itot sin(2g1)

16a3
2c

2
(
1 − e2

2

)3/2
L1(m1 + m2)2

. (C7)

The change of the inner orbital angular momentum is simply

dG1

dt

∣∣∣∣
1PN(int)

= 9a1e
2
1k

4m1m2
(
m2

1 + m1m2 + m2
2

)
m3 sin2 itot sin(2g1)

16a3
2c

2
(
1 − e2

2

)3/2
(m1 + m2)2

, (C8)

while for the outer orbit it is simply zero. Thus,

dH1

dt

∣∣∣∣
1PN(int)

= sin i2

sin itot

dG1

dt
, (C9)

i.e.,
dH1

dt

∣∣∣∣
1PN(int)

= sin i2

sin itot

9a1e
2
1k

4m1m2
(
m2

1 + m1m2 + m2
2

)
m3 sin2 itot sin(2g1)

16a3
2c

2
(
1 − e2

2

)3/2
(m1 + m2)2

. (C10)

The inclinations evolve according to ˙(cos i1) = Ḣ1/G1 − Ġ1/G1 cos i1 (e.g., Naoz et al. 2013), and thus,

˙(cos i1)

∣∣∣∣
1PN(int)

= 9a1e
2
1k

4m1m2
(
m2

1 + m1m2 + m2
2

)
m3 sin2 itot sin(2g1)

16a3
2c

2
(
1 − e2

2

)3/2
(m1 + m2)2

1

G1

(
sin i2

sin itot
− cos i1

)
, (C11)

and since ˙(cos i2) = Ḣ2/G2 − Ġ2/G2 cos i2 and Ḣ2 = −Ḣ1 (e.g., Naoz et al. 2013) we find

˙(cos i2) = sin i2

G2 sin itot

9a1e
2
1k

4m1m2
(
m2

1 + m1m2 + m2
2

)
m3 sin2 itot sin(2g1)

16a3
2c

2
(
1 − e2

2

)3/2
(m1 + m2)2

. (C12)
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