THE ASTROPHYSICAL JOURNAL, 777:167 (10pp), 2013 November 10
© 2013. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

doi:10.1088/0004-637X/777/2/167

ESTABLISHING A STEREOSCOPIC TECHNIQUE FOR DETERMINING THE KINEMATIC
PROPERTIES OF SOLAR WIND TRANSIENTS BASED ON A GENERALIZED
SELF-SIMILARLY EXPANDING CIRCULAR GEOMETRY

J. A. Davies', C. H. PERrRY', R. M. G. M. TRINES>?, R. A. HarrisoN!, N. Lucaz?*, C. M6sTL> 7, Y. D. L1u®, anp K. STEED?

I RAL Space, Rutherford Appleton Laboratory, Harwell Oxford, OX11 0QX, UK; jackie.davies @stfc.ac.uk
2 Central Laser Facility, Rutherford Appleton Laboratory, Harwell Oxford, OX11 0QX, UK
3 Department of Physics, Lancaster University, Lancaster LA1 4YB, UK
4 Space Science Centre, University of New Hampshire, Durham, NH 03824, USA
5 Space Science Laboratory, University of California, Berkeley, CA 94720, USA
6 Institute of Physics, University of Graz, Graz A-8042, Austria
7 Space Research Institute, Austrian Academy of Sciences, A-8042 Graz, Austria
8 State Key Laboratory of Space Weather, National Space Science Centre, Chinese Academy of Sciences, Beijing 100190, China
9 Centre for mathematical Plasma Astrophysics, KU Leuven, B-3001 Leuven, Belgium
Received 2013 March 1; accepted 2013 September 20; published 2013 October 24

ABSTRACT

The twin-spacecraft STEREO mission has enabled simultaneous white-light imaging of the solar corona and inner
heliosphere from multiple vantage points. This has led to the development of numerous stereoscopic techniques to
investigate the three-dimensional structure and kinematics of solar wind transients such as coronal mass ejections
(CME?s). Two such methods—triangulation and the tangent to a sphere—can be used to determine time profiles of
the propagation direction and radial distance (and thereby radial speed) of a solar wind transient as it travels through
the inner heliosphere, based on its time-elongation profile viewed by two observers. These techniques are founded
on the assumption that the transient can be characterized as a point source (fixed ¢, FP, approximation) or a circle
attached to Sun-center (harmonic mean, HM, approximation), respectively. These geometries constitute extreme
descriptions of solar wind transients, in terms of their cross-sectional extent. Here, we present the stereoscopic
expressions necessary to derive propagation direction and radial distance/speed profiles of such transients based on
the more generalized self-similar expansion (SSE) geometry, for which the FP and HM geometries form the limiting
cases; our implementation of these equations is termed the stereoscopic SSE method. We apply the technique to
two Earth-directed CMEs from different phases of the STEREO mission, the well-studied event of 2008 December

and a more recent event from 2012 March. The latter CME was fast, with an initial speed exceeding 2000 km s,

and highly geoeffective, in stark contrast to the slow and ineffectual 2008 December CME.
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1. INTRODUCTION

The launch of the Solar Mass Ejection Imager (SMEI; Eyles
et al. 2003) onboard the Earth-orbiting Coriolis spacecraft, in
2003 January, pioneered truly wide-angle, white-light imaging
of the inner heliosphere. Prior to this time, imaging of the
solar atmosphere had, in general, been limited to within a few
tens of solar radii from Sun-center. The subsequent launch, in
2006 October, of NASA’s twin STEREO spacecraft into near
1 astronomical unit (AU) heliocentric orbits—one leading and
the other lagging the Earth—heralded the advent of wide-angle,
white-light heliospheric imaging (by the Heliospheric Imager,
HI, instruments; Eyles et al. 2009) from a vantage point off
the Sun—Earth line; this configuration was motivated, not least,
by the desire to study Earth-directed coronal mass ejections
(CME's) from their inception on the Sun to their impact at Earth.

However, in attempting to ascertain the characteristics of
solar wind transients observed out to large elongations (Sun-
observer-transient angles), it is important to bear in mind
that the relationship between their elongation angle and radial
distance is highly nonlinear; it transpires that rather than being
an inconvenience, the simple geometrical basis for this effect
can actually be exploited to infer the kinematic properties of
such transients (as discussed widely by a multitude of authors
including Sheeley et al. 1999, 2008; Kahler & Webb 2007;
Rouillard et al. 2008; Howard & Tappin 2009; Lugaz 2010;
Mostl et al. 2011; Davies et al. 2012).

In its most simplistic form, the conversion of elongation angle
to radial distance can be performed by assuming that the solar
wind transient can be adequately represented as a point source,
a concept originally introduced by Sheeley et al. (1999); Kahler
& Webb (2007) introduced the terminology of the fixed ¢ (FP)
approximation for such a geometry. The radial distance from
the center of the Sun, Rpp, of a point-like transient viewed along
an elongation ¢ at a time #, by an observer situated at distance
dy from the Sun, can be expressed in the form

dy sin (e(1))
sin (e(1) + ¢(1))’

where ¢ describes the solar wind transient’s angle of propagation
relative to the Sun-observer line—the observer-Sun-transient
angle (e.g., Sheeley et al. 1999, 2008; Kahler & Webb 2007;
Rouillard et al. 2008). This equation provides the basis of the
FP fitting (FPF; Rouillard et al. 2008; Sheeley et al. 2008)
technique; note that the nomenclature used by Mostl et al.
(2011) is mainly adopted here. Briefly, in the FPF technique, the
observed time-elongation profile, &(¢), of a solar wind transient
viewed from a single vantage point is compared to theoretical
functions governed by the inverse of Equation (1), in which &(¢)
is expressed in terms of propagation direction, ¢, and radial
speed, V, (e.g., Rouillard et al. 2008; Sheeley et al. 2008). The
best-fit defines the kinematic properties ascribed to the transient.
Whereas the single-spacecraft FPF technique is based on the
premise that ¢ and V, remain constant over the duration of the
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fitted time-elongation profile, these constraints can be relaxed
if the solar wind transient is observed simultaneously from two
viewpoints. The stereoscopic triangulation method—that was
developed by Liu et al. (2010a, 2010b) and is based on the
same point-like (FP) transient geometry as adopted in the FPF
technique—enables time profiles of both ¢, Rgp and hence V,
to be derived if simultaneous time-elongation profiles of the
transient are available from two spatially separated observers.

The form of the underlying geometric model means that
the aforementioned single-spacecraft FPF and stereoscopic
triangulation techniques, both of which are based on the FP-
type geometry, are more applicable to features that are narrow
in terms of their cross-sectional extent; such analysis has been
successfully applied to longitudinally restricted CMEs and most
notably small-scale plasma blobs that have become entrained at
the stream interface (e.g., Rouillard et al. 2008, 2010; Sheeley
et al. 2008). In view of this limitation, Lugaz (2010) and Lugaz
et al. (2010), respectively, embarked on single-spacecraft and
stereoscopic techniques based on an alternative geometry that
was considered more applicable particularly in the case of wide
CMEs. The harmonic mean (HM) approximation is founded
on the assumption that the cross-section of the solar wind
transient can be adequately described as a circle that is attached
to the center of the Sun by a point on its circumference (see,
for example, Figure 1 of Mostl et al. 2011 for a schematic
representation of the HM and FP geometries). For a transient
that conforms to the HM geometry, the radial distance from
Sun-center of its apex, Rym (i.e., the point on the circle at the
greatest distance from the Sun), at time ¢, is governed by the
equation (Lugaz et al. 2009; Howard & Tappin 2009)

2dy sin (e(t))

Ram() = 0 D)+ + 1

@

In this case, ¢ denotes the angle between the propagation
direction of the transient’s apex and the Sun-observer line, while
the elongation angle ¢ corresponds to one of the two possible
tangents from the observer’s line of sight to the transient’s
circular form (due to their limited viewing capability, only one
tangent to the HM’s circumference will lie within the field
of view of the HI instrument on either STEREO spacecraft,
although this is true for a HM-type transient propagating in
virtually any direction from the Sun). The single-spacecraft
HM fitting (HMF) technique (Lugaz 2010; Mostl et al. 2011)
is analogous to the FPF method described above, although it
transpires that the inversion of Equation (2) is less trivial than
is the case for the FP geometry. Two independent forms of the
solutions for e(z) for a HM geometry have been derived by
previous authors; the solution for () derived by Mostl et al.
(2011; see their Appendix A) has a single term compared with
the two-termed solution derived independently by Liu et al.
(2010b) and Lugaz (2010). The stereoscopic equivalent to the
direct triangulation technique of Liu et al. (2010a, 2010b) based
on a HM geometry—the so-called the tangent to a sphere (TAS)
method—was developed by Lugaz et al. (2010), although Liu
et al. (2010b) had also mooted the idea of basing a stereoscopic
technique on the HM geometry. As for the HMF technique, the
TAS method is founded on the assumption that the elongation
along which a solar wind transient manifests itself to each
observer does not correspond to the transient apex but instead
to the tangent to a circle that is attached to Sun-center; as in
triangulation, time profiles of both ¢ and V, can be derived using
the TAS technique if simultaneous time-elongation profiles are
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available from two observers. For more detailed reviews of the
aforementioned techniques the reader is directed to Liu et al.
(2010b) and Mostl et al. (2011).

Although the HM geometry, that underlies the HMF and TAS
techniques, is clearly more appropriate than the FP geometry
in the case of wide CMEs, it is clear that these two geometries
constitute extreme descriptions of solar wind transients in terms
of their cross-sectional extent. Lugaz et al. (2010), in their
“model 2, introduced an alternative geometry in which the
transient, although still circular in cross section, is not bound
to the Sun. Davies et al. (2012) developed this geometry into
a single-spacecraft fitting technique akin to the FPF and HMF
methods, which the authors termed self-similar expansion fitting
(SSEF), based on inversion of the following expression that
characterizes the radial distance from Sun-center, Rsgg, at time
t of the transient apex for such a geometry (Davies et al. 2012;
Mostl & Davies 2013—see the latter for the derivation):

dy sin(e(1))(1 + sin(A(1)))

Rsse(1) = sin(e () + (1)) + sin(A(1))”

3)

As distinct from Equations (1) and (2), Equation (3) includes
the parameter A, which corresponds to the transient’s cross-
sectional angular half width subtended at the center of the Sun, a
parameter related to the curvature of its front. The so-called self-
similar expansion (SSE) geometry, governed by Equation (3),
can actually be regarded as a generalized geometry for which
the FP and HM models form limiting cases, defined by A = 0°
and 2 = 90°, respectively (Davies et al. 2012; see Figures 1
of Davies et al. 2012 and Mostl & Davies 2013 for schematic
representations of the SSE geometry). Note that for the SSE
geometry, it is possible for both tangents to lie within the field
of view of a single STEREO/HI instrument; in such cases, the
foremost elongation should generally be used to determine the
transient’s apex position (see Davies et al. 2012). Although,
theoretically, the single-spacecraft SSEF technique provides the
potential to yield simultaneous best-fit estimates of ¢, V,., and
A—again on the premise that these parameters remain constant
over the duration of the fitted time-elongation profile—Davies
et al. (2012), through the use of Monte-Carlo simulations
and from observational evidence, found that performing such
a multi-variant fit with so many free parameters was largely
untenable in practice. One solution that was recommended by
those authors is the use of a pre-defined value of X intermediate
between the extreme values of 0° and 90° that correspond to
the FP and HM cases; the selection of an appropriate value
for A could be based on previous observations or additional
information specific to the event undergoing analysis.

In Section 2, below, we derive an expression equivalent to
those presented by Liu et al. (2010a, 2010b) and Lugaz et al.
(2010) for triangulation and TAS, respectively, that enables ¢,
Rssg and V. profiles to be derived from stereoscopic observa-
tions based on use of the more generalized SSE geometry with
an assumed value of A (Lugaz et al. 2010; Davies et al. 2012;
Mbstl & Davies 2013); note that this differs from the approach of
Lugaz et al. (2010) who, when they introduced the SSE model as
their model 2, developed a system of two quadratic equations to
determine radial distance and radius of curvature (effectively 1)
for an assumed propagation direction. The current technique is
demonstrated in Section 3, through its application to two Earth-
directed CMEs observed by the HI instruments on the STEREO
spacecraft from different phases of the mission and, by virtue
of that fact, from different phases of the solar cycle.
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Figure 1. Schematic view (from above) of an example of the geometry described
in the paper. Features i, ii, and iii illustrate three instances during the propagation
of a solar wind transient—with a geometry that conforms to a self-similarly
expanding circular form with constant half width, A—traveling outward from
the Sun (S) at an angle ¢4 relative to observer A, ¢p relative to observer B, and
¢ relative to Earth (E). The two observers, located at distances d4 and dp from
the center of the Sun, are separated by an angle y; the region where the fields
of view of observers A and B overlap, for the configuration under consideration
here, is shaded in gray. At each instance, dashed red and blue lines indicate the
foremost elongation, ¢4 and ¢p, along which the transient is visible from the
positions of A and B, respectively. The small black dots indicate the location
of its apex (its furthest point from the Sun, corresponding to a radial distance
R). Although, for simplicity, the propagating transient (described by features i,
ii, and iii) is shown to travel radially outward with a constant half width, the
stereoscopic analysis technique described in this paper does not actually require
either assumption to be made. While features i, ii and iii illustrate the propagation
of a solar wind transient along a direction that lies within the common field of
view (in this case the entire transient lies within that gray shaded region), the
propagation direction of feature iv is outside the common field of view; this
feature is, however, still visible to both observers in this viewing configuration.
Feature v is not detectable by observer B, being wholly outside its field of view.

2. METHODOLOGY

As noted above, the stereoscopic methods of triangulation
(Liu et al. 2010a, 2010b) and TAS (Lugaz et al. 2010) can be
used to retrieve the kinematic properties of a solar wind tran-
sient as a function of time, as it propagates out through the inner
heliosphere, based on its time-elongation profile observed si-
multaneously from two vantage points. The geometrical models
that underlie these two techniques—namely a point-source and
a circle attached to Sun-center, respectively—characterize two
extremes in terms of the cross sectional extent of solar wind
transients (angular half widths of A = 0° and A = 90°, re-
spectively). In this section, we derive equivalent expressions to
those quoted in the aforementioned papers that can be used as
the basis of an analogous, but more generalized, stereoscopic
technique, based on the use of the SSE geometry (Lugaz et al.
2010; Davies et al. 2012; Mostl & Davies 2013) where any value
of A deemed appropriate can be assumed.

Such a stereoscopic analysis based on the SSE geometry is
illustrated diagrammatically in Figure 1. Features i, ii, and iii
represent three instances during the propagation of a solar wind
transient (viewed from above)—with a geometry that conforms
to a self-similarly expanding circular form with constant half
width, A—propagating outward from the Sun (S) at an angle
¢4 relative to observer A, ¢p relative to observer B, and ¢
relative to Earth (E). The two observers, located at distances d4
and dp from the center of the Sun, are separated by an angle y.
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Although, for simplicity, the transient is shown to propagate
radially outward-albeit neglecting, for the purposes of the
schematic, the motion of the spacecraft during the transient’s
propagation—the stereoscopic analysis technique described in
this paper does not require this assumption to be made. At each
instance, dashed lines indicate the foremost elongation, €4 (red)
and e (blue), along which the transient can be viewed from the
positions of observers A and B, respectively (which are most
likely to be the STEREO-A and STEREO-B spacecraft). Note
that elongation is, by convention, always positive, with values
up to a maximum of 180°. The elongation corresponds to the
tangent to the transient’s assumed circular form and is not the
elongation of the apex itself (except in the case of A = 0°). Small
black dots indicate the location of the apex of the transient (at
a radial distance R; note that we discard the SSE suffix from
R hereafter for simplicity). Since it is likely that the following
technique would mainly be applied to observations that include
those from the STEREO/HI instrument, we define a geometry
that is most applicable to this scenario, in which the shaded
gray area represents the region where the fields of view of the
two observers overlap (the common field of view). Features i, ii
and iii illustrate the propagation of a solar wind transient along
a direction that lies within the combined field of view of the
two observers (in this case, the entire transient lies within that
common field of view). For such an example, we define ¢4 to be
measured clockwise from the Sun—spacecraft line and ¢ to be
measured anticlockwise from the Sun—spacecraft line. However,
as discussed by such authors as Lugaz et al (2010) in terms of
the TAS techniques, a transient propagating along a direction
that lies outside the common field of view can still be viewed
by both observers provided its circular form impinges into the
common field of view (i.e., if its direction of propagation is
within an angle A of the edge of the common field of view, as
in the case of feature iv in Figure 1). Feature v would not be
detectable in such an observation configuration, as it lies wholly
outside the common field of view. Obviously, performing a
stereoscopic analysis based on the assumption that A = 0°—i.e.,
corresponding to the direct triangulation approach of Liu et al.
(2010a, 2010b)—would limit the transient’s propagation path to
a direction that lies within the common field of view. Note that,
by deriving additional sets of equations pertaining to alternative
configurations, Liu et al. (2010b) do cater for scenarios such as
feature v within their stereoscopic triangulation approach. We
choose not to do that for the current paper.

If we consider a solar wind transient conforming to the model
2/SSE geometry that can be observed simultaneously from
two viewpoints (here designated A and B), we can write the
following two expressions for the radial distance from Sun-
center of its apex, R, based on Equation (3) and the nomenclature
used in the description of Figure 1:

_ dasine (1 +sin))

= - - (4a)
sin(e4 + ¢4) + sin A

and
_ dpsinep(l +sin i)

" sin(eg + ¢p) +sinA’

(4b)

These equations are valid at any instant ¢ during the solar
wind transient’s propagation (although we neglect ¢ for clarity
throughout the following derivation).

Based on the above equations, and configuration, we derive
below an expression for ¢4 (alternatively this could be done for
¢p). The basis of this is the assumed equality of Equations (4a)
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and (4b). This is exactly the same methodology that underpins
the triangulation and TAS techniques. Implementation of the
derived equation—which we call the stereoscopic SSE (SSSE)
technique—requires a value of A to be assumed. Performing
analysis using the triangulation and TAS techniques, using the
expressions given by Liu et al. (2010a; 2010b) and Lugaz et al.
(2010) is, in fact, equivalent to implementing this new SSSE
method with A set to 0° and 90°, respectively.

Assuming that Equations (4a) and (4b) for the radial distance
of the apex of the solar wind transient can be equated (and
dividing through by 1 + sin 1) gives

dysingy dpsinep

&)

sin(ea + ¢4) +sin A - sin(eg + ¢p) +sin A

We define a variable P to be the same as that used by Lugaz
et al. (2010) in their derivation of the TAS technique, such that

Ao si
=22 ©)
A SINE L
Substituting P into Equation (5) yields
1 P
(N

sin(e4 + ¢4) + sin A - sin(eg + ¢p) +sin A

Furthermore, we define y as the separation angle between the
two observers, subtended at Sun-center, such that

Y = ¢a+dp. (8)

In defining y in this way, we are limiting the technique to
observations that are made in the plane that contains the two
observers, which, for STEREO, corresponds to the ecliptic plane
(in this case, ¢4 and ¢p are longitude relative to spacecraft A
and B, respectively, in an ecliptic-based coordinate system, with
¢ 4(¢p) being measured eastward (westward) of the correspond-
ing Sun—spacecraft line). Note that this is also inherent in the
implementations of triangulation and TAS presented by Liu et al.
(2010a, 2010b) and Lugaz et al. (2010). For observations made
out of that plane, this identity is no longer valid.

By defining y in this manner, we are able to eliminate ¢p
from Equation (7) which becomes:

1 P
sin(eq + pa) +sinA  sin(eg +y — ) +sin A’

€))

The elimination of ¢p (equivalently ¢4 could be eliminated in

deriving an expression for ¢p) is pivotal in the derivation.
Standard trigonometric identities allow us to write the

following expressions for sin(es + ¢4) and sin(eg +y — ¢pa)

sin(e4 + ¢4) = Sing4 COS Py + COS €4 SIN Py (10a)

sin(eg +y — ¢pa) = sin(eg + y)cos gy — cos(ep + y)Singy.
(10b)
These expressions can simply be substituted into Equation (9),
which, after some further rudimentary rearrangement, can be
expressed in the form

sin(eg + y)cos ¢y — cos(ep + ) sing, + sin A
= Psinggcosgpy + Pcoseysinggy + Psind.  (11)
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Separating terms containing cos ¢4 (and 1) and sin¢, onto
opposite sides leads to the formulation

cospa(sin(eg +y) — Psiney) + (1 — P)sinA
= singa(cos(ep +y)+ P coseyp). (12)

In order to simplify the remainder of the derivation, we define
the parameters L, M and N, such that

L =cos(eg+y)+ Pcosey, (13a)
M =sin(eg +y) — Psinegy, (13b)

and
N = (1 — P)sinA. (13¢)

Thereafter, substituting L, M and Ninto Equation (12) yields
the simple expression

Mcospa+ N = Lsing,. (14)
Squaring both sides of Equation (14) leads to
M?*cos®> ps+2MN cos s+ N2 = L?sin® pa.  (15)

We choose to solve Equation (15) for cos ¢ 4—although we
could equally solve for sin ¢,—by invoking the well-known
trigonometric identity

cos’ s +sin’ gy = 1, (16)
such that Equation (15) can be expressed in the form
M2cosz<]§A+2MNcos¢A+N2 = L2(1 —cos2¢A). 17

Further rearrangement results in the following quadratic
equation in terms of cos ¢4

(L? + M*)cos®> s+ 2MN cos s + (N> — L2 =0, (18)

which can be solved, using the standard solution of a quadratic
equation, to give

—2MN =+ /4AM2N? — 4(L% + M?)(N? — L?)
2(L2 + M?) ’

CosS s =

19)
On expanding the bracketed terms under the square root,
Equation (19) can be further simplified to

—MN + L/L?*+ M? — N?
L? + M? ’

cos gy = (20)

It is important to recognize that there are two roots to a
quadratic and that neither of these roots can be neglected
per se, as either can be valid. However, overlooking for a
moment the fact that there are two distinct roots, it also needs
to be borne in mind that for each of these potential solutions
there is an inherent ambiguity (between ¢4 and 360° — ¢4) in
retrieving ¢4 from cos ¢4 (obviously an equivalent ambiguity
arises when considering sin¢4). A transient conforming to the
SSE geometry in its most extreme form (the HM form) will
impinge into the STEREO/HI field of view irrespective of its
direction of propagation, so such an ambiguity is undesirable.
The ambiguity can be resolved, for each root, by simply deriving
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the corresponding value of sin ¢ 4, and considering the respective
signs of the both cos ¢4 and sin ¢4 terms.

For each of the two roots, the corresponding value of
sing4 can be derived from Equation (21), which is a simple
rearrangement of Equation (14):

Mcospa + N

T 21

sin (b A =
Note that if the quadratic equation had been posed in terms of
sin ¢4, an equivalent rearrangement of Equation (14) would be
used to yield the corresponding value of cos ¢4 for each root.
For each of the two resultant (cos ¢4, sin ¢4) combinations,
tan ¢4 can be evaluated thus

tan s = . . (22)

Expanding Equation (22), by substituting Equations (21)
and (20) for the numerator and denominator respectively, gives,
with some rearrangement, the following “final” usable expres-
sions for the “positive” and “negative” roots, respectively:

LN + ML+ M2 — N2
tan g, = , (23)
—MN + LVL>+ M2 = N?

and
2 2 2
tan ¢y = LN —M~L?>+M? - N ‘ 24)
—MN — LJL?+ M? — N?
Taking into account the signs of the numerator and denominator
(which are the signed parts of sin ¢4 and cos ¢4, respectively)
removes any ambiguity in the derivation of ¢ ,; this can be done
through the appropriate use of a two-argument four-quadrant
inverse tangent function (such as the ATAN(Y, X) syntax in
IDL or ATAN2(Y, X) in MATLAB). This does not, however,
resolve the issue of there being two (potentially valid) solutions
corresponding to the two roots of Equation (20).

Ensuring that you obtain a valid solution for ¢4 requires
that both of these roots are evaluated in all cases; fortunately,
the valid solution can usually be identified based on simple
physical as opposed to mathematical considerations. Even when
considering a single solar wind transient propagating through
the inner heliosphere, it is often necessary to select different
roots for different parts of its propagation path. We find that
the most robust method of identifying the valid solution, based
on such physical constraints, is by deriving the corresponding
time profiles of radial distance, R, and radial speed, V,, for both
roots. The radial distance can be derived by substituting values
of ¢4 into Equation (4a) and radial speed, by differentiation
of the radial distance (as is done, for example, in the next
section). Of course, in the limiting situation where only a single
(simultaneous) estimate of elongation is available from each
observer, the latter cannot be evaluated.

In many situations, the correct solution for ¢4 can easily
be identified as that which corresponds to a positive radial
distance. Solutions for ¢4 that lead to a negative radial distance
correspond to the case where the radius of the solar wind
transient has expanded faster than the distance from the Sun
to the transient’s midpoint. This equates to a scenario in which
the Sun is engulfed by the transient—a non-physical solution.
Note that for the positive values of sin A relevant to our situation,
there are no circumstances under which negative radial distances
arise simultaneously for both solutions for ¢4. The most

DAVIES ET AL.

potentially problematic cases are those where both solutions
for ¢4 yield positive radial distances. In essence, there are two
different yet potentially physically realistic solar wind transients
that yield an identical combination of ¢4 and €. In many such
cases, it is also relatively easy to identify (albeit with care) the
most likely value for ¢4 as that which provides a “physically
realistic” value for the radial speed (if time profiles of elongation
are available from both observers). This is because, in many
of these scenarios, the ambiguity is between a faster-moving
far-side transient and a slower-moving near-side transient (in
particular, this scenario arises when y + €4 + ¢g is smaller
than the full angular width of the transient, 2 x A). It should
be reiterated that the root that corresponds to the “correct”
propagation direction will likely swap over as the transient
propagates outward. However, there are cases where the two
solutions for ¢4 are sufficiently similar that there is no obvious
way to discern which the most likely; they yield similar radial
distances and, hence, speed. However, the fact that they are
so similar does mean that it is likely that they both lie within
the errors induced by the underlying assumptions (such as the
transient being circular). There are also very specific cases where
¢4 is undefined, in particular when € 4 +£g+y = 180° (scenario
ii in Figure 1), where a unique solution for ¢4 is not possible
as the tangential lines of sight from the two observers to the
model transient coincide along their entire length (note this is
an equivalent condition to P = 0). It should be borne in mind
that as €4 +&p+y approaches 180°, small observational errors in
elongation will yield large errors in ¢ 4. Note that if an observer
subsequently emerges from inside the solar wind transient—in
the case where the transient has completely passed over the
observer—the derived equations are no longer applicable as
Equations (4a) and (4b) pertain to the apex of the transient and
not its trailing point (see Davies et al. 2012).

Application of the aforementioned derivation to feature iv in
Figure 1 would likely yield a negative value of ¢4 (as, in most
programming languages, two-argument four-quadrant inverse
tangent functions output values between —180° and +180°).
However the derivation is not applicable to transients such
as feature v that do not encroach into the common field of
view of the two observers. However, coronagraphs (and indeed
the SMEI instrument) are not subject to the limitations in the
angular extent of the field of view suffered by the STEREO/
HI instrument. The preceding derivation could be modified to
deal with such situations, as was done by Liu et al. (2010b) for
the triangulation technique, although the STEREO /HI-oriented
coordinate system used in the current paper is not ideal.

In the limiting FP case, where A = 0°, Equations (23)/(24)
simplify (albeit with slight rearrangement) to the direct trian-
gulation expression derived by Liu et al. (2010a, 2010b). In the
case of a single point-like transient, there are no longer two
“real” roots, but the use of Equations (23) and (24), and then se-
lecting ¢4 on the basis of a positive radial distance, will ensure
that the appropriate value of ¢4 is extracted at any point along
the transient’s propagation path. It is not as trivial to demon-
strate the equivalence of the above derivation with Lugaz et al.’s
(2010) original TAS formulation for the case of A = 90°, as
those authors actually solved for what we call ¢ (they simply
call it ¢), which is the direction of propagation of the transient
relative to the Sun—Earth line (rather than being relative to one
of the observing spacecraft). For completeness, we present in
Equation (25) below the necessary adaptation of Lugaz et al.’s
(2010) original formulation (their Equation (2)) that is required
to account for the SSE geometry. This inclusion of Equation (25)
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is simply for the benefit of those already using that formulation
and we make no comment on the regimes of its validity as we
have done for the expression derived in this paper.

In its revised form, ¢ (Equation (2) of Lugaz et al. 2010) can
be expressed as

P—-1

¢p = sin~! ( sin A) +a. (25)

Readers are directed to Lugaz et al. (2010) for an explanation
of the use of this formulation, but its amendment to cater for the
SSE geometry simply involves the inclusion of sin A within the
inverse sine term.

Equations (23) and (24) form the basis of the SSSE technique,
in which we derive ¢4 as a function of time based on an
assumed value of A; there is no absolute requirement for that
assumed value of A to be kept constant with time, although
not doing so defies the concept of SSE. The SSSE technique is
demonstrated in the subsequent section, based on heliospheric
images of two Earth-directed CMEs observed by the STEREO
spacecraft.

3. APPLICATION

In the previous section, we derived an methodology for
deriving the instantaneous propagation direction (¢4, the angle
from observer A) of the apex of a circular solar wind transient,
characterized by a half width A, in terms of the elongation angle
of that feature viewed simultaneously from two vantage points
(here given by ¢4 and ep). Except in the case of A = (°, these
elongations correspond not to the apex itself (except for very
fleeting geometries akin to feature ii in Figure 1 as viewed
from observer A), but to the tangent to the transient’s assumed
circular form. Having derived the propagation direction, the
corresponding value of the radial distance of the apex of
the circular transient can be evaluated, using Equation (4a).
Continuous monitoring of the solar wind transient from two
view points enables the time profile of its propagation direction
and radial distance (and, hence, radial speed as the time
derivative of the latter) to be derived, as the feature propagates
out through the inner heliosphere; this concept forms the basis
of what we term the SSSE technique.

In this section, we demonstrate the SSSE technique based
on STEREO/HI observations of two near-Earth directed CMEs
from very different phases of the mission. The first of these
CMEs (CME 1), which was launched at around 08 UT on 2008
December 12, has been rigorously studied through the appli-
cation of the aforementioned techniques by such authors as
Liu et al. (2010a, 2010b), Davis et al. (2009) and Lugaz et al.
(2010); this was not least due to it being the first Earth-impacting
CME of the STEREO era that was imaged simultane-
ously from vantage points well outside the Sun—Earth line
(STEREO-A and STEREO-B were separated from the Sun—Earth
line by some 42° and 44°, respectively). Thus it is an obvi-
ous candidate for consideration here. The second, much more
recent, CME (CME 2)—Ilaunched at around 00 UT on 2012
March 7—was imaged by the two STEREO spacecraft from
vantage points some 110° (STEREO-A) and 118° (STEREO-B)
from the Sun—Earth line. By virtue of its significant speed, this
CME was associated with a major solar energetic particle (SEP)
event that was observed both in the vicinity of Earth and at the
STEREO-B spacecraft itself. For each of these two CMEs,
Figure 2(a) presents a pair of near-simultaneous difference
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images from the HI-1 instruments on STEREO-A (HI-1A) and
STEREO-B (HI-1B); difference images of CME 1 and CME 2
are from 06:49 UT on 2008 December 13 and 07:29 UT on 2012
March 7, respectively (the time being that of the “current” as
opposed to the “previous” image of the image pair). The near-
horizontal line that runs across the center of each difference
image corresponds to the projection of the ecliptic plane onto
the image plane, as viewed by the observing spacecraft.

Figure 2(b) presents the time-elongation profiles of the
foremost density front of each CME rendered in white light from
STEREO-A/HI (red line) and STEREO-B/HI (blue line). The
profiles are extracted manually from ecliptic time-elongation
maps (commonly called J-maps) created from combined HI-1
and HI-2 difference observations (e.g., Davies et al. 2009). As
in the other studies of this type, it is the interface between
the adjacent white and black regions (that, between them,
constitute the signature of a solar wind transient, such as a
CME, in a difference J-map) that is tracked; while this interface
corresponds to a somewhat arbitrary location within the density
feature, its heightened contrast leads to a better defined time-
elongation profile (as discussed by Lugaz et al. 2012). The
time-elongation profile of CME 2, as viewed from STEREO-B,
is curtailed near 06 UT of March 8 by the onset of contamination
in the HI images by the SEP event.

Figure 2(c) presents ¢4 as a function of time for the ini-
tial front of each CME, based on the application of the SSSE
technique (through the use of Equations (23) and (24)) to the
time-elongations illustrated in Figure 2(b). While the absolute
scale over which ¢, is plotted is different for the two CMEs,
the angular range is the same for both. For both CME:s, the
time profile of ¢, is evaluated for 10 values of A ranging
from 0° (black) to 90° (red) in steps of 10°. Note that in
these and subsequent panels, and in particular for the larger
values of A, convergence of the derived parameters result in
not all individual traces being easily discernable. The require-
ment for simultaneous values of elongation from the two ob-
servers necessitates that the time-elongation profiles be inter-
polated onto a common time grid, here at 30 minute resolution
(even though HI images from the two spacecraft are contem-
poraneous, this simultaneity is lost by the manner in which
the time-elongation profiles are extracted from the J-maps). At
each point in time, heliocentric distances of STEREO-A and
STEREO-B, d4 and dg respectively, and their angular separa-
tion, y,are retrieved from the spacecraft ephemeris data; note
that in the case of CME 2, the value of y that should be used is
228° (as opposed to 132°). In the case of CME 1, the positive
root defined by Equation (23) is appropriate throughout, while
for CME 2, the negative root (Equation (24)) is appropriate.
While the correct solution is, in the main, easily determined
through selection based on the sign of the radial distance (i.e.,
selecting the positive radial distance), for CME 1, in particular,
there are regimes over which both roots yield a positive ra-
dial distance (corresponding to higher values of A). Over these
regimes, the incorrect root is obvious as it is associated with
wholly ridiculous values of the radial distance and derived radial
speed. As noted previously, for the configuration of the STEREO
mission, ¢4 corresponds to the ecliptic longitude of propaga-
tion of the transient relative to the STEREO-A; Figure 2(d)
presents the propagation angle as a longitude relative to Earth,
¢r (i.e., HEE—Heliocentric Earth Ecliptic—longitude, equiva-
lent to Stonyhurst heliographic longitude). Negative and positive
values of ¢ correspond to propagation eastward (behind) and
westward (ahead) of the Sun—Earth line.
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Figure 2. Results of the application of the SSSE technique to two near-Earth directed CMEs observed by the HI instruments on the STEREO spacecraft. These CMEs
were launched at around 08 UT on 2008 December 12 (CME 1: left hand column) and 00 UT on 2012 March 7 (CME 2: right hand column). (a) Near-simultaneous
HI-1A and HI-1B difference images from 06:49 UT on 2008 December 13 (CME 1) and 07:29 UT on 2012 March 7 (CME 2). The near-horizontal lines in each image
correspond to the projection onto the image plane of the ecliptic plane. (b) Elongation, as a function of time, of the initial density front of each CME, as viewed in
the ecliptic by the HI instrument on STEREO-A (red) and STEREO-B (blue); the time-elongation profiles are extracted manually from ecliptic time-elongation maps
created by combining HI-1 and HI-2 difference observations. (c and d) Propagation angle as a function of time of the leading front of each CME relative to STEREO-A
(¢4, panel (c)) and Earth (¢, panel (d)), derived from SSSE analysis of the time-elongation profiles illustrated in panel (b) for 10 values of half width A, the latter
increasing from 0° (black) to 90° (red) in steps of 10° (in these and subsequent panels, individual traces are not easily distinguishable—in particular for larger values
of A). (e and f) Corresponding radial distance, R, and radial speed, V,, time profiles for each of the two CMEs. For comparison, dashed and dot-dashed horizontal
lines (overlaid on panels (d) and (f) only) indicate corresponding results from single-spacecraft FPF and HMF analysis, respectively, performed on the time-elongation
profiles from STEREO-A (red) and STEREO-B (blue).
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Application of the SSSE technique strongly suggests that, for CME 1 and eastward of the Sun-Earth line for CME 2

based on their ecliptic signatures, each of these CMEs is prop- (Figure 2(d)). In the case of CME 1 in particular, it is evi-
agating in a near-Earthward direction (Figure 2(d)), although dent that there is a situation in which propagation direction,
along a central axis that is (generally) westward of the Sun—Earth yielded by SSSE analysis over the entire range of possible A
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values, converges to a single value of ¢4 (Figure 2(c)). As the
dependence on X is lost when N becomes zero, this conver-
gence arises when P = 1 (see Equation (13c)). For the simple
case of d4 = dp, this convergence corresponds to the situation
where ¢4 = ¢p (i.e., the transient propagates along a direction
midway between the two observers). For the STEREO mission
configuration, convergence occurs when ¢g is close to—but
not exactly—O0° (Figure 2(d)), with Earth being roughly mid-
way between the two STEREO spacecraft, and d4 and dp being
similar. As the transient’s propagation path deviates from being
near-Earth directed, the value of ¢4 output by SSSE analysis
becomes increasingly dependent on the choice of A (by up to
20° in the cases we show here). This is notwithstanding the
convergence of ¢4 (and indeed all derived parameters) with
increasing A. As a transient propagates even further from the
Sun—Earth line (we limit ourselves somewhat in this regard by
our choice of events), the disparity in ¢4 between the extreme
cases of A = 0° and A = 90°—which correspond to triangu-
lation and TAS—will presumably become increasingly signif-
icant; in some ways, it is these cases that justify the adoption
of the more appropriate “intermediate” SSSE approach. The
fact that the SSSE technique—for the STEREO configuration at
least—yields a propagation direction that becomes progres-
sively further from the Earthward propagation direction with
increasing half width A, is in agreement with the conclusions of
Lugaz (2010), drawn from comparison of results from triangu-
lation and TAS analyses. For CME 1, the results of our SSSE
analysis for . = 0° can be directly compared to those presented
by Liu et al (2010a, their Figure 4) and by Liu et al. (2010b, their
Figure 9). Given that there will invariably be subtle differences
in the manner in which the methodologies are implemented
here and by those authors, the propagation directions yielded by
SSSE analysis with A = 0 and by triangulation are remarkably
consistent. It should be noted that Liu et al. (2010a) assumed
ds = dp—a simplification that was neither made here or by
Liu et al. (2010b)—which, in fact, makes a significant differ-
ence to the propagation angle derived at large elongations. Note
also that, in addition to STEREO/HI observations, the time-
elongation profiles of Liu et al. (2010a, 2010b) also included
STEREO coronagraph (COR-2) observations; such an approach
would be equally valid with the SSSE technique. Lugaz et al.
(2010) also performed stereoscopic analysis of CME 1; the
authors quote propagation directions of ¢ = 0° £ 5° for tri-
angulation and ¢ = 10° £ 10° for the TAS technique which
are not inconsistent with the results shown in Figure 2(d) for
A = 0° and A = 90°, respectively. In a recent paper, Liu et al.
(2013) present kinematic analyses of three CMEs from early
2012, including the CME that we call CME 2. In their paper,
the authors compare the results of both triangulation and TAS
analysis, based on COR-2 and HI imagery, with in situ mea-
surements and observations of type II radio bursts. Again, the
propagation directions yielded by their analysis (Liu et al. 2013,
their Figure 12) are agreeably consistent with what is presented
in the current paper for the appropriate value of A. As the aim of
the current paper is simply to present an initial demonstration
of the SSSE technique, we forgo error analysis. When applying
this technique in earnest, a robust error analysis, such as detailed
Liu et al. (2010b), is obviously advisable.

For each CME, Figure 2(e) presents the corresponding radial
distance (R) profile of its apex, derived as a function of time
for each of the ten values of A using Equation (4a). While
the selected value of A makes very little difference to the
derived radial distance profile for CME 1, this is not true for
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CME 2, particularly at greater elongations, presumably due
to its larger propagation angle relative to the observer. Based
on adjacent values of the radial distance, and their associated
times, a numerical differentiation with three-point Lagrangian
interpolation is used to derive the time profile of the radial speed,
V., for both CMEs (Figure 2(f)). The speed profile derived in this
manner is for the transient’s apex; formulae presented by Mostl
& Davies (2013) can be used to correct V, (and hence arrival
times) to account for impact of the solar transient at locations
away from the transient apex. We know CME 2 to be much faster
than CME 1; this is borne out by the results of the SSSE analysis.
It is noticeable, however, that varying A has a much more
significant effect on the output speed for CME 2 (as would be
expected from examining the corresponding profiles of R); this
is a direct result of the different observing geometries for the two
CMEzs, as explained in detail by Liu et al. (2013). Our analysis
of CME 1 confirms previous work (e.g. Liu et al. 2010a, 2010b,
2012) that shows that, for such “front-sided” Earth-directed solar
wind transients, there is little difference in the radial distance
and speed derived using triangulation and TAS, despite the fact
that these characterize total extremes in terms of the assumed
geometry. The initial rapid deceleration of CME 2 suggested by
this analysis, for all values of A, is as would be anticipated for
such a fast CME. Inclusion of the COR-2 observations by Liu
et al. (2013), in fact, reveals an earlier acceleration phase for
this and, indeed, the other two similarly fast CMEs considered
by those authors. Liu et al. (2013) suggest that the “unphysical”
late acceleration yielded by the triangulation techniques for all
three of their fast CMEs, including our CME 2 (see Figure 2(f)),
provides evidence that these CMEs are better represented, but
only when further from the Sun, by a HM geometry. Conversely,
by comparing to possible source location, the authors suggest
that the FP geometry may be more applicable to these CMEs
when they are close to the Sun. The present work provides the
capability of assigning an intermediate angular width to a solar
wind transient; this may assist in enabling consistency between
different datasets to be achieved in studies of that type.

Out of interest, we performed SSEF analysis on the eclip-
tic time-elongation profiles displayed in Figure 2(b)—exactly
as implemented by Davies et al. (2012)—in order to compare
results from the stereoscopic SSSE analysis to results from
the analogous single-spacecraft fitting technique. The latter
was applied independently to the profiles from the STEREO-
A and STEREO-B spacecraft, for A ranging from 0° to 90°
in steps of 10°. Dashed and dot-dashed lines (overlaid on
Figures 2(d) and (f) only) indicate SSEF results for A = 0°
(effectively FPF) and & = 90° (HMF) only, for STEREO-A
(red) and STEREO-B (blue); results for these values of A essen-
tially encompass the entire possible range of values of direction
and speed that can be produced by SSEF analysis. For CME 1,
the application of the SSEF technique to the time-elongation
profile from STEREO-A (STEREO-B) observations yielded val-
ues of ¢ that rotated from —13° to —15°(+ 12° to + 14°), and
values of V, that increased from 378 to 387 km s~!(404 to
413 km s~') as A was increased from 0° to 90°. For CME 2,
corresponding values from STEREO-A (STEREO-B) are +21°
to —16° (—13° to +32°) for ¢g, and 800 to 1022 km s~
(1254 to 1836 km s~ !) for V, (note that for STEREO-B, in
particular, some values lie outside the limits of the respec-
tive plot). As is the case for the stereoscopic analysis, the
best-fit parameters retrieved from the single-spacecraft anal-
ysis of CME 1 are much less sensitive to changes in A than
for CME 2. Note also that these results compare well with
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equivalent values quoted by Davis et al. (2009) and Lugaz
et al. (2010). For CME 1, SSEF analysis of the STEREO-B
time-elongation profile yields results that are highly consistent
with those from the SSSE technique, both in terms of propa-
gation direction and speed; this is not the case for STEREO-
A (for propagation direction, in particular). For CME 2, the
SSSE-determined propagation angles largely fall outside the
range of those derived using the SSEF technique, despite a sub-
stantial spread in the latter. However, our naive application of
the SSEF technique to the time-elongation profiles of CME 2
shown in Figure 2(b) is likely to yield somewhat inaccurate re-
sults due to the likely initial deceleration of such a fast CME
(borne out by the SSSE results), and, in the case of STEREO-B,
the rather more limited profile extent (e.g., Davies et al. 2012,
and references therein).

In this section, we have demonstrated the stereoscopic
SSSE technique, through application to two near-Earth directed
CME:s. The results of this technique appear consistent with pre-
viously published stereoscopic work (where available and appli-
cable), but somewhat less consistent with values gleaned from
single spacecraft analysis techniques—this is not least because
the results from single-spacecraft analyses are not consistent in
themselves. While it is not the aim of the current paper to pass
judgment on the validity of the various techniques, it is worth
mentioning that for these CMEs at least, the general propa-
gation direction with respect to the Sun—Earth line gleaned
from stereoscopic, as opposed to single-spacecraft analysis—
irrespective of the precise value of A used in the former—is more
consistent with what the sense of the asymmetry in coronagraph
images from the near-Earth Solar and Heliospheric Observatory
spacecraft would lead us to believe.

4. SUMMARY

Recent advances in wide-angle imaging of the corona and
inner heliosphere have led to the development of a plethora of
techniques that enable the key kinematic properties of solar wind
transients to be estimated; the launch of the STEREO mission,
in particular, has unlocked the potential for the development of
multi-spacecraft analysis techniques, based on its capability for
coronal and heliospheric imaging from spatially separated van-
tage points. By necessity, in the current paper (Section 1), we
have restricted our discussion to a limited number of closely re-
lated single-spacecraft and stereoscopic geometrical modeling
techniques. Of the numerous techniques that exist for the anal-
ysis of the propagation and evolution of solar wind transients
based on white-light imaging, many others are also based on the
adoption of a geometrical formulation for the transient’s topol-
ogy, some invoke forward or magneto-hydrodynamic modeling,
some rely on polarization measurements and are thus, currently,
only applicable to coronagraph imagery, and others incorpo-
rate intensity measurements. We do not attempt to provide an
exhaustive list here but, instead, refer the reader to a number
of works in which multiple techniques have been employed or
reviewed (Mierla et al. 2010; Davis et al. 2011; Webb & Howard
2012; Webb et al. 2013).

This avenue of research is of great importance to those
wishing to mitigate the potentially deleterious effects of space
weather, especially when the techniques can be shown to
be both quickly and easily implementable and, of course,
provide demonstrably reliable results. Two such methods—
triangulation (Liu et al. 2010a, 2010b) and the TAS method
(Lugaz et al. 2010)—can be used to determine time profiles
of the propagation direction and radial speed of a solar wind
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transient, effectively based on comparing its elongation profile
as viewed by two observers. The geometries on which these
two techniques are based—a point source and a circle attached
to Sun-center, respectively—constitute extreme descriptions of
solar wind transients. In this paper, we derive the expressions
that underpin a more generalized technique, which we call the
SSSE method. Although still based on the assumption of a
circular transient geometry, the SSSE technique provides more
flexibility in characterizing the transient’s cross-sectional extent
(through defining its half width A). Effectively, this technique
generalizes the triangulation and TAS techniques, which form
the limiting cases of the SSSE technique that correspond to A of
0° and 90°, respectively.

For demonstration purposes, we apply the SSSE technique to
two CMEs from different phases of the STEREOQ mission, the
well-studied event of 2008 December and a more recent event
from early 2012. While the selection of two CMEs that propa-
gate close to the Sun—Earth line may not fully demonstrate the
full potential of having the capability to define A (both CMEs
propagate in a regime where the retrieved propagation direction
is less dependent on A), they provide somewhat more scope
in terms of inter-comparison and validation against previously
published work. The work documented here is not, however,
intended to be a rigorous comparison of the various techniques;
rather the intent is to introduce a simple methodology for per-
forming stereoscopic analysis that allows more flexibility than
is currently available. While the stereoscopic SSSE technique,
as currently implemented, is limited to the plane defined by the
Sun and the two observers—this being the ecliptic plane in the
case of STEREO—the possibility exists for the technique to be
extended to consider propagation out of this plane by assuming
a spherical geometry.
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