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ABSTRACT

We measure the stellar mass surface densities of early-type galaxies by observing the micro-lensing of macro-lensed
quasars caused by individual stars, including stellar remnants, brown dwarfs, and red dwarfs too faint to produce
photometric or spectroscopic signatures. Instead of observing multiple micro-lensing events in a single system, we
combine single-epoch X-ray snapshots of 10 quadruple systems, and compare the measured relative magnifications
for the images with those computed from macro-models. We use these to normalize a stellar mass fundamental
plane constructed using a Salpeter initial mass function with a low-mass cutoff of 0.1 M� and treat the zeropoint
of the surface mass density as a free parameter. Our method measures the graininess of the gravitational potential
produced by individual stars, in contrast to methods that decompose a smooth total gravitational potential into two
smooth components, one stellar and one dark. We find the median likelihood value for the normalization factor F
by which the Salpeter stellar masses must be multiplied is 1.23, with a one sigma confidence range, dominated by
small number statistics, of 0.77 < F < 2.10.
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1. INTRODUCTION

1.1. Stellar Masses from Micro-lensing

So-called stellar masses for early-type galaxies are almost
always determined by one of two methods: either they are
estimated from spectra (sometimes only broadband colors) or
they are deduced by subtracting the contribution of an assumed
dark matter component from a combined mass inferred from
kinematic (and sometimes macro-lensing) measurements. The
two methods, with their many variants, are described at length
in the review by Courteau et al. (2014).

Both methods have shortcomings. Spectral methods suffer
from the fact that lower main sequence stars, substellar objects,
and stellar remnants contribute negligibly to the observed light
and therefore cannot be detected in spectra. Such determinations
must therefore rely on some assumed shape for the stellar mass
function. To quote from a frequently cited example of these
efforts (Kauffmann et al. 2003, p. 48). “All of our derived
parameters are tied to a specific choice of IMF [initial mass
function]. Changing the IMF would scale the stellar mass
estimates by a fixed factor. For example, changing from a
Kroupa (2001) to a Salpeter IMF with a cutoff at 0.1 M� would
result in a factor of two increase in the stellar mass.”

∗ The scientific results reported in this article are based to a significant degree
on observations made with the Chandra X-ray Observatory and published
previously in cited articles.
† This paper includes data gathered with the 6.5 m Magellan telescopes
located at Las Campanas Observatory, Chile.
‡ Based in part on observations made with the NASA/ESA Hubble Space
Telescope, obtained at the Space Telescope Science Institute, which is operated
by the Association of Universities for Research in Astronomy, Inc., under
NASA contract NAS5-26555. These observations are associated with program
GO-9854.

Dark matter subtraction techniques are vulnerable to
mistaken assumptions about the density profile of the dark
matter and to mistaken assumptions about the constancy or
non-constancy of the mass-to-light ratio of the stellar com-
ponent. A recent paper by Cappellari et al. (2012) illustrates
the effects of varying assumptions about the shapes of dark
matter halos.

In this paper we use a third method: determining the stellar
mass surface density of an early-type galaxy from brightness
fluctuations of the four images of a background quasar that
is both multiply imaged (“macro-lensed”) by the galaxy and
micro-lensed by the individual stars in that galaxy (Schechter &
Wambsganss 2004; Kochanek 2004). This method, in contrast
to spectral methods, is sensitive to stellar mass near and below
the hydrogen burning limit, as well as to mass in stellar
remnants. Also, where dark matter subtraction methods make
assumptions about the dark matter profiles, the gravitational
micro-lensing technique makes only an assumption about the
combined gravitational potential, one that has been subjected to
extensive observational verification.

Micro-lensing produces flux ratio anomalies of the sort
described by Schechter & Wambsganss (2002). Ideally one
would observe a single system long enough to see a great many
fluctuations and infer an accurate stellar surface density. But the
timescale for micro-lensing variations is of the order of 10 yr
for a lens at redshift z ∼ 0.5 (Mosquera & Kochanek 2011),
and observations of even four quasar images at a single epoch
give only broad constraints on the mass surface density via the
deviation of the observed flux ratios from those predicted by a
macro-model. So instead we observe a number of systems at a
single epoch and combine results.

Such a measurement is no different, in principle, from the
measurement of the density of massive compact halo objects in
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the Milky way via micro-lensing measurements of stars in the
Magellanic Clouds (Paczyński 1986b), though it differs in the
nature of the source that is lensed and in the very much higher
optical depth (Paczyński 1986a; Witt et al. 1995) along the lines
of sight to multiply imaged quasars.

There is as yet no theory that predicts in closed form the
statistics of such light curves as a function of point mass density
and external shear, at least not at the optical depths we consider.
One must therefore carry out simulations for each case of
interest, using the ray shooting technique pioneered by Kayser
et al. (1986) and Schneider & Weiss (1987), and refined by
Wambsganss (1990).

It is the peculiar property of such micro-lensing that the in-
stantaneous magnification probability distribution is determined
almost entirely by the surface mass density of micro-lenses, with
a dependence upon the distribution of masses that is so weak that
only with elaborately contrived simulations can it be observed
at all (Schechter et al. 2004).

1.2. The Stellar Mass Fundamental Plane

The combination of a set of results from multiple quasars is
non-trivial for several reasons: (1) the lens galaxies do not all
have the same linear sizes and stellar mass surface densities, (2)
the quasar lines of sight do not all sample the same projected
distance from the lens, and (3) the lenses lie at different redshifts.
Ideally our combined result would give the mass surface density
for an early-type galaxy of a fiducial size at a fiducial radius and
a fiducial redshift.

The stellar mass fundamental plane (Hyde & Bernardi 2009)
can be used to scale measured stellar surface densities to a
common velocity dispersion (which we take to indicate the size
of the dark matter halo in which the lensing galaxy is embedded)
and projected distance, as a fraction of the measured effective
radius.

Alternatively, one may use the stellar mass fundamental plane
to “predict” the stellar mass surface density at a given projected
radius for a galaxy with a specified velocity dispersion and
effective radius. Multiplying these predictions by an adjustable
constant and minimizing residuals between the measured and
predicted stellar mass surface densities allows one to recalibrate
the stellar mass fundamental plane. If the correct initial mass
function (IMF) has been used in deriving the adopted stellar
mass fundamental plane, the adjustable parameter, F , will be
unity.

In the present work we construct two stellar mass fundamental
planes, one derived from measurements by Auger et al. (2010)
for the Sloan Lens Advanced Camera for Surveys (hereafter
referred to as SLACS) sample at z ∼ 0.2 and another derived
from measurements by Sonnenfeld et al. (2013) for the Strong
Lensing Legacy Survey (hereafter referred to as SL2S) sample
at z ∼ 0.5. Both groups of authors use Salpeter (1955) IMFs
to calculate stellar mass.9 We use both samples to constrain the
orientation of the fundamental plane, but then fit them separately
to allow for possible evolution with redshift.

1.3. Previous Investigations

Past efforts to ascertain stellar (or alternatively dark) mass
contributions to galaxy masses based on micro-lensing have

9 A low mass cutoff must be applied to the Salpeter (1955) IMF to keep the
integrated mass from diverging. Auger et al. (2010) and Sonnenfeld et al.
(2013) used a low mass cutoff of 0.10 M� (T. Treu 2014, private
communication).

been carried out in large part by two groups—one that builds
upon the work of Kochanek (2004), and another that builds upon
the work of Schechter & Wambsganss (2004). Other efforts
include those of Mediavilla et al. (2009), Bate et al. (2011),
and Oguri et al. (2014), the last of which uses the stellar mass
fraction derived by the present authors (Pooley et al. 2012) as a
constraint in what is otherwise a decomposition into two smooth
components, one stellar and one dark.

The present paper produces results that are somewhat less
uncertain, and somewhat more robust, but differs primarily in
that our central goal is a calibration of the conversion of observed
light to stellar mass rather than determining a dark or stellar mass
fraction.

1.4. Quasars as Point Sources

The analysis of optical flux ratio anomalies for a set of
quadruply lensed quasars by Schechter & Wambsganss (2004)
was inconclusive. Including the case of SDSS J0924+0219, they
found an implausibly low-mass fraction. Excluding it gave a
double-peaked likelihood function. They were able to produce a
single peak by making the ad hoc assumption that in every case
50% of the quasar light came from a point source and 50% of
the light came from a source too extended to be micro-lensed.

Chandra X-ray Observatory observations of those same
quadruply lensed quasars indicate that finite size effects may
indeed have been responsible for Schechter & Wambsganss’
(2004) failure to extract a clean signal from the optical flux
ratios. Pooley et al. (2007) found for a sample of 10 lensed
systems that the X-ray deviations from models with smooth
potentials, as measured in magnitudes, were a factor of two
larger than the optical deviations. They argue that the optical
emission comes from a larger region comparable in size to the
Einstein rings of the micro-lensing stars.

While the size of a quasar’s optical emission region relative to
that of stellar Einstein rings may be of interest in its own right,
for the present purpose it is yet another free parameter and
a major nuisance. Fortunately, the X-ray emission appears to
emanate from a very compact, more nearly pointlike region. In
the present paper we use these X-ray observations to determine
stellar mass surface densities.

1.5. Smoothly Distributed Dark Matter

The micro-lensing magnification distribution expected at the
position of one of our quasar images depends not only on the
stellar mass density, but also on the tidal shear due to the galaxy
and the magnification produced by the smooth dark matter
density at that position. We use an isothermal model for the
potential produced by the combined gravity of the stellar and
dark matter components of our lensing galaxies, consistent with
results from the SLACS survey (Gavazzi et al. 2007; Auger
et al. 2010), the SL2S survey (Ruff et al. 2011), and a combined
analysis of the SLACS and BELLS samples (Bolton et al. 2012).

1.6. Outline

In Section 2 we construct stellar-mass fundamental planes
using the SLACS data of Auger et al. (2010) and the SL2S
data of Sonnenfeld et al. (2013) for subsequent use in analyzing
quasar micro-lensing.

In Section 3 we assemble the observational data needed for
our analysis. These include positions and effective radii for the
lensing galaxies, and positions and X-ray fluxes for the lensed
quasar images.
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In Section 4 we present macro-lensing models for the lensed
quasars, with particular emphasis on the total mass surface
densities and shears at the quasar image positions.

In Section 5 we describe the suite of ray tracing simulations
used in our likelihood analysis and our scheme for interpolating
across them.

In Section 6 we present the details of our likelihood analysis.
In Section 7 we carry out that likelihood analysis and

derive a re-calibration factor F for the SL2S stellar-mass
fundamental plane. We then examine and discuss possible
sources of systematic errors: our choice of models for the macro-
lensing potential, our implicit prior on the unlensed x-ray fluxes
of the lensed quasars, our method of analysis, systematic errors
in the measurement of effective radii, and the sensitivity of our
combined results to the results for the individual lensed systems.

In Section 8 we discuss our result in the context of other
measurements.

In Section 9 we summarize our results and describe avenues
for further refinement.

2. THE STELLAR MASS FUNDAMENTAL
PLANE (AND LINE)

2.1. Basic Idea

The stellar mass fundamental plane (Hyde & Bernardi 2009)
differs from the conventional fundamental plane (Djorgovski &
Davis 1987) in that stellar surface mass density replaces stellar
surface brightness as one of the three “observables” measured
for elliptical or early-type galaxies. In either case the galaxies
lie very close to a two-dimensional planar surface in the three-
dimensional space spanned by the logarithms of the observables.
For a given stellar mass fundamental plane, one might expect
different (parallel) conventional fundamental planes for popu-
lations of different ages and metallicities. Observations of the
galaxies with several filters would permit one to combine galax-
ies of different ages and metallicities into a single stellar mass
fundamental plane. But this can be accomplished only by mak-
ing assumptions about the IMF, since the stars that constitute
the bulk of the mass contribute very little starlight.

Hyde and Bernardi cast their fundamental plane as a “predic-
tion” of the effective radius re of an elliptical galaxy, assumed
to follow a de Vaucouleurs (1948) surface brightness profile,
given measurements of the average stellar surface mass den-
sity Σe interior to the effective radius and the stellar velocity
dispersion, σ ,

log re = α log σ + β log Σe + γ. (1)

Observed values of the effective radius (the geometric mean
of the semi-major and semi-minor axes) are compared with
the predictions obtained with trial values of the coefficients,
which are then adjusted to minimize the scatter between the
observations and predictions.

For the present purposes we want a fundamental plane that
“predicts” stellar surface mass densities as a function of effective
radius and velocity dispersion,

log Σe = a log σ + b log re + c. (2)

We use the predicted surface mass densities to calculate the
effects of micro-lensing at the four quasar image positions, and
then adjust the constant c to maximize the likelihood of the
observed fluxes based on the micro-lensing predictions. This is
the sense in which we re-calibrate the stellar mass fundamental

plane. We start with a fundamental plane computed from multi-
color observations and adjust the stellar mass zeropoint to
maximize the likelihood of the observed flux ratio anomalies.

2.2. Einstein Ring Radius as a Proxy for
Stellar Velocity Dispersion

The use of the stellar mass fundamental plane to estimate
stellar mass surface densities is rendered more challenging
by the fact that our lensing galaxies are crowded by four
bright quasar images, making it either difficult or impossible
to measure stellar velocity dispersions for many of our lensing
galaxies.10 Fortunately, lensing galaxies are characterized by an
Einstein ring radius that has a straightforward relation to the
stellar velocity dispersion. We follow Kochanek et al. (2000)
in constructing a stellar mass fundamental plane that employs
these Einstein ring radii, converted to equivalent stellar velocity
dispersions, and refer to them as “proxy” dispersions.

The potentials of early-type elliptical galaxies are very nearly
isothermal (e.g., Auger et al. 2010), and for an isothermal sphere
the isotropic stellar velocity dispersion can be read directly from
the radius of the Einstein ring, θEin, measured in radians,

σprox = c

√
θEin

4π

DLS

DOS

, (3)

where DOS and DLS are the angular diameter distances from
the observer to the source and from the lens to the source,
respectively (Narayan & Bartelmann 1996). The radius of the
Einstein ring, θEin, is a direct output of our lens modeling
described in Section 4 below.

The stars in the lensing galaxy may not have isotropic orbits.
In that case, even though the potential might be that of an
isothermal sphere, stellar velocity dispersions will depend upon
the aperture used to measure them. By contrast, the Einstein
ring radius suffers from no such shortcoming. Finding virtue
in necessity, we use the Einstein ring radius as a proxy for
stellar velocity dispersion in our construction of a stellar mass
fundamental plane.

2.3. A Stellar Mass Fundamental Plane at z ∼ 0.2

We use the data of Auger et al. (2010) for systems of emission
line galaxies lensed by foreground early-type galaxies at a mean
redshift of 0.2 to compute a stellar mass fundamental plane.
Auger et al. give effective radii re measured in kiloparsecs com-
puted at in the rest band of the V filter, and total stellar masses
M∗ based on two different assumed IMFs, Salpeter (1955), with
a cutoff of 0.1 M�, and Chabrier (2003), for 51 systems.11 Treu
et al. (2010) give Einstein ring radii computed from their sin-
gular isothermal ellipsoid lens models and expressed as proxy
velocity dispersions for the same sample. As a starting point, we
use these data to calculate a Salpeter stellar mass fundamental
plane.

We divide our measured proxy dispersions and effective radii
by typical values, 266 km s−1 and 6.17 kpc, respectively, so as to
reduce (but not completely eliminate) the covariances between
the derived coefficients,

log Σe = a log
( σprox

266 km s−1

)
+ b log

(
re

6.17 kpc

)
+ c. (4)

10 Despite this observational challenge, PG 1115+080, HE 0435−1223, RX
J1131−1231, and RX J0911+0551 do have measured velocity dispersions.
11 Following Auger et al., we adopt an (h, Ωm, ΩΛ) = (0.7, 0.3, 0.7)
cosmology.
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Table 1
Stellar Mass Fundamental Plane Coefficients

log Σe = a log(σprox/266 km s−1) + b log(re/6.17 kpc) + c

Sample a b c rab rms

SLACSa 0.767 −1.140 9.219 0.094
±0.219 ±0.086 ±0.014 −0.622

SLACS 1.590 −1.371 9.216 0.076
±0.300 ±0.100 ±0.012 −0.796

SL2S 1.934 −1.701 9.225 0.145
±0.557 ±0.166 ±0.032 −0.538

SLACSb ≡1.748 ≡−1.453 9.220 0.077
±0.260 ±0.085 ±0.011 −0.758

SL2Sb ≡1.748 ≡−1.453 9.170 0.154
±0.260 ±0.085 ±0.033 −0.758

Notes.
a Uses stellar velocity dispersion σ rather than σprox.
b a and b coefficients and errors are values for combined SLACS+SL2S sample.

The coefficients a, b, and c are given in Table 1, as is the rab
correlation coefficient.

2.4. Stellar Mass Fundamental Plane Using
Stellar Velocity Dispersions

We are driven to use Einstein ring radius as a proxy for
stellar velocity dispersion because the light from our quasars
overwhelms that of the lensing galaxies. But as Auger et al.
(2010) are working with fainter lensed background galaxies,
they have been able to measure stellar velocity dispersions,
and their data may be used to calculate a proper stellar mass
fundamental plane for the sake of comparison. The results are
also given in Table 1.

The a and b coefficients for the stellar velocity dispersion
fundamental plane are only marginally consistent with those
obtained for the proxy dispersion fundamental plane, but the
range of dispersions in our sample is relatively small. As the
stellar velocity dispersions are slightly larger than the Einstein
ring proxies, the zeropoint c is correspondingly smaller.

Also shown in Table 1 is the rms scatter in the logarithm of
the surface mass density. It is considerably smaller, by a factor
of 1.5, when one uses the proxy dispersion rather than the stellar
dispersion. The most likely cause is measurement errors in the
stellar dispersions, which are of order 10%. By contrast, Einstein
ring radii are accurate to 1%.

It might also be the case that both the stellar velocity
dispersion and the Einstein ring radius are stand-ins for some
third quantity which gives a yet tighter fundamental plane. If that
third quantity were the size (or mass or energy per unit mass)
of the halo, one might expect the radius of the Einstein ring to
represent it more faithfully than the stellar velocity dispersion,
as it is less influenced by the stellar mass density at the center
of the galaxy.

2.5. A Stellar Mass Fundamental Plane at z ∼ 0.5

The data presented by Sonnenfeld et al. (2013) for lenses
found in the SL2S may also be used to construct a stellar
mass fundamental plane. While only 21 of their systems have
complete data, the median redshift for their sample, 0.494, is
much closer to the median for the lens systems used here. The
sample was subject to different selection effects from that of
Auger et al. (2010), but a common method for stellar mass
estimation was used for both samples. A different scheme was
used for measuring effective radii but they have also used

singular isothermal ellipsoids to model their lenses and derive
proxy velocity dispersions.

The coefficients derived for the SL2S sample are consistent
with those derived for the SLACS sample but roughly a factor
of three more uncertain. The scatter between the predicted
and observed surface mass densities is higher for SL2S than
it was for SLACS and, by contrast, no better for the proxy
velocity dispersions than for the actual measured stellar velocity
dispersions.

2.6. The Orientation of the Stellar Mass Fundamental Plane

So as to better compare the surface mass density at different
redshifts, we wish to adopt a single orientation for the funda-
mental plane and fit that to both the SLACS and the SL2S. We
have combined velocity dispersion and effective radius coef-
ficients for the SLACS and SL2S samples using the a and b
coefficients and uncertainties given in Table 1, to produce a and
b coefficients for the combined sample. These are also given in
Table 1.

2.7. Possible Differences between z ∼ 0.2 and z ∼ 0.5

We obtained new values for the stellar surface mass density
coefficients for the SLACS and SL2S samples fixing the a and
b coefficients at the common value. These are too are given in
Table 1.

We see that stellar mass surface density at fixed velocity dis-
persion and effective radius for the SLACS sample is marginally
higher, by roughly 11%, than for the SL2S. While the difference
might be due to different selection criteria for the two samples,
or to the different techniques used to extract effective radii, it
might also be due to evolution in the fundamental plane. We
therefore take the common orientation SL2S stellar mass fun-
damental plane as our primary predictor of the surface mass
density along the lines of sight to our quasar images.

We note that Bezanson et al. (2013) see little or no evidence
for evolution in the conventional stellar mass fundamental plane.

2.8. Systematic Errors in Effective Radii

Our stellar mass fundamental plane is only as good as the
effective radius measurements, the velocity dispersion measure-
ments (or their proxies), and the stellar mass estimates (derived
from stellar colors) used to construct it. We have framed our
effort as an attempt to calibrate the SLACS and SL2S stellar
masses. But if there were a systematic error in the SLACS or
SL2S effective radii, one might expect a corresponding system-
atic error in that calibration.

The situation is complicated by the fact that the effective
radius measurements and the stellar mass surface density mea-
surements are correlated. Unless the lines along which these
quantities are correlated lie within the error-free stellar mass
fundamental plane, the orientation of the derived plane will de-
viate systematically from the error-free orientation.

2.9. A Fundamental Line for Early-type Galaxies

One can construct a “fundamental line” for either of our
samples by fitting separately for effective radius as function of
velocity dispersion and stellar surface mass density as a function
of velocity dispersion. Together these two relations give a line in
the three-dimensional space of observables.12 Both the effective

12 Nair et al. (2011) describe a related fundamental line in the
two-dimensional space spanned by effective radius and luminosity. Insofar as
stellar mass and luminosity are strongly correlated, their fundamental line is a
projection of the present one.
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Table 2
Stellar Mass Fundamental Line Coefficients

log Σe = A log(σprox/265 km s−1) + C

log re = D log(σprox/265 km s−1) + E

Sample A C D E

SLACS −1.702 9.156 2.401 0.832
±0.401 ±0.024 ±0.261 0.016

radii and the stellar surface mass densities scatter about their
respective mean relations, but that scatter is strongly correlated,
so that the galaxies fan out from the line into a plane.

Keeping that correlated scatter in mind, the relations

log Σe = A log
( σprox

265 km s−1

)
+ C and (5)

log re = D log
( σprox

265 km s−1

)
+ E, (6)

can be used to look for possible systematic errors in the
effective radii measured for the galaxies lensing our quasars,
and to corroborate the result we obtain with the stellar mass
fundamental plane. The denominator within the parenthesis is
the sample logarithmic mean for the proxy velocity dispersion.

As we intend to use this only as a check on our fundamental
plane results, we present in Table 2 only results for fits to
the SLACS data. The uncertainties in the coefficients derived
for the smaller SL2S sample render it less useful for our
purposes.

3. DATA FOR LENSED QUASARS
AND LENSING GALAXIES

3.1. Choice of Sample

Our sample of 10 multiply imaged quasars is a subset of the
15 systems considered by Blackburne et al. (2011).

The system Q2237+030 was eliminated because the half-
light radius of the lensing galaxy (at z = 0.04) is very much
larger than the Einstein ring radius, and the system appears to
be a barred galaxy. Not coincidentally, it is the system that is
best suited to a multi-epoch analysis, and has been analyzed by
Kochanek (2004).

The system WFI J2026−4536 was eliminated because the
redshift of the lensing galaxy has not been measured.

Two more systems, HE 1113−0641 and H1413+117, were
eliminated because the lensing galaxy is barely detected and
does not yield a reliable effective radius.

The system SDSS J1330+1810 was eliminated because X-ray
fluxes have not been measured.

Of the original 15 systems studied by Blackburne et al. (2011),
10 systems remain in the sample.

3.2. X-Ray Fluxes

X-ray fluxes and errors were taken, for all but two cases,
from Pooley et al. (2007), who chose from among multiple
epochs based on signal to noise. For the two subsequently
observed systems, we used the X-ray fluxes and errors given
by Blackburne et al. (2011). These selection criteria ought not
to bias the results derived here. The dates and identification
numbers for Chandra observations are given in Table 3. Fluxes
for the individual images are given in Table 4.

3.3. Effective Radii

The largest homogeneous source of effective radii for our
quasar lenses is a series of papers that use Magain et al.’s (1998;
henceforth MCS) algorithm (Claeskens et al. 2006; Eigenbrod
et al. 2006; Vuissoz et al. 2008; Chantry et al. 2010; Courbin
et al. 2011; Sluse et al. 2012a). The second largest is the series
by Kochanek and collaborators (Kochanek et al. 2000, 2006;
Morgan et al. 2006) which uses a program called imfitfits
(Lehar et al. 2000).

Measurements using the two methods are given in Table 5.
There are five systems in common. The MCS values are
consistently larger than theimfitfits values by a factor of 1.62
(computed by averaging logarithms of ratios). It would appear
that imfitfits systematically underestimates the effective
radii, or that the MCS method systematically overestimates the
effective radii, or perhaps both. We have found no persuasive
reason to prefer one over the other. We have therefore taken a
“split-the-difference” approach, adopting the geometric mean
when we have measurements with both methods. Where we
have only an imfitfits measurement we multiply by

√
1.62

and where we have only an MCS measurement we divide by√
1.62.
For the one case in which we have independent measurement,

that of SDSS J0924+0219, we adopt the effective radius mea-
surement of Keeton et al. (2006), who describe a method much
like that used in the SLACS survey. For HE 0230−2130, we
present newly determined effective radii (P. L. Schechter et al.
in preparation) and ellipticities and position angles measured
with GALFIT (Peng et al. 2002) from images obtained at the
Magellan Clay telescope.

The SLACS effective radii were obtained from fits of an
elliptical de Vaucouleurs profile to a masked image of the lensing
galaxy (Bolton et al. 2008). The SL2S effective radii were
computed using GALFIT. Since we are interested in calibrating
stellar mass fundamental planes obtained from these surveys,
it behooves us to check whether our adopted effective radii are
consistent with these.

In Figure 1 we plot the adopted effective radii against proxy
velocity dispersions computed from Einstein ring radii (see
Sections 2.2 and 4.2) for the present sample (filled circles)
and for the SLACS sample (open circles). There is considerable
overlap but considerable scatter. The overlap might be somewhat

Table 3
X-Ray Observations of Lensed Quasars

Object Date ObsID Object Date ObsID

HE 0230−2130 2000 Oct 14 1642 MG J0414+0534 2002 Jan 9 3419
HE 0435−1223 2006 Dec 17 7761 RX J0911+0551 1999 Nov 3 419
SDSS J0924+0219 2005 Feb 24 5604 PG 1115+080 2000 Jun 3 363
RX J1131−1231 2004 Apr 12 4814 SDSS J1138+0314 2007 Feb 13 7759
B1422+231 2004 Dec 2 4939 WFI J2033−4723 2005 Mar 10 5603
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Table 4
Lens System Components: Relative Positions, Convergences, Shears,

Macromodel, and Observed Relative X-Ray Fluxes

Object Componenta x(′′) y(′′) κ γ fmod
b fX b σfX

HE 0230−2130 g1 −0.072 1.085
g2 +0.212 2.059

a(HM) 0.000 0.000 0.472 0.416 1.91 1.58 0.2
b(HS) −0.698 0.256 0.510 0.587 1.93 0.70 0.13
c(LM) −1.198 1.828 0.440 0.334 1.00 1.00 0.15
d(LM) +0.244 1.624 1.070 0.864 0.27 0.45 0.08

MG J0414+0534 g −0.472 −1.277
a1(HM) 0.600 −1.942 0.489 0.454 3.48 2.13 0.1
a2(HS) 0.732 −1.549 0.530 0.524 3.57 1.30 0.1
b(LM) 0.000 0.000 0.460 0.316 1.00 1.00 0.05
c(LM) −1.342 −1.650 0.676 0.693 0.51 0.42 0.02

HE 0435−1223 g −1.165 −0.573
a(LM) 0.000 0.000 0.445 0.383 1.00 1.00 0.10
b(HS) −1.476 0.553 0.539 0.602 1.08 .375 .047
c(HM) −2.467 −0.603 0.444 0.396 1.06 .378 .047
d(LM) −0.939 −1.614 0.587 0.648 0.65 .363 .046

RX J0911+0551 g −0.698 0.512
a(HS) 0.000 0.000 0.646 0.544 2.93 3.40 0.35
b(HM) 0.260 0.406 0.586 0.281 5.41 1.27 0.04
c(LM) −0.018 0.960 0.637 0.577 2.49 0.35 0.12
d(LM) −2.972 0.792 0.290 0.066 1.00 1.00 0.10

SDSS J0924+0219 g −0.182 −0.859
a(HM) 0.000 0.000 0.472 0.456 2.31 3.15 0.7
b(LM) 0.061 −1.805 0.443 0.383 1.00 1.00 0.25
c(LM) −0.968 −0.676 0.570 0.591 0.99 0.42 0.17
d(HS) 0.536 −0.427 0.506 0.568 2.08 0.45 0.22

PG 1115+080 g 0.381 −1.344
a1(HM) 1.328 −2.034 0.537 0.405 3.90 3.87 0.3
a2(HS) 1.477 −1.576 0.556 0.500 3.72 0.62 0.13
b(LM) −0.341 −1.961 0.658 0.643 0.66 1.05 0.10
c(LM) 0.000 0.000 0.472 0.287 1.00 1.00 0.10

RX J1131−1231 g −1.444 1.706
a(HS) 0.588 1.120 0.494 0.562 1.73 0.22 0.025
b(HM) 0.618 2.307 0.434 0.473 1.07 2.18 0.1
c(LM) 0.000 0.000 0.438 0.461 1.00 1.00 0.07
d(LM) −2.517 1.998 0.950 1.017 0.10 0.30 0.025

SDSS J1138+0314 g 0.474 0.533
a(HM) 0. 0. 0.465 0.384 1.40 3.20 1.0
b(LM) 0.103 0.979 0.578 0.673 0.71 1.00 0.4
c(LM) 1.184 0.812 0.438 0.349 1.00 1.00 0.4
d(HS) 0.698 −0.056 0.523 0.614 1.30 1.30 0.5

B1422+231 g 0.742 −0.656
a(HM) 0.385 0.317 0.380 0.473 1.62 1.74 0.10
b(HS) 0.000 0.000 0.492 0.628 1.91 0.95 0.08
c(LM) −0.336 −0.750 0.365 0.378 1.00 1.00 0.10
d(LM) 0.948 −0.802 1.980 2.110 0.08 0.10 0.01

WFI J2033−4723 g −1.438 0.308
a1(HM) −2.196 1.261 0.506 0.255 1.56 0.87 0.15
a2(HS) −1.482 1.376 0.665 0.643 0.92 0.96 0.2
b(LM) 0.000 0.000 0.392 0.302 1.00 1.00 0.15
c(LM) −2.114 −0.277 0.700 0.735 0.62 0.64 0.11

Notes.
a LM, HM, LS, and HS: the less magnified (L) and more highly magnified (H) minima (M) and saddle
points (S) of the light travel time surface.
b Model and observed fluxes and errors are relative to the less magnified minimum, LM.

greater if we adopted yet larger effective radii. We note, however,
that overlap with the SLACS and SL2S relations is no guarantee
that our adopted effective radii are consistent. It is possible that
our lensing galaxies occupy a different part of the stellar mass
fundamental plane than the SLACS and SL2S samples, with a
corresponding shift in effective radii. In Section 7.4 we discuss

the possible effects of a systematic error in our adopted effective
radii.

3.4. Positions

Positions for the quasar images and lensing galaxies given
in Table 4 are taken from Blackburne et al. (2011), with the

6
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Figure 1. Proxy velocity dispersions, computed from Einstein ring radii and photometric effective radii of lensing galaxies. The filled circles are for the present sample,
with proxy dispersions and the adopted effective radii taken from Table 7. The open circles are from the SLACS sample.

Table 5
Photometric Properties of Lensing Galaxies

Object re(′′) re(′′) re(′′) e PA(◦) Sources
(imfitfits) (MCS) (adopted) (E of N) for re

HE 0230−2130 G1 0.51 0.34 73.0 a
HE 0230−2130 G2 0.65 0.24 −46.0 a
MG J0414+0534 0.77 0.98 0.20 84.0 b
HE 0435−1223 0.86 1.50 1.13 0.09 −1.4 c, d
RX J0911+0551 0.67 1.02 0.83 0.11 −70.0 b, e
SDSS J0924+0219 0.31 0.50 0.44 0.12 −61.3 k, f, g
PG 1115+080 0.47 0.92 0.66 0.04 −67.5 b, e
RX J1131−1231 1.51 1.19 0.25 −71.4 h
SDSS J1138+0314 0.86 0.67 0.16 −57.3 i
B1422+231 0.31 0.41 0.36 0.39 −58.9 b
WFI J2033−4723 0.61 0.48 0.18 27.8 j

Notes.
a P. L. Levinson et al. in preparation; b Kochanek et al. 2000; c Kochanek et al.
2006; d Courbin et al. 2011; e Sluse et al. 2012a; f Eigenbrod et al. 2006; g

Keeton et al. 2006; h Claeskens et al. 2006; i Chantry et al. 2010; j Vuissoz et al.
2008; k Morgan et al. 2006.

exception of those for B1422+231, which are taken from the
CASTLES gravitational lens database.13

3.5. Lens Galaxy Ellipticities

Ellipticities and position angles for the lensing galaxies are
given in Table 4. All were taken from the compilation by Sluse
et al. (2012a) in their Table B.2, with the exception of those for
HE 0230−2130, which is again from P. L. Levinson et al. (in
preparation).

4. MACRO-MODELS FOR LENSING POTENTIALS

Our calibration of the stellar mass fundamental plane relies on
the use of micro-lensing simulations of the macro-images. The
simulations, described in Section 5 below, are parameterized
by a convergence, κ , a shear, γ , and a stellar contribution to

13 http://www.cfa.harvard.edu/castles

the convergence, κ∗. The appropriate convergence and shear are
determined from macro-models for the lensing potentials.

4.1. Singular Isothermal Ellipsoid + External Shear

In our previous work (Blackburne et al. 2011; Pooley et al.
2012), we adopted models for the gravitational potential com-
prised of one or more singular isothermal spheres representing
lensing galaxies at their observed positions and an additional
external tidal shear. We refer to these as “SIS+X” models. The
choice was motivated foremost by the observation that for sev-
eral of our systems there was an obvious source for the deduced
external tide.

For several other systems, a model in which the quadrupole
component of the potential originated in the lens, the singular
isothermal ellipsoid (henceforth SIE), provided a comparably
good (but not better) fit. In the interest of simplicity, Blackburne
et al. (2011) adopted SIS+X models for all of the systems
considered. Additional justification for this choice came from
the work of Kochanek (2006), who found that external shear
dominates in lensing systems.

This introduces a bias into our derived stellar mass fractions.
The SIE models typically have smaller magnifications than the
SIS+X models. The higher the magnification of a point source,
the larger the number of micro-minima introduced by the micro-
lensing stars (Granot et al. 2003). The expected fluctuations are
therefore different in the two cases.

In the present study we model the potentials with both
a singular isothermal ellipsoidal mass distribution and an
external shear—SIE+X models. The ellipticity and orientation
of the SIE—comprised mostly of dark matter—are not treated
as free parameters, but are taken from the observed shape
and orientation of the stellar component. Our SIE+X models
therefore have the same number of free parameters as the
Blackburne et al. (2011) SIS+X models.

The assumption that the dark halo has the same shape as
the luminous stellar component is a strong one. While this
is roughly consistent with previous findings (Koopmans et al.
2006), we introduced it to eliminate potential bias rather than
to improve residuals from our models. But in 7 out of 10 cases,

7
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Table 6
Lens Model Parameters

Object Primary Lens Shear Secondary Lens

θEin e φe
a γ φγ

a b2 x2
b y2

b

HE 0230−2130 0.′′87 · · · · · · 0.112 −59.◦9 0.′′33 −0.283 +0.974
MG J0414+0534 1.′′11 0.20 84.0 0.063 +63.◦6 0.′′14 −0.385 +1.457
HE 0435−1223 1.′′20 0.09 −1.40 0.063 −19.◦8 · · · · · · · · ·
RX J0911+0551 0.′′95 0.11 −70.0 0.294 +8.◦3 0.′′22 −0.754 +0.665
SDSS J0924+0219 0.′′87 0.12 −61.3 0.064 +66.◦2 · · · · · · · · ·
PG 1115+080 1.′′03 · · · · · · · · · · · · 2.′′56 −10.883 −5.266
RX J1131−1231 1.′′78 0.25 −71.4 0.068 −77.◦6 · · · · · · · · ·
SDSS J1138+0314 0.′′67 · · · · · · 0.098 +32.◦6 · · · · · · · · ·
B1422+231 0.′′74 0.39 −58.9 0.137 −47.◦2 · · · · · · · · ·
WFI J2033−4723 1.′′06 0.18 27.8 0.059 +45.◦5 0.′′29 +0.229 +2.020

Notes.
a Position angles of ellipticity, φe and external shear φγ , measured in degrees east of north.
b Fixed position of secondary galaxy, relative to main lensing galaxy, in arcseconds. Allowed to vary azimuthally in
the case of PG 1115+080; see text. Consistent with lensmodel and in contrast to the entries in Table 4, the positive
directions of x and y are west and north, respectively.

the residuals from the observed positions of the quasar images
were substantially better for the SIE+X models than for the
SIS+X models. For the three cases in which the SIE+X models
gave worse fits, we use the Blackburne et al. SIS+X models.
The present models are quite similar to the Blackburne et al.
(2011) models, but with the macro-images slightly less strongly
magnified. The systematic effect of this difference on our
derived surface mass densities is discussed in Section 7.7.

Keeton’s (2001) lensmodel program was used to obtain the
model parameters that give a best fit to the observed quasar
image positions. The fits were not constrained by the quasar
fluxes since we expect deviations from the macro-models due
to micro-lensing; these deviations are the signal we use to
determine stellar masses.

The model parameters from our fits are given in Table 6. The
results are very similar to those in Blackburne et al. (2011), but
the systems for which we used the SIE+X model have slightly
smaller magnifications. The derived convergences and shears,
computed at the predicted (model) positions for the quasar
images rather than those observed, are given in Table 4. The
designations LM, LS, HM, and HS indicate whether the images
are minima (M) or saddle points (S) of the light travel time,
and whether they are more highly magnified (H) or less highly
magnified (L).14

The model for HE 0230−2130 as two isothermals differs
from that of Pooley et al. (2007), who modeled the density of
the second galaxy as a power law, ρ = ρ0(r/r0)−γ ′

with an
exponent γ ′ = 1.65. The latter gives magnifications that are
larger than the former, by factors of 1.25 for images a, b, and
c and 1.7 for image d. In Section 7.4 we show that use of the
Pooley et al. (2007) model produces negligible change in our
principal result.

But our double isothermal model produces an unobserved
fifth image, a saddle point (Shin & Evans 2008), which is found
where one would expect an image if the two lensing galaxies
were to merge, adjusting the quadrupole to keep a, b, and c at
approximately the same positions. The image should be as bright
as image c and is clearly not present. While the Pooley et al.
(2007) model produces no fifth image, it is ad hoc. Both models

14 We originally adopted this notation to indicate minima and saddlepoints
that were higher and lower on the light travel time surface. But in the case of
HE 0230−2130, the higher saddle point is less highly magnified.

Table 7
Redshifts, Effective Radii, and Proxy Dispersions

Object zl zs re σprox

(kpc) (km s−1)

HE 0230−2130 g1 0.523 2.163 3.21 218
g2 4.09 134
MG J0414+0534 0.96 2.64 7.77 288
HE 0435−1223 0.4541 1.689 6.54 257
RX J0911+0551 0.77 2.80 6.15 242
SDSS J0924+0219 0.39 1.524 2.33 214
PG 1115+080 0.31 1.72 3.01 232
RX J1131−1231 0.295 0.658 5.24 349
SDSS J1138+0314 0.45 2.44 3.86 182
B1422+231 0.34 3.62 1.74 178
WFI J2033−4723 0.66 1.66 3.35 274

attribute a much smaller velocity dispersion to the second galaxy
than would be warranted by its absolute magnitude. A more
satisfactory model awaits measurement of mid-IR or forbidden
line flux ratios, as discussed in Section 7.8.

4.2. Proxy Velocity Dispersions

Our models give Einstein ring radii measured in arcseconds.
Using the lens and source redshifts, we compute the proxy
velocity dispersions described in Section 2.2 that we need for
our stellar mass fundamental plane. These are given in Table 7.

5. MICRO-LENSING SIMULATIONS

Our strategy is to use the stellar mass fundamental plane to
predict deviations in the observed quasar X-ray fluxes from the
predictions of the smooth models for the gravitational potential.
As there is no closed form prediction for such fluctuations, we
must simulate the observed quasar images. We use simulations
carried out by Blackburne et al. (2011) using the ray-shooting
technique described by Wambsganss (1990).

The Blackburne et al. (2011) simulations used the conver-
gences and shears appropriate to the image positions in their
SIS+X models, and a range of stellar contributions at each po-
sition. They populate a three dimensional model space spanned
by κ, γ, and κ∗.

8
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Our SIE+X models have somewhat different convergences
and shears from the SIS+X models. But since the magnification
histograms derived from these simulations vary smoothly as one
varies the parameters, we have chosen to interpolate between
the existing magnification histograms rather than run new
simulations.

Our interpolation scheme takes advantage of the well known
mass sheet degeneracy. For any triplet of convergence, κ , shear,
γ , and stellar contribution to the convergence, κ∗, there is a one-
dimensional locus—a line of triplets (κ ′, γ ′, κ∗′)—in the three-
dimensional model space for which the magnification histogram
has the identical shape but is shifted by a multiplicative factor
(Paczyński 1986a; Kochanek 2004; Vernardos et al. 2014). This
family is compactly parameterized by the smooth (and in our
case dark) contribution to the convergence, κs ≡ κ − κ∗,

κ∗′ = κ∗
(

1 − κ ′
s

1 − κs

)
, (7)

γ ′ = γ

(
1 − κ ′

s

1 − κs

)
, (8)

(1 − κ ′) = (1 − κ)

(
1 − κ ′

s

1 − κs

)
. (9)

Projected onto the two-dimensional convergence-shear, (κ ′, γ ′),
plane, the family lies along the line connecting the point (κ, γ )
to the point with unit convergence and zero shear, (1, 0).

Our lens models and those of Blackburne et al. (2011) give
values for the convergences and shears (Table 4) that cluster
around the line κ = γ , which is exactly the case for an
unperturbed isothermal sphere. Our interpolation scheme is
then to project all of the simulations onto the line κ ′ = γ ′,
with corresponding values of κ∗′. Our macro-model and the
stellar mass fundamental plane gives us model values for
the convergence, shear, and stellar contribution to the shear
κmod, γmod, and κ∗

mod. We also project these onto the κ ′ = γ ′
line. We linearly interpolate between the bracketing simulations,
and then linearly interpolate these between bracketing values
of κ∗′. This gives us a magnification histogram appropriate to
κmod, γmod and κ∗

mod.
In calibrating our stellar mass fundamental plane, we explore

a wide range of multiplicative factors. There are some cases, at
the extremes of this range, for which κ∗

mod lies outside the range
of the Blackburne et al. (2011) simulations. In such cases we
have used the closest simulation. All of these were at very low
likelihood, and do not significantly affect our conclusions.

6. LIKELIHOOD ANALYSIS

Our goal is to obtain a “best” estimate of the factor F by
which the surface mass density predictions from our stellar-
mass fundamental plane must be multiplied to reproduce the
micro-lensed X-ray fluxes observed for our quasar images.

6.1. Stellar Surface Mass Density Predictions

Given the proxy velocity dispersion σprox computed from the
Einstein ring radius of the lensing galaxy and the photometric
effective radius re of that galaxy, one can compute the predicted
surface mass density at the position of the ith quasar image.

Let ui and vi be the position of the ith image relative to the
center of the lensing galaxy, with the u and v axes aligned with

the major and minor axes of the lens, respectively. For a galaxy
with ellipticity e, contours of constant surface brightness lie
along a locus of constant wi , with

w2
i = (1 − e)u2

i + v2
i /(1 − e). (10)

The surface mass density is computed using de Vaucouleurs’
(1948) law,

Σ(ui, vi) = F
Σe

3.607
exp

[
−

(
wi

re

) 1
4

+ 1

]
, (11)

where Σe is the average surface mass density interior to the
effective radius computed from the stellar mass fundamental
plane, which, divided by 3.607, gives the surface mass density
at the effective radius. In what follows, the dimensionless factor
F is varied to maximize the likelihood of the observed quasar
fluxes.

The stellar contribution to the dimensionless convergence,
κ∗, is then given by

κ∗ = 4πG

c2

DOLDLS

DOS

Σ(ui, vi), (12)

where DOL,DLS , and DOS are angular diameter distances.
While several of our systems have nearby perturbing galaxies,

for all but one of them the stellar surface density may be taken
to come entirely from the central galaxy. The exception is
HE 0230−2130, for which a second lensing galaxy lies just
beyond image d. For this system we take the sum of the stellar
contributions from the two galaxies.

6.2. Probability of Micro-lensed Flux

For each quasar there is an unmagnified flux that may
be expressed as a magnitude, ms. The macro-model gives
macro-magnifications μi for each image i, computed from the
convergences κi and shears γi given in Table 4,

μi = 1[
(1 − κi)2 − γ 2

i

] . (13)

For each image, the flux expected from the macro-model,
expressed as a magnitude is

m̄i ≡ ms − 2.5 log μi. (14)

Taking mi to be the micro-lensed flux, expressed as a magnitude,
for image i, a micro-lensing magnification histogram gives us
the relative probability of observing an offset from the flux
expected from the macro-model alone, P(mi − m̄i |κi, γi, κ

∗
i ),

where m̄i depends upon the unmagnified flux and the macro-
model for the lensing potential and where the stellar contribution
to the convergence, κ∗

i , depends upon the adopted stellar mass
fundamental plane, the observed proxy velocity dispersion,
effective radius and ellipticity, and the scaling factor F .

6.3. Likelihood of Unmagnified Flux

We take the likelihood L of the unobservable unmagnified
flux, ms, to be the probability of the micro-lensed flux for the
ith image, mi, giving us

L(ms |mi, κi, γi, κ
∗
i ) = P(mi −ms +2.5 log μi |κi, γi, κ

∗
i ). (15)

9
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Note that we have implicitly assumed a uniform prior on ms the
unmagnified flux expressed as a magnitude.

For any given observation, the observed flux for the ith
image, mo,i , is comprised of the micro-lensed flux mi plus an
observational error, Δi . Taking the observational uncertainty in
the observed X-ray flux, expressed as a magnitude, to be a
Gaussian of width σi , and integrating over the difference Δi

between the observed and micro-lensed fluxes, we find

L(ms |κi, γi, κ
∗
i ) =

∫
exp

[
− Δ2

i

2σ 2
i

]
× L(ms |mo,i − Δi , κi, γi, κ

∗
i )dΔi , (16)

where we have ignored the small asymmetries in the flux errors.
The integral has the effect of smoothing the magnification
histogram.

Taking the product of the likelihoods for the four images of
one of our systems, we have

L(ms |F) =
i=4∏
i=1

L[ms |κi, γi, κ
∗
i (F)], (17)

where we now show explicitly the dependence of the four
stellar contributions to the convergence, κ∗

i , on the factor F
that calibrates the stellar mass fundamental plane.

6.4. Likelihood of the Stellar Mass Calibration Factor F

We take the likelihood of the stellar mass calibration factor
F to be the integral of the likelihood of the unobservable
unmagnified X-ray flux,

Lj (F) =
∫

Lj (ms,j |F)dms,j , (18)

where we have added the subscript j to emphasize that this is for
the jth lens in our sample. Were we to place priors on the ms,j ,
they would appear inside the integral on the right.

Finally, we take the product of the likelihoods for our 10
systems to give

L(F) =
j=10∏
j=1

L(Fj ), (19)

to give the likelihood of the calibration factor for the stellar mass
fundamental plane, F , for our complete sample.

7. THE CALIBRATION FACTOR F FOR THE STELLAR
MASS FUNDAMENTAL PLANE

7.1. Citable Result

We have constructed the likelihood function L(F ) for the
calibration factor that multiplies our adopted stellar mass fun-
damental plane based on a Salpeter initial mass function using
the SL2S stellar masses computed by Sonnenfeld et al. (2013).

In Figure 2 we show the relative likelihood for different values
of that factor, increasing in steps of 21/4 (≈1.189). This more
than doubles the sampling of our initial grid of simulations,
which were carried out in steps of 101/6 (≈1.468) in stellar
surface density. The median likelihood value is F = 1.23 with
a 68% confidence interval given by 0.77 < F < 2.10.

7.2. Errors in X-Ray Fluxes

We have investigated the consequences of having underes-
timated our errors by doubling the errors in Table 4 after first
expressing them as errors in the logarithm of the flux. We find
a shift in the median of F to a value 24% higher, which is still
comfortably inside the original 68% confidence interval.

7.3. Redshift Evolution of Stellar Mass Fundamental Plane

Bezanson et al. (2013) have argued that there is relatively little
evolution in the stellar mass fundamental plane with redshift.
But as noted in Section 2.5, the SLACS and SL2S samples,
with median redshifts of 0.205 and 0.494, respectively, give
slightly different surface mass densities if one assumes the
same orientation for the stellar mass fundamental plane at both
redshifts. This might indicate a systematic difference between
the two samples in Σe, re, or σprox, or it might alternatively be
taken to indicate an evolution in the calibrating factor F . We
report the result obtained using the SL2S sample because it lies
much closer in redshift to the lensing galaxies in the present
sample.

7.4. Systematic Errors in Lensing Galaxies’ Effective Radii

As noted in Section 3.3 above, there is a systematic difference
between effective radii measured using imfitfits and the
MCS method, with the latter larger than the former by a factor of
1.62. We have used the geometric means of the two results when
both were available, and multiplied the imfitfits results by√

1.62 and divided the MCS results by
√

1.62 when only one
was available. We have tested the effect of a systematic error in
our adopted effective radii by increasing them all by a factor of√

1.62. These give a calibrating factor F 23% smaller than our
fiducial value.

We take this smaller factor to result from the fact that while the
stellar mass fundamental plane gives smaller surface densities
at the MCS effective radii, this is more than compensated by the
fact that the quasar images are then less far out on the rapidly
declining de Vaucouleurs profile.

The large differences in the measured effective radii for the
lensed quasars may result from the difficulty of measuring the
surface brightness profile of the lensing galaxy in the presence
of four bright quasar images.

We can completely circumvent effective radius measure-
ments by using the “fundamental line” relations obtained in
Section 2.9. The lens model gives us the proxy stellar ve-
locity dispersion σprox. We then obtain effective radii from
the re(σ ) relation and the effective surface mass density from
the Σe(σ ).

The scatter from the fundamental line is somewhat larger than
from the fundamental plane, and there is some danger that our
sample deviates from it systematically. It is therefore reassuring
to see that the median likelihood for our calibration factor F
obtained using the fundamental line is only 7% larger than that
obtained using the fundamental plane. Moreover, the likelihood
distribution is, if anything, narrower.

7.5. Systematic Errors in SLACS or SL2S Effective Radii

A systematic error in either the SL2S or SLACS radii
manifests itself as a shift in both the effective radii, re, by some
factor f, and in the observed stellar surface mass densities, Σe.
Since the effective stellar surface mass densities are obtained
from total magnitudes divided by r2

e . Such an error would drive
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Figure 2. Likelihood of the calibration factor F applied to the stellar mass fundamental plane to compute the probability distribution of micro-lensing fluctuations.
The dashed line shows the median likelihood value, F = 1.23.

the constant c in the stellar mass fundamental plane down by
a factor 1/f 2. But, since Σe ∼ r−1.453

e , the net factor by which
the predicted surface densities are smaller is 1/f 0.547.

7.6. Effects of Mass Sheet Degeneracy

The well known mass sheet degeneracy permits the addition
of a uniform surface density mass sheet to a lens model that, with
corresponding adjustment of the model parameters, produces the
same image positions and relative magnifications. To the extent
that lensing galaxies lie in clusters of galaxies, the cluster dark
matter along the line of sight to the lens acts as such a mass
sheet.

In one of our lenses, PG 1115+080, we have taken this
into account explicitly by modeling the associated group of
galaxies as an isothermal sphere, contributing an additional
convergence at the position of the lens galaxy of Δκ = 0.105.
The convergence for an isothermal sphere is equal to the shear,
so to gauge the possible effect of the mass sheet degeneracy, we
might add a convergence, Δκ , comparable to the external shear
that we measure.

Such an additional smooth contribution to the convergence
does not change the magnification histogram. It does, however,
increase the observed size of the Einstein ring, by a factor
(1 − κ)/(1 − κ − Δκ). Our proxy velocity dispersion is taken
to be a property of the lensing galaxy as opposed to the galaxy
plus mass sheet system. In the presence of a mass sheet we then
overestimate this as well.

Our convergence values cluster around κ ≈ 1/2, as expected
for an isothermal sphere. The observed Einstein ring radii
therefore overestimate the velocity dispersion in the galaxy by
a factor ≈(1 − 2Δκ). We see from Table 1 that for the same
measured effective radius we will get a smaller predicted surface
mass density, by a factor ≈(1 − 2Δκ)1.748. These would lead to
larger values of the calibration factor F .

While it might seem to be more appropriate to use the smaller
Einstein ring radii, we note that both the SLACS and SL2S radii
were derived assuming no mass sheet. Since we seek to apply
a calibrating factor to a fundamental plane derived from these

data, it would seem best to use an Einstein ring radius likewise
uncorrected for a possible mass sheet.

There is, however, some reason to believe (Holder &
Schechter 2003) that quadruply imaged quasars experience
stronger shear than the SLACS and SL2S lensing galaxies.
Koopmans et al. (2006) place a limit on the external shear for
a subset of the SLACS lenses of 0.035. By contrast, we see in
Table 6 that the typical shear for our lensed quasars is 0.1. On
the hypothesis that the external shear is the result of a larger
isothermal cluster, the additional convergence would be larger
for the present sample than for the SLACS sample.

The effect would not be large except for the case of RX
J0911+0551, for which the lensing galaxy is clearly part of a
cluster of galaxies. However, the shear, with γ = 0.294, does
not seem to be directed to the center of the cluster (Kneib et al.
2000).

7.7. Systematic Errors in Lens Model and QSO Magnifications

In modeling the expected fluctuations, one must specify
a convergence, κ , and a shear, γ at the positions of the
quasar images. These depend upon the particular model for
the gravitational lens potential. Our adopted SIE+X model is a
singular isothermal ellipsoid with ellipticity and position angle
taken from optical observations, with an external source of tidal
shear providing as much if not more quadrupole than the SIE.

A commonly adopted alternative (and the one explicitly
adopted by the SLACS and SL2S groups) is to attribute all
of the quadrupole to an SIE. While there are several systems for
which the SIE is manifestly inferior (there are obvious sources of
tides), we have constructed SIE models for our systems and use
them to gauge how large a systematic error we might be making
in adopting our SIE+X models. For the SIE models we find a
median likelihood value for the factor by which the Salpeter
stellar mass must be multiplied which is lower by roughly 17%
than for the SIE+X models.

We have also produced models with a steeper than isothermal
mass density profile, ρ(r) = ρ0(r/r0)−γ ′

, with exponent γ ′ =
2.1. The resulting calibration factor is higher by roughly 32%.
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Table 8
Deviations of Radio, Mid-IR and [O iii] Fluxes from Macro-model Predictions

Component fX fmod fmil −2.5 log(fmil/fmod) −2.5 log(fX/fmod)

MG 0414+0534 (11.7 μ; MacLeod et al. 2013)

HM(a1)/LM 2.13 3.56 2.96 +0.20 −0.56
HS(a2)/LM 1.30 3.88 2.74 +0.37 −1.18
LS(c)/LM 0.42 0.32 0.43 −0.36 +0.33
LM(b)/LM ≡1 ≡1 ≡1 ≡0 ≡0

PG 1115+080 (11.7 μ; Chiba et al. 2005)

HM(a1)/LM 3.87 3.75 4.76 −0.26 +0.04
HS(a2)/LM 0.62 3.45 4.43 −0.27 −1.86
LS(b)/LM 1.05 0.78 0.76 +0.03 +0.32
LM(c)/LM ≡1 ≡1 ≡1 ≡0 ≡0

RX J1131−1231 ([O iii]; Sugai et al. 2007)

HS(a)/LM 0.22 1.77 1.37 +0.28 −2.26
HM(b)/LM 2.18 1.04 0.84 +0.23 +0.80
LS(d)/LM 0.30 0.12 . . . . . . +1.00
LM(c)/LM ≡1 ≡1 ≡1 ≡0 ≡0

B1422+231 (8.4 GHz; Patnaik et al. 1999)

HM(a)/LM 1.74 1.56 1.88 −0.20 +0.12
HS(b)/LM 0.95 2.12 2.02 +0.05 −0.87
LS(d)/LM 0.10 0.06 0.06 0.00 +0.52
LM(c)/LM ≡1 ≡1 ≡1 ≡0 ≡0

7.8. Unmodeled High Order Contributions to the
Lensing Potential and Milli-lensing

The macro-models for our lenses are simple as a matter of
necessity: they are constrained by the positions of the quasar
images but not the fluxes because the latter may be subject
to the very micro-lensing we wish to explore—we would be
running the risk of modeling out the micro-lensing. With so
few constraints, we cannot allow for more than a quadrupole
moment in our lensing galaxies (and at that we insist that they
have the shape and orientation of the stellar component). We
include the effects of visible companions and satellites but not
unseen dwarf companions.

It is generally thought that the radio, mid-IR, and forbidden
line emitting regions of quasars are large compared with the
Einstein rings of stars and therefore not subject to micro-lensing
(Mao & Schneider 1998; Chiba et al. 2005; Sugai et al. 2007;
but see Sluse et al. 2013 for arguments to the contrary regarding
the mid-IR). Deviations of radio, mid-IR, and forbidden line
flux ratios from our models may therefore be used to gauge
the contribution of unmodeled higher order components of the
lensing potentials (henceforth referred to as “milli-lensing”) to
our X-ray flux ratio anomalies.

In Table 8 we have collected radio 8.4 GHz (Patnaik et al.
1999), mid-IR 11.7 μ (Chiba et al. 2005; MacLeod et al. 2013)
and [O iii] forbidden line (Sugai et al. 2007) flux ratios for four
of the lenses in our sample. The remaining six lenses are as
yet beyond the reach of these techniques. Likewise there is no
[O iii] data for the faintest image of RX J1131−1231. We did
not include Fadely & Keeton’s (2011) L′ filter observations of
HE 0435−1223. As they note, the degree to which the 3.8 μ
emitting region is or is not subject to micro-lensing depends
upon the relative contributions of the accretion disk (which is
presumably micro-lensed) and dusty torus (which presumably
is not) to the observed flux at that wavelength. Blackburne et al.
(2011) found that the flux ratio b/a steadily increases toward
unity going from the optical to the Ks filter at 2 μ. Fadely and

Keeton find that b/a decreases away from unity going from
2 μ to 3.8 μ. The lens redshift is z = 1.689 and the emitted
wavelengths are therefore correspondingly shorter.

As in Table 4, the fluxes in Table 8 are given relative to the
less-magnified minimum, which is, in most cases, less likely
to be affected by micro-lensing. We give the ratios (expressed
as magnitude differences) of the observed to the macro-model
fluxes for both the X-ray and alternative data. The former is
presumably affected by both micro-lensing and milli-lensing;
the latter only by milli-lensing.

We note first that the radio, mid-IR, and forbidden line fluxes
are very much closer to the macro-model predictions than the
X-ray fluxes. The typical milli-lensing deviation is ∼0.25 mag.
The X-ray deviations are several times larger, with no obvious
correlation in sign. These X-ray deviations are the signal that
permits our calibration of the stellar mass fundamental plane.
The milli-lensing contribution is evidently small.

The first order effect of milli-lensing would be a shift of the
predicted micro-lensing distribution to brighter or fainter fluxes.
Second order effects would change the shape of that distribution.
The first order effect of milli-lensing would therefore seem to
be the same as that of measurement errors in the X-ray fluxes.

To allow for the failure to model milli-lensing, we have
analyzed our data but increased the effective uncertainties in
our X-ray fluxes by adding an error of 0.25 mag in quadrature to
the purely observational uncertainties. The result is to increase
F by roughly 5%.

But rather than just allow for unknown random uncertainties,
we can, for the four systems for which we have radio, mid-IR,
and forbidden line data, correct the macro-lens model fluxes
by the observed deviations from those models. The corrected
model constrains the quantity 1/[(1 − κ)2 − γ 2] at each image
position but does not constrain separately the convergence κ
and shear γ . We therefore use the uncorrected convergence
and shear to generate the micro-lensing distribution (as in our
uncorrected calculation) but shift it by the amount indicated by
the appropriate radio, mid-IR or forbidden line observations,
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for those systems for which they are available. For those
without such observations, we increase the uncertainties by
0.25 mag as above. The result is to increase F by roughly
6%, and interestingly, to narrow the 68% confidence interval by
roughly 25%

There is one case, that of HE 0230−2130, where our model
has a glaring shortcoming, as described in Section 4.1. If we
adopt as an alternative the model of Pooley et al. (2007), the
calibration factor F is smaller by 1%.

7.9. Variation in the IMF with Velocity Dispersion

There is both spectroscopic and dynamical evidence that the
IMF varies systematically with stellar velocity dispersion.

Spectroscopic evidence for an increasingly bottom-heavy
IMF with increasing velocity dispersion has been presented by
van Dokkum & Conroy (2012), La Barbera et al. (2013), and
Spiniello et al. (2014). These can be used to compute stellar
masses, but only if one makes the assumption about the low-
mass cutoff in the IMF (Conroy & van Dokkum 2012). Spiniello
et al. find an IMF slope consistent with a Chabrier IMF at a
dispersion of 145 km s−1, rising to a Salpeter IMF slope at a
dispersion of 240 km s−1.

Dynamical evidence for an increase in the ratio of stellar
mass to that computed from a Salpeter IMF (again with the
assumption of a stellar mass cutoff) has been presented by
Treu et al. (2010), Cappellari et al. (2012), and Conroy et al.
(2013). Smith (2014) has argued against the interpretation of
the spectroscopic data as the effect of velocity dispersion but
accepts the dynamical argument.

The mean proxy velocity dispersion for our sample is
243 km s−1, with dispersions for the primary effective lensing
galaxy ranging from 178 km s−1 to 349 km s−1. One might ad-
just the stellar mass fundamental plane to take variations in the
IMF into account, but our range in dispersion is too small, our
tool too blunt, and our sample (for the present) too small to
confirm such a trend.

7.10. Variation in the IMF with Radius

There is both direct and indirect evidence that the IMF might
vary with radius. Martı́n-Navarro et al. (2014) find that for
massive early-type galaxies the IMF is more bottom-heavy
toward the center than further out. This is consistent with the
observation that stellar abundances within a galaxy vary with
escape velocity (Franx & Illingworth 1990) combined with the
dependence of the IMF on stellar velocity dispersion discussed
in the previous subsection.

To first approximation one might take both the stellar mass
and the stellar light to be given by de Vaucouleurs profiles,
with the mass having a smaller effective radius re,M than that
of the light, re,L. Using the stellar mass fundamental plane the
inferred average stellar surface mass density interior to re,L will
have been underestimated, since more than half of the stellar
mass will be interior to this radius. But the local surface mass
density at re,L will be a smaller fraction of this average interior
density, since at the effective radius the de Vaucouleurs profile
is rapidly decreasing.

Our Einstein ring radii are ∼1.5 times larger than the effective
radii. If re,M < re,L, the predicted local surface mass density
will have decreased by a larger factor from re,L than we have
computed using Equation (11), leading to a larger calibration
factor F .

7.11. Prior on Unmagnified X-Ray Fluxes

Implicit in our likelihood approach is the assumption
that all logarithmic values for the unobservable unmagnified
X-ray flux of our sources (ms when expressed in magnitudes)
are equally likely. In a Euclidean universe one would expect the
numbers to increase toward fainter fluxes as 100.6ms . For opti-
cally selected quasars the numbers first increase more rapidly
than 100.6ms , reflecting the increasing number density of quasars
with increasing redshift, and then more slowly, reflecting a flat-
tening or decline in the quasar number density at redshifts z > 3
and the dominance of relativistic effects.

Lehmer et al. (2012), in their Figure 9, show numbers of
quasars with 1 < z < 3 increasing at roughly 100.3ms in the
0.5–2.0 keV band for fluxes 6 × 10−16 < S < 4 × 10−15, which
we take to be the relevant range of unmagnified fluxes for our
systems.

As a crude gauge of the effects of selection, we have
investigated the effect of a modest prior toward fainter fluxes,
100.3ms . It produces an 11% shift toward a lower calibration
factor F .

7.12. Effects of Time Delay

Our likelihood analysis involves the implicit assumption that
the unobservable unmagnified X-ray flux is the same for all four
images. The photons that we observe were emitted at different
times, spanning several weeks for most of our systems, but with
differences as large as ≈150 days for the case of RX J0911+0551
(Hjorth et al. 2002). The source may have varied during this time.

The data on X-ray quasar variability is limited. Quoting
from the abstract of Gibson & Brandt (2012, p. 1), “Assuming
that the distribution of fractional deviations is Gaussian, its
standard deviation is ≈16% on �1 week timescales,...... extreme
variations (>100%) are quite rare, while variation at the 25%
level occurs in less that 25% of observations.”

Some of the best data on X-ray quasar variability comes from
lensed systems. Zimmer et al. (2011) have studied Q2237+0305,
which does seem to have shown substantial, factor of three
variation on a timescale of ≈60 days.

The multiple epoch data for MG J0414+0534, PG 1115+080,
RX J1131−1231 and B1422+231 in Table 1 of Pooley et al.
(2012) shows only modest evidence for coherent variation in
the X-ray flux quartets, with substantially larger variations due
to micro-lensing.

For the most part, the amplitude of the variability is small
both with respect to our observational errors and second with
respect to the width of the micro-lensing histograms, and as
such seems unlikely to influence our results.

7.13. Differential Absorption by Intervening Matter

We have investigated the effects of X-ray absorption using
the XSPEC spectral fitting package (Arnaud 1996). For a z = 2
quasar with an X-ray power-law index of 1.7 and a lens at
z = 0.5, a factor of two reduction in the observed 0.5–8 keV
band flux requires a column density of 1023 cm−2 (assuming
solar abundances) in the lensing galaxy. Using the standard
dust-to-gas ratio (NH/AV = 1.79 × 1021 cm−2 mag−1), this
corresponds to 55 mag of attenuation in the observed V filter
(Predehl & Schmitt 1995). The absence of strong differential
reddening at optical wavelengths argues against absorption as a
contributor to the X-ray flux ratio anomalies.
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Figure 3. Results of 999 simulations of our 10 lensed systems, adopting a value of 1.414 for the calibration factor F that multiplies the stellar mass fundamental plane.
The bars give the numbers of simulations returning median likelihood values of F in the ranges shown.

7.14. Consistency Check on Likelihood Analysis

As a check on the consistency of our approach, we have
generated synthetic X-ray observations using our models for
the lens systems and a mass surface density

√
2 times that for

a Salpeter mass function. We assign the observed fractional
error in the less magnified minimum image, taken from Table 4,
to the simulated flux for that minimum. Since the less magnified
minimum usually has the narrowest magnification histogram,
we expect the least variation in its flux. We use this to assign
errors to the remaining simulated fluxes assuming counting
statistics.

We simulated each system 999 times. For each of our 999
experiments, we compute the maximum likelihood value for
the derived multiplicative factor F . A histogram is shown in
Figure 3. The median maximum likelihood value is 1.530, 8%
higher than the input value. The range of values including 68%
of the experiments runs from 1.01 to 2.49, consistent with the
width of the likelihood function for the present data.

7.15. Effects of Individual Systems on Results

We have examined the effects of the individual systems and
find that one system, RX J0911+0551, has a particularly strong
influence on the final result. If we exclude it from the analysis
the calibration factor F is smaller by a factor of 1.57.

The pull of RX J0911+0551 on our principal result manifests
itself in many of the above tests. For example, the effect of
a change in the power law index is much smaller when RX
J0911+0551 is eliminated from the sample.

There are several arguments for excluding the system. First,
the integrated likelihood for the system is more than a factor
of 10 smaller than the system with the next smallest likelihood.
Second, we carried out a second set of 999 simulations of RX
J0911+0551 with an input calibration factor F = 1.189. In only
2.5% of the cases simulated was the likelihood of the input
value smaller than that computed using the observed X-ray flux
ratios. Third, at 150 days, the time delay between the d image
and the other three images is the longest for any of the systems

in the sample, rendering it more vulnerable to intrinsic X-ray
variability.

The low likelihood for the present observations is explained
by the fact that the ratio observed for the flux of image b to that
of image d is 1.27, very much smaller than the 5.40 predicted
by the lens model. A crude reduction of STIS spectra obtained
as part of HST program GO-9854 shows a C III] line strength
ratio of 3.70, roughly consistent with the lens model, as would
be expected if the broad line region is comparable to or larger
in size than the Einstein rings of the individual stars.

While intrinsic X-ray variability is an attractive explanation,
there is nothing in the optical light curves presented by Hjorth
et al. (2002) to suggest a dramatic change in either image
b or image d. Our X-ray observations were obtained on JD
2451485. If intrinsic X-ray variation were to explain our unlikely
result, then image d must have gotten substantially fainter in the
previous 150 days, and b must have gotten substantially fainter
in the subsequent 150 days. The Hjorth et al. (2002) light curves
show them both getting fainter by roughly 0.1 mag, very much
less than would be needed to explain our unlikely flux ratio.
The intrinsic variation at X-ray wavelengths would need to be
a factor of 10 larger than at optical wavelengths for this to have
produced our result.

Image d lies very far from the lensing galaxy and is a min-
imum of the light travel time. We therefore expect it to suf-
fer very little micro-lensing. Image b lies closer to the lens-
ing galaxy, but as it is also a minimum, the micro-lensing
distribution function lacks the tail toward fainter images that
a similarly magnified saddle point image would have. The
histogram is broadened, however, for higher stellar densi-
ties, making those more likely and driving up the calibration
factor F .

The above arguments constitute a rationalization for ignoring
RX J0911+0551 rather than a reason.

A toy model helps make the case for the inclusion of
RX J0911+0551 in our result. We suppose we have 10
systems, all of which have Gaussian likelihood distributions
with the same standard deviation σ . The uncertainty in the
mean will be σ/

√
10 − 1, or σ/3. The fact that 2.5% of our
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simulated systems have likelihoods smaller than that of RX
J0911+0511 would mean, under the Gaussian hypothesis, that
RX J0911+0511 deviates from the true value by roughly 2.25σ .
A single 2.25σ point will pull the mean of 10 objects 0.225σ ,
about 2/3 of the uncertainty in the mean. This is roughly
what RX J0911+0511 does to the median likelihood for our
10 systems.

7.16. Cumulative Effect of Systematic Errors

In Section 7.1 we give a statistical confidence interval for our
result. In the subsequent subsections, we consider a variety of
systematic effects that might be thought to affect our result.
Their cumulative effect might be gauged by first making a
best estimate of the range and probability distribution of values
within that range for the parameter that controls each systematic
effect, and then choosing values for each parameter at random,
reanalyzing the data, and accumulating a likelihood distribution.

We have instead made crude guesses of a plausible value
for each parameter and carried out a single analysis with that
parameter. If those rough guesses were correct, the largest
sources of systematic error would be, in descending order, a
systematic error in the exponent of our power law model for
the total surface mass density (32%), a systematic error in the
uncertainties in our X-ray fluxes (24%), and a systematic error
in our adopted measurements of effective radii for the lensing
galaxies (23%), These are still relatively small compared with
our statistical uncertainty. At such time as the number of systems
analyzed increases and the statistical uncertainty decreases, one
will want to analyze these systematic effects more carefully.

We note that in several cases, in particular that of the power-
law exponent, RX J0911+0551 plays the dominant role in
determining the size of the systematic effect. One reasonably
expect that with a larger sample size these systematic errors
might also decrease.

8. DISCUSSION

8.1. The Dark Matter Fraction of a Typical Galaxy

We have used the stellar mass fundamental plane to combine
results from the 10 lensing galaxies in our sample, since the
likelihood distribution for the stellar mass surface density for
any single system is quite broad. The single parameter that
we constrain in this process is a calibrating factor F for
photometrically derived stellar masses.

Previous investigators, ourselves included, have instead fo-
cused on the dark matter fraction. Our calibrated stellar mass
fundamental plane can be used to derive a projected dark matter
fraction as a function of r/re for a specific choice of σprox and
re, making the comparison with previous work more straight-
forward.

In constructing our fundamental plane, we chose a fiducial
galaxy with σprox = 266 km s−1 and re = 6.17 kpc. The stellar
surface mass density at the effective radius, Σe, for such a galaxy
is then cF/3.607, or 5.04×108 M� kpc−2 using the SL2S result
for the constant c in Table 1.

By assumption our galaxies have singular isothermal ellip-
soidal mass distributions with the same ellipticity as the ob-
served light, so that the stellar mass and dark matter fractions
depend only upon the ratio of the circularized radial coordinate
w defined by Equation (10) to the effective radius. The projected
dark matter fraction at the effective radius for our fiducial galaxy
is 62%.

In Figure 4 we show the stellar mass fraction as a function
of w/re. The stellar mass fraction reaches a maximum at
w/re = 0.074, the point at which the derivative of the de
Vaucouleurs surface brightness profile is equal to that of the
projected isothermal sphere. The maximum stellar mass fraction
of 110% indicates the breakdown of one or more of our model
assumptions: the isothermal profile for the combined mass, the
de Vaucouleurs profile for the stellar mass, or the invariance
with radius of the IMF (Martı́n-Navarro et al. 2014). But the
breakdown is far inside the effective radius, affecting of the
order of 10% of the mass inside the Einstein radius, and ought
not have a substantial effect on our principal result.

8.2. Comparison with Previous Micro-lensing Results

The system Q2237+0305, “Huchra’s Lens,” has been studied
by Kochanek (2004), who computes relative likelihoods for the
stellar mass contribution of the convergence on a coarse grid
and finds it five times as likely that κ∗/κ is unity as opposed to
0.5, implying a stellar fraction close to 100%.

This system is quite unlike the systems considered here: with
a lens redshift of 0.04 the Einstein ring projects to a radius of
only several hundred parsecs on the galaxy, where one might
expect most of the mass to be in the form of stars. Moreover
the system is a barred spiral, not an elliptical. The Kochanek
result, while broad, is nonetheless consistent with our curve in
Figure 4.

A second consequence of the low redshift of the lens is that the
Einstein rings of individual stars project to a larger scale on the
background quasar. As a result, even the optical emission region
can be treated as a point source. Additionally, the velocities of
stars within the lens project to much larger velocities at the
redshift of the quasar. The timescale for variation is therefore
much shorter than for the systems in the present sample.

Using optical data, Bate et al. (2011) have determined
projected smooth (dark) matter fractions for the systems
Q2237+0305, MG 0414+534, and SDSS J0924+0219. The lim-
its for the first two of these are quite broad, but for SDSS
J0924+0219 they obtain a projected smooth (dark) matter frac-
tion at the Einstein ring, ≈1.97re of 80 ± 10%. The dark mat-
ter fraction at this radius for our fiducial lens is found from
Figure 4 to be 82%. The prediction for a Salpeter IMF stellar
mass fundamental plane can be found by dividing the stellar
fraction in Figure 4 by our calibration factor F = 1.229, yield-
ing a dark matter fraction of 85%. The predictions for a lens
with a proxy dispersion of 214 km s−1 and an effective radius
of 6.94 kpc are, by coincidence, identical to those for our fidu-
cial lens. The Bate et al. (2011) results for SDSS J0924+0219
are therefore consistent both with a Salpeter IMF and with our
calibrated Salpeter IMF.

Where we use the stellar mass fundamental plane to predict
the dark matter fraction at the Einstein ring, Bate et al. (2011)
use a different scheme that they find underpredicts the smooth
(dark matter) fraction. They start with the Bernardi et al.
(2003) relation between surface brightness and effective radius
(the Kormendy relation) and convert from light to mass using
the Kauffmann et al. (2003) relation between stellar mass to
light ratio and absolute magnitude. Kauffmann et al. (2003)
use a Kroupa stellar mass function. A Salpeter IMF would
have predicted yet smaller smooth mass surface densities. The
fundamental plane gives better predictions of surface brightness
than the Kormendy relation by virtue of using both effective
radius and velocity dispersion, so we should not be surprised
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Figure 4. Stellar surface mass density as a fraction of the total for our fiducial galaxy, obtained by applying our calibration factor F to the stellar mass fundamental
plane derived from the SLACS + SL2S samples. From left to right, the vertical bars show the 1σ confidence intervals for the stellar mass fractions for RX J1131−1231
(Dai et al. 2010), the Mediavilla et al. (2009) sample of 29 image pairs, PG 1115+080 (Morgan et al. 2008), and SDSS 0924+0219 (Bate et al. 2011).

that the dark matter fraction predicted in Section 8.1 is closer to
what Bate et al. (2011) observed.

Morgan et al. (2008) carry out a joint X-ray and optical
analysis of multi-epoch data for PG 1115+080. They param-
eterize their result by the stellar contribution to the lensing
model. For the maximum likelihood value of their parameter,
they find a stellar fraction at the Einstein ring of 0.115, with an
uncertainty of roughly a factor of two in either direction. Using
our adopted value for the effective radius, we find θEin/θe =
1.56. For the fiducial galaxy in Figure 4 we find a stellar frac-
tion of 0.23. Using the measured re and σprox we find a stellar
fraction of 0.33.

But had we adopted the imfitfits measurement of the
effective radius (re = 4.22 kpc), which is what Morgan et al.
(2008) used, we would have θEin/θe = 2.19, for which our
fiducial galaxy would give us a stellar fraction of 15%. Using
the imfitfits measured values re = 4.22 kpc and σprox =
232 km s−1, we find a stellar fraction of 18%, which would
appear to be consistent with the Morgan et al. (2008) result.

Dai et al. (2010) carry out a joint X-ray and optical analysis of
multi-epoch data for RX J1131−1231. They allow explicitly for
errors in the model magnifications. Under their less conservative
priors they find a stellar contribution to the convergence of 30%
at 1.50 re. This is consistent with the prediction of 26% for our
fiducial galaxy. Using instead the observed effective radius of
5.24 kpc and a proxy dispersion of 349 km s−1, we find again a
26% prediction for the stellar component.

Mediavilla et al. (2009) have carried out an analysis of optical
flux ratios for 29 pairs of images of 20 lensed quasars. When
they allow for a finite source size of 1.2 × 1016 cm, consistent
with Pooley et al. (2007), they find (their Figure 8) a stellar mass
fraction of 0.10 with an uncertainty of roughly 0.05. This is twice
as large as when they allow for a source only half as large. For
the latter case, when they allow for errors of 0.2 mag in their
magnitude differences, they again find a stellar mass fraction

of 0.10. They do not present results assuming both magnitude
errors and the larger source size.

Mediavilla et al. (2009) compare optical continuum flux ratios
to emission line ratios, mostly broad line. Sluse et al. (2012b)
have argued that broad lines are micro-lensed, in which case the
use of broad-line flux ratios rather than model fluxes will reduce
the inferred effect of micro-lensing.

The majority of quasars in the Mediavilla sample are doubly
imaged, for which the images are more broadly scattered to radii
larger and smaller than the Einstein radius. They do not give
effective radii, but for θEin/θe ∼ 1.5, as is typical of our sample,
we would predict substantially larger stellar mass fractions
of ∼0.25.

The present work includes two substantial refinements over
the Mediavilla et al. (2009) effort. First, we parameterize
by mass-to-light ratio rather than by stellar fraction, thereby
allowing for a range of impact parameters and effective radii
(and thus a range in stellar mass fractions). Second we use
X-ray flux ratios, on the hypothesis that the X-ray emitting
regions are point-like.

Oguri et al. (2014) have carried out an analysis that has
multiple points in common with the present analysis. They work
with a sample of strong lenses, including the lensed galaxies
in the SLACS, SL2S, and BELLS (Brownstein et al. 2012)
samples and also 28 of the lensed quasars in the CASTLES
database. They compute stellar masses from the photometry
and calculate dynamical masses interior to the Einstein ring.
They add a power law dark matter halo to bring the two into
agreement. They parameterize the stellar contribution with a
parameter αSal

SPS, which gives the ratio of the stellar contribution
to that computed from a Salpeter IMF, and which is essentially
our calibration factor F . They parameterize the dark matter
contribution by ADM which gives the ratio of the projected dark
matter contribution within the effective radius to the total stellar
mass. These parameters are strongly degenerate.
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Oguri et al. use the dark matter fraction likelihood distribu-
tions for 12 quasars given by the present authors (Pooley et al.
2012) and three given by Bate et al. (2011) to break this degen-
eracy. They add an additional parameter, γ ′

DM , the slope of the
density power law adopted for the dark matter halo, which they
also allow to vary. They find αSal

SPS = 0.92+0.09
−0.08.

A particularly intriguing feature of this result is that the
fractional uncertainty in αSal

SPS is smaller by a factor of five
than the width of the likelihood for the stellar fraction given
in Pooley et al. (2012) and likewise that of the present result for
F . Figures 3 and 4 of Oguri et al. show a broad range of allowed
values for αSal

SPS in the absence of the micro-lensing constraints.
An additional micro-lensing constraint with an uncertainty of
a factor of 1.5 in αSal

SPS would not seem sufficient to narrow the
allowed values to the claimed range of only 10%.

Oguri et al. favor a power-law exponent for the total mass
density, ρ = ρ0(r/r0)−γ ′

, of γ ′ = 2.11, slightly steeper than
the isothermal assumed here. As noted in Section 7.7, using a
power law this steep would increase our calibration factor F by
roughly 32%, increasing the disagreement with the Oguri et al.
result.

Mediavilla et al. (2009), Bate et al. (2011), and Pooley
et al. (2012) all parameterized their results by a single dark
matter fraction for all four images. In the present effort, we
have taken explicit account of the differing distances of the
quasar images from their host galaxies, and of the ellipticity of
the underlying light distribution. The micro-lensing histograms
are often quite different for images that are saddle points and
minima. The minima tend to lie further from the lensing galaxy,
and therefore have lower stellar surface densities than saddle
points. Moreover, to the extent that the ellipticity of the light is
aligned with the potential, the minima will tend to lie along the
stellar minor axis, producing yet lower stellar surface densities.

The Oguri et al. result assumes a power-law dark matter halo,
where the present result assumes a power law (isothermal) for
the total surface mass density. In the present analysis, the power-
law index enters primarily in the computed convergences and
shears. Changing that index has an effect similar to adding or
subtracting a mass sheet, as described in Section 7.6, driving
the present result further from the Oguri et al. result. By the
same token, Pooley et al. (2012) used convergences and shears
appropriate to an isothermal. Had they used γ ′ = 2.11, they
would have deduced larger stellar mass fractions, driving the
Oguri et al. results closer to the present results.

9. CONCLUSIONS AND OUTLOOK

We have determined the factor by which the stellar mass
fundamental plane at z ∼ 0.5 must be increased if the anomalies
in the observed X-ray fluxes from our sample of quadruply
macro-lensed quasars are attributed to micro-lensing by the stars
in the lensing galaxy.

Constructing our stellar mass fundamental plane from the
lensing early-type galaxies in the SLACS and SL2S surveys,
using stellar masses as computed by Auger and collaborators
(Auger et al. 2010; Sonnenfeld et al. 2013) assuming a Salpeter
IMF, the factor by which the stellar mass fundamental plane
must be scaled isF = 1.23, with a one sigma confidence interval
0.77 < F < 2.10.

The result includes the mass due to white dwarfs, neutron
stars, stellar mass black holes, brown dwarfs, and red dwarfs
too faint to contribute significantly to the observed light.

We have investigated a number of possible sources of sys-
tematic error and estimated how large the effects might be.

The greatest single source of uncertainty is sample size. While
this can be addressed with the discovery and followup observa-
tion of additional systems, to the extent that newly discovered
systems are not as bright as those in the present sample, they
will be less amenable to observations with Chandra. Moreover
the presumptive follow-on mission to Chandra, Athena+, will
not have the necessary angular resolution.

We note that for the systems in our sample that are faintest
in the optical, SDSS J0924+0219 and SDSS J1138+0314, the
optical flux ratios are nearly identical to the X-ray flux ratios.
This suggests that the optical emission is coming from a region
that is relatively small compared to the Einstein rings of the
stars, and that X-ray fluxes may not be needed for this kind of
analysis.

Beyond that there is a systematic uncertainty arising from
systematic differences in the effective radii measured for our
lensing galaxies. Observations with the James Webb Space Tele-
scope (JWST) might in principle resolve these, since the point
source point-spread function will be very much smaller than
the image separations. More extensive photometric observations
with JWST would permit the direct local calculation of the stel-
lar surface mass density using an assumed IMF, circumventing
the stellar mass fundamental plane.
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