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ABSTRACT

Owing to a lack of robust principled methods, systematic instrumental uncertainties have generally been ignored
in astrophysical data analysis despite wide recognition of the importance of including them. Ignoring calibration
uncertainty can cause bias in the estimation of source model parameters and can lead to underestimation of the
variance of these estimates. We previously introduced a pragmatic Bayesian method to address this problem.
The method is “pragmatic” in that it introduced an ad hoc technique that simplified computation by neglecting the
potential information in the data for narrowing the uncertainty for the calibration product. Following that work,
we use a principal component analysis to efficiently represent the uncertainty of the effective area of an X-ray
(or y-ray) telescope. Here, however, we leverage this representation to enable a principled, fully Bayesian method
that coherently accounts for the calibration uncertainty in high-energy spectral analysis. In this setting, the method
is compared with standard analysis techniques and the pragmatic Bayesian method. The advantage of the fully
Bayesian method is that it allows the data to provide information not only for estimation of the source parameters
but also for the calibration product—here the effective area, conditional on the adopted spectral model. In this
way, it can yield more accurate and efficient estimates of the source parameters along with valid estimates of their
uncertainty. Provided that the source spectrum can be accurately described by a parameterized model, this method
allows rigorous inference about the effective area by quantifying which possible curves are most consistent with
the data.
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1. BACKGROUND
1.1. Calibration Uncertainty in High-energy Astrophysics

Observed data are always the result of the interaction of the
incident spectrum with an instrument such as a telescope and
detector assembly. These are described by instrument calibration
products such as effective-area curves, energy redistribution
matrices, and point-spread functions. The careful specification
of these calibration products is critical both for parameter fitting
and for properly accounting for the statistical errors of these fits.
It is only through instrument calibration that we can transform
measured signals into physically meaningful quantities and have
any hope of interpreting data analyses in a useful manner.
Misspecification of calibration products can lead to serious
bias in the fitted parameters, unreliable statistical errors, and
uninterpretable results.

In practice, it is well known that instrumental properties (e.g.,
the quantum efficiency of a CCD detector, point-spread func-
tions) are measured with error. Unfortunately, typical analyses
only account for nominal estimates of calibration products with-
out regard for their errors and/or their possible misspecification.
This can seriously degrade fitted parameters and their error bars.
In spectral analysis, for example, Drake et al. (2006) demon-
strated that ignoring calibration uncertainty with good-quality,
high signal-to-noise ratio data can result in error bars that are
underestimated by a factor of as much as five; see their Figure 5.
We show that ignoring these errors not only is detrimental to er-

5 Deceased, Formerly of Eureka Scientific.

ror bars but more importantly can seriously bias the fitted values
themselves.

Efforts have been made to develop methods that account for
calibration uncertainty in high-energy astrophysics, and such
methods exist both in other areas of astrophysics and in related
fields such as particle physics (Heinrich & Lyons 2007) and ob-
servational cosmology (Bridle et al. 2002); see Lee et al. (2011)
for a review. The nature of the errors in high-energy calibration
products includes their complex correlations for which exist-
ing methods generally do not provide reliable results. Modern
instruments such as Chandra are calibrated using data from par-
ticularly well understood astronomical sources or from labs and
comparing these data with theoretical predictions. These mea-
surements are not typically used directly; rather, they are used to
tune sophisticated physics-based computer codes that model the
instrument as a whole. These codes can be used to derive both
nominal estimates of calibration products and measures of their
uncertainty. The calibration products are high-dimensional and
exhibit complex and large-scale correlation structures among
their components. Accounting for this complex uncertainty is
further complicated in high-energy astrophysics by the non-
Gaussian nature of both the source photon counts and the instru-
ment response. The non-Gaussian data along with the complex
correlations in the calibration uncertainty mean that existing
methods are not by and large applicable in this setting. The gen-
eral method of combining measurement and calibration errors
in quadrature (e.g., Bevington & Robinson 1992), for example,
assumes uncorrelated Gaussian errors and a one-to-one rela-
tionship between calibration errors and data points. This is not
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appropriate in the context of the complex correlations exhibited
by the wide variety of calibration products computed and rec-
ommended by calibration scientists. However, a given product,
taken to be error-free, can introduce serious biases into the final
fitted values. Thus, calibration uncertainty must be folded into
analyses in order to provide statistically principled and scientif-
ically sound results. As we shall see, doing so can allow the data
to inform the choice among the possible calibration products.

To address these complex correlations, Drake et al. (2006)
suggested a bootstrap-like method that relies on the availability
of a large representative sample of possible calibration products
capturing various calibration uncertainties; we refer to this
sample as the calibration library. In particular, they generated
a replicate data set for each calibration product in the library
and fit it in the usual way. The variability among the resulting
fitted model parameters then estimates the effect of calibration
uncertainty on the fitted parameters. While this is a useful
method to demonstrate the scale of the effect of calibration
uncertainty on error bars for the model parameters, generating
replicated data sets requires knowledge of typically unknown
model parameters. From a practical point of view, the method’s
reliance on a large calibration library is also problematic,
especially considering that calibration products of space-based
detectors degrade over time, and hence different calibration
libraries are required for different observations.

Lee et al. (2011, henceforth Paper 1°) developed this approach
further by, first, replacing the large calibration library with alow-
dimensional model for the calibration uncertainty and, second,
embedding the model for calibration uncertainty into a Bayesian
procedure that simultaneously fits the model parameters and ac-
counts for calibration uncertainty. As suggested by Drake et al.
(2006), Paper I modeled the calibration library using a principal
component analysis (PCA), but did so in a way that avoided the
need for observation-specific calibration libraries. This strat-
egy effectively embeds the instrument-modeling code via the
calibration library as an integral part of the statistical comput-
ing techniques. This approach, however, supposes purely for
simplicity that the observed photon counts and the calibration
product are conditionally independent, that is, that the data pro-
vide no information for narrowing the calibration uncertainty.
An advantage of this independence assumption is that it signif-
icantly simplifies the computing, making the algorithm easy to
implement. For this reason in Paper I, we call this approach a
pragmatic Bayesian method. The independence assumption of
the pragmatic Bayesian method also implies that the choice of
calibration product is determined by calibration scientists, cali-
bration experiments, and calibration simulations, rather than the
data from a particular observation. This may be viewed as an
advantage by some researchers, particularly if they do not trust
the post-observation model assumptions.

The primary objective of this article is to remove the ques-
tionable independence assumption of the pragmatic Bayesian
approach and allow the data to narrow the calibration uncer-
tainty. This is a more principled approach from a statistical
perspective. If a subset of the calibration products are plausible
before seeing the data but inconsistent with the data once it is
observed, this subset should not play a role in the final analysis.

6 We refer to Lee et al. (2011) as Paper I simply for easy reference; both the
current paper and Lee et al. rely on earlier work that characterize calibration
uncertainty (Drake et al. 2006) and lay out the framework of MCMC-based
Bayesian spectral analysis (van Dyk et al. 2001). In contrast to van Dyk et al.,
who use Gibbs-based MCMC, both Paper I and this work adopt Metropolis
and Metropolis—Hastings (MH) type MCMC for the sake of flexibility in
astrophysical model specification.
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We call this a fully Bayesian method because it fully follows
the principles of Bayesian analysis. This approach has other ad-
vantages. For example, in addition to the calibration uncertainty
quantified through idealized experiments, calibration products
are subject to errors stemming from differences between these
idealized settings and the variety of actual settings in which the
products are used. Indeed, suspected systematic errors cannot
be fully understood without taking into account the actual data
in any particular observation and/or cross-instrument compar-
isons that may be made (e.g., Nevalainen et al. 2010). Our fully
Bayesian method allows the data to inform our choice of possi-
ble calibration products. In practice, we find that relatively large
data sets (3>10* counts) are needed to obtain appreciable power
in narrowing calibration uncertainty.

Like the pragmatic Bayesian method, the fully Bayesian
approach embeds a model derived from a PCA of the calibration
library into a larger statistical model. Unlike the pragmatic
Bayesian method, however, it then marginalizes over calibration
uncertainty while conditioning on the observed data, whereas
the pragmatic method did so without conditioning on the data.
In this regard, the fully Bayesian method is in line with methods
proposed by Bridle et al. (2002) and Heinrich & Lyons (2007) for
handling systematic errors in cosmology and particle physics,
respectively. These proposals, however, use a parameterized
form for the systematics under which marginalization can be
achieved analytically. While these specific proposals are not
applicable in our setting, they share our emphasis on the general
principle of building a joint model that incorporates all sources
of uncertainty and then marginalizing over nuisance parameters
while conditioning on the observed data.

The statistical framework we present is quite general, but in
this paper we focus on X-ray spectral analysis with uncertainty
in the effective-area curve. We begin by outlining the necessary
background on Bayesian spectral analysis, the PCA-based cali-
bration model proposed in Paper I, and the pragmatic Bayesian
method. Section 2 lays out our fully Bayesian method and uses
a simple numerical example to illustrate its advantage over both
the typical strategy of ignoring calibration uncertainty and the
pragmatic Bayesian method. Section 3 validates our proposal
using a set of simulation studies that include a comprehensive
frequency evaluation. We find striking improvement in the sta-
tistical properties of estimates and error bars, when large-count
spectra (>>10 counts) are generated with an effective-area curve
consistent with the prespecified calibration uncertainty but the
spectra are fit with a misspecified default curve. Section 4 il-
lustrates how the fully Bayesian method works for several data
from the Chandra telescope: a collection of QSOs observed near
the aimpoint of ACIS-S and described with absorbed power-law
models; a bright O star system at a large off-axis location on
ACIS-S2 and modeled as absorbed multithermal spectra; and co-
added long-duration grating observation of an isolated neutron
star modeled as a blackbody spectrum. Finally, we discuss the
consequences and future directions of our method in Section 5.
An appendix details the Markov Chain Monte Carlo (MCMC)
algorithms we designed to implement our method; they rely on
the pyBLoCXS module (Siemiginowska et al. 2011) in Sherpa
and existing algorithms for the pragmatic Bayesian method.” A
glossary of the symbols we use appears in Table 1.

7 A version of our software that implements the pragmatic Bayesian fitting of

Paper I is currently available within CIAO/Sherpa. A newer version that
includes both the pragmatic and fully Bayesian algorithms will soon be made
publicly available at http://github.com/astrostat/pyblocxs/ and eventually made
available within CIAO/Sherpa.
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Table 1
Glossary of Symbols Used in the Text
Symbol Description
A An effective-area (ARF) curve
Ao The default effective-area curve on which the calibration library is based.
A The observation-specific effective-area curve.
A Effective-area curve [ in the calibration library
A The average of the effective-area curves in the calibration library
AProP A proposed effective-area curve in an MH sampler
Agg b Ag;l) An effective-area curve simulated with the pragmatic and fully Bayesian sampler
A A set of effective areas, the calibration library
CI A confidence interval
E Energy of incident photon
E* Detector channel at which the detector registers the incident photon
e The low-dimensional PCA representation of A; see Equation (5)
eProp Value of e proposed in an MH sampler
g;l), eggl) Value of e simulated with the pragmatic and fully Bayesian samplers
g Generic proposal distribution in a MH sampler
1 Number of inner iterations in MCMC loop, typically 10
i Inner iteration number or index
A Information obtained prior to data acquisition, for example, by calibration scientists
J Number of components used in PCA analysis, here 8
j Principal component number or index
K An MCMC kernel
Koy The MCMC kernel used in pyBLoCXS
L Number of replicate effective-area curves in calibration library
l Replicate effective-area number or index
L The likelihood function
M Number of replicated draws of 6 per draw of A in Iterated MH within PCG sampler
p A generic prior or posterior distribution
Dstd> PpB> PIB Standard, pragmatic Bayesian, and fully Bayesian posterior distributions
R Energy redistribution matrix (RMF)
r/z. Eigenvalue or PC coefficient of component / in the PCA representation
T Number of MCMC iterations
t Main MCMC iteration number or index
(t+..) The superscript indicates the running index of random draws
u A uniformly distributed random number between zero and one
vj Eigen- or feature-vector for component / in the PCA representation
Y Data, typically used here as counts spectra in detector PI bins
a Correlation used to validate the choice of I in the MH within PCG sampler
P The acceptance probability in an MH sampler
0 Spectral model parameters
6 Estimate of 6
gprop A value of 6 proposed in an MH sampler
Gé‘tg"'), 0‘(]?”'), Gl(fg'“) Value of 6 simulated with standard, pragmatic Bayesian, and fully Bayesian samplers
¥ Generic notation for unknown quantities in analysis, viz., = 6 or ¥ = (A, )
yProp A value of ¢ proposed in an MH sampler

Gstds &pB, 618

Error bars under the standard, pragmatic, and fully Bayesian methods

1.2. Bayesian Spectral Analysis

To fix ideas, we focus attention on a general spectral analysis
problem in which the observed photon count in channel E* is
modeled according to the Poisson distribution,®

Y(E*) ~ POISSON ZA(E;@)A(E)R(E*; E)+ B(E%) |,

E

(D
where A(E; 0) is the source spectral intensity at energy E, 6 is
the (vector) spectral parameter, A(E) is the effective-area curve
at energy E, R(E*; E) is the energy redistribution matrix of
the detector, and B(E™) is the background intensity in channel

8 The notation ¥ ~ DISTRIBUTION is a standard way in statistics literature to
indicate that a variable (e.g., the observed counts) is modeled using the
specified distribution (e.g., Poisson).

E*. The photon counts in each channel, Y (E*), are independent
Poisson variables. For notational simplicity, we represent the
collection of observed photon counts by ¥ = {Y(E*)}, the
effective area by A = {A(E)}, and the photon redistribution
matrix by R = {R(E*; E)}. We focus on methods that treat A
as an unknown quantity and allow its uncertainty to affect both
the fit and the error bars of 6. Although our methods can be
employed to account for uncertainty in R or in both A and R, we
do not pursue these possibilities in this article.

To fit the spectral parameters, 6, given the observed photon
counts, Y, while accounting for calibration uncertainty, we adopt
a Bayesian framework. In particular, we quantify our state of
knowledge before having seen the data using a so-called prior
distribution and that after having seen the data using a posterior
distribution. Bayes’s theorem allows us to transform the prior
distribution into the posterior distribution by conditioning on
the observed counts. In particular, suppose that i represents
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the quantities that are to be estimated and Z is the information
we have before seeing the data, including that used to estimate
the calibration products and/or their uncertainty. We compare
methods that treat only 8 as unknown with others that treat both
0 and A as unknown, so either ¥ = 6 or v = (6, A), while R
(and sometimes A) is part of Z. In this setting Bayes’s theorem
states that the posterior distribution of ¥ given Y and Z is

PV T) = LYY, I) p(WII), @)
p(Y|I)

where p(y¥|Z) is the prior distribution of ¢, L(Y|¥, ) is the
likelihood of Y given ¥, and p(Y|Z) = f pY |y, Dp(Y|Ddy
is the normalizing constant that ensures that p(v/|Y, 7) integrates
to 1. We include 7 here to emphasize that analyses always rely on
some information external to Y. To simplify notation, however,
we assume that all probability distributions are conditional on
7 and omit it from our notation for the remainder of the article.
We also implicitly assume that the adopted spectral model is
appropriate. Its misspecification can lead to biases in addition
to those caused by misspecification of the calibration products.
Substituting ¥ = (6, A) into Equation (2) and assuming that
the prior distributions for & and A are independent, we can write

the posterior distribution as

P, AlY) o L(Y |6, A) p(0) p(A), 3)

where we have omitted the denominator of Equation (2) because
itis determined by the numerator. We typically use a diffuse prior
distribution on 8 representing prior ignorance and an informative
prior distribution on A representing the information obtained
from calibration studies.

Whereas our primary goal is to consider methods for joint
inference for 6 and A using Equation (3), we also compare such
methods with the standard approach that treats A as fixed and
known. For clarity we refer to this approach as the standard
method. For example, in a Bayesian analysis (e.g., van Dyk
et al. 2001), the standard method involves estimating 0 using its
posterior distribution given the observation, Y, and the nominal
effective-area curve associated with this observation, Ag, that
is, using

Psa(® | Y, Ag) o« LY | 6, Ag) p(©). “

Because this approach assumes that A = Aj, it does not account
for calibration uncertainty. Paper [ illustrates that this can lead to
misleading estimates of 6 and can significantly underestimate
the error bars associated with these estimates. Nevertheless,
because this is the standard approach in practice, we treat it as
a baseline in our numerical comparisons.

1.3. Quantifying Calibration Uncertainty

The specification of the posterior distribution in Equation (3)
requires that we formulate a prior distribution on A that en-
capsulates the calibration uncertainty. Although they were not
working in a Bayesian setting, Drake et al. (2006) generated a
library of ACIS effective-area curves. This was accomplished
by explicitly including uncertainties in each of the subsystems
of the telescope (UV /ion shield transmittance, CCD quantum
efficiency, and the telescope mirror reflectivity) using truncated
Gaussian distributions for the parameters of different instrument
models and by modifying a spline correction curve that multi-
plies a default curve. More recently, we compiled a second cal-
ibration library to represent uncertainty in the LETGS+HRC-S
grating/detector system (J. Drake et al., in preparation).
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This includes corrections applied to the telescope mirror reflec-
tivity, grating obscuration and efficiency, UV /ion shield trans-
mittance, micro-channel plate quantum efficiency and unifor-
mity, etc. Additionally, spline knots were set at all prominent
spectral edges due to materials that were used in the construction
of the telescope, grating, and detector. In our numerical studies,
we illustrate how either of these libraries can be incorporated
into a fully Bayesian analysis. Both consist of L = 1000 sim-
ulated effective-area curves, each of length 1078 in the ACIS
library and each of length 16,384 in the LETGS+HRC-S li-
brary. The former is used in Sections 4.1 and 4.2, and the latter
in Section 4.3. In our general notation, we represent a calibration
library by A = {A}, A, ..., AL}, define A to be the arithmetic
mean curve of the calibration library, and let Ay denote the de-
fault effective-area curve associated with the library; A and Ag
are similar but not necessarily equal.

In practice, the calibration library must be large to fully rep-
resent the uncertainty in high-dimensional calibration products.
To summarize this sample into a concise and usable form,
Paper I implemented a PCA on the mean-subtracted calibra-
tion sample, {A; — A, ..., Ap — A}. PCA is a mathematical
procedure that uses orthogonal transformations to convert a set
of possibly correlated variables into a set of linearly uncorre-
lated variables called principal components. Approximately 8
(20) principal components (out of 1000) account for 97% (99%)
of the variability in the ACIS calibration library.

As in Paper I, we conduct a Bayesian analysis that treats A
and 6 as unknown. We use the PCA summary of the calibration
library to formulate the prior distribution for A, p(A). In
particular, we suppose that under p(A),

J
Ale) = A +(A— A+ ejrjvy, (5)
j=1

where Aj is the user-generated observation-specific effective-
area curve, r]2. and v; are the principal component eigenvalues
and eigenvectors, and e; are independent standard normal
deviations.” Since A ~ A, we can view Equation (5) as starting
with the user-specified effective area, A}, and adding the random
term Z?:l e;r;jv; to account for uncertainty; A — Ao adjusts
for the necessary mean subtraction of A when conducting
PCA. To simulate replicate effective-area curves under the
prior distribution given in Equation (5), we only need to draw
J independent standard normal deviations, (eq,...,e;), and
evaluate Equation (5). We treat A(e) as the generic notation for
the effective-area curve and continue to simply write A when its
explicit dependence on e is not pertinent.

Using Equation (5) to summarize the calibration library in-
volves several assumptions. First, we assume that the uncertainty
in A can be described by a multivariate normal distribution. The
similarity of the effective-area curves in .4 means that most of
the correlations among the components of this distribution are
very strong (i.e., near 1). Equation (5) stipulates that the distri-
butions associated with calibration uncertainty for observation-
specific effective-area curves differ only in their means and that
they have the same variance. This means that we can use the

9 An additional residual term, &= ZjLz J+17jvj, may also be included in
Equation (5). Adding e;+1& can help to account for the full range of calibration
uncertainty when J is small, or for components that contribute significantly

over small energy ranges, yet make up a small fraction of the overall variance
of A.
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Figure 1. PCA representation of several effective-area curves from the calibration library. The left column plots four randomly selected A; € A, one in each row, along
with their PCA representation, A;(e), for several values of J. The original curves are plotted in dot—dashed black, and the PCA representations are plotted as dashed
blue and solid red for J = 1 and 8, respectively. The right column is constructed in the same manner but plots the error in our approximation, AA; = A;(e) — A;.
Although A;(e) deviates from A;, even with J = 8, the right column shows that the scale of this deviation is quite small and that overall using J = 8 concisely captures

the structure of each of the effective-area curves.
(A color version of this figure is available in the online journal.)

variance of the calibration library of Drake et al. (2006) to rep-
resent the variance of any observation-specific effective area.
In practice, this procedure avoids generating a calibration li-
brary for each observation while still allowing us to account for
calibration uncertainty in a practical manner.

Figure 1 illustrates the performance of PCA in summarizing
the structure of individual effective-area curves in 4. It shows
that with J = 8, the reconstructed effective-area curve nicely
captures the structure of the original A € A. This means that
we can capture the vector A of length 1078 with the vector e of
length 8, by using A(e). We use J = 8 in all of our numerical
studies.

This PCA-based representation, A(e), is critical for both the
pragmatic Bayesian method of Paper I and the fully Bayesian
method described here. It not only provides a simple way to
quantify calibration uncertainty but also allows us to evaluate
both p(A,0 | Y) and p(A) using Equations (3) and (5). The
evaluation of both of these distributions is necessary for our
MCMC sampler.

1.4. A Pragmatic Bayesian Method

As noted above (see Equation (4)), standard analyses as-
sume that the effective area is fixed. That is, the parameters
are estimated conditional on Aj. Here, we aim to eliminate this
conditioning. Mathematically, this involves treating A as un-
known, rather than conditioning on its value, and expressing
Equation (3) as

pm0, AY)=p@|AY)pA|Y); (6)

here the subscript fB indicates that this is the fully Bayesian
posterior distribution. Paper I made the “pragmatic assumption”
that p(A | Y) = p(A). This assumption says that the observed
data and calibration are independent, that is, the data provide
no information for narrowing the uncertainty in the choice
of effective-area curve. Under this assumption, the posterior
distribution in Equation (6) can be written as

ppa(0, A[Y)=p | A.Y) p(A), )

where p(6 | A,Y) is given in Equation (4) with Aj replaced
by the generic A. We use the subscript pB in Equation (7) to
emphasize that this is the posterior distribution under the prag-
matic assumption of Paper I. Under the model in Equation (7),
inference for 0 is based on its marginal posterior distribution,

ppB(0 | Y) = /p(9 | A, Y) p(A) dA. ®)

The pragmatic Bayesian method accounts for calibration
uncertainty in a conservative manner. The assumption that
p(A | Y) = p(A) ignores information in the data that may
reduce uncertainty in A and hence in 6. We now consider
methods that allow Y to narrow the uncertainty of A.

2. A FULLY BAYESIAN SOLUTION
2.1. Motivation and Theory

Under the fully Bayesian posterior distribution, the marginal
distribution of € given in Equation (8) is replaced with

pm@ | Y) = /pfs(é’, AlY)dA, ®)
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Figure 2. Comparison of the standard (left), pragmatic Bayesian (middle), and fully Bayesian (right) methods. Each panel compares a complete Monte Carlo posterior
sample of values of & = (T", Nyy) with its true value, marked with a red square; Ny is shown in units of 10?2 cm~2. When fit using an incorrect effective-area curve,
the standard method can result in misleading estimates of 6 (see left panel). The pragmatic Bayesian method, on the other hand, averages over all a priori possible
effective-area curves and significantly enlarges the posterior variance for 6 (see middle panel). Although the centers of the posterior distributions under the standard
and pragmatic Bayesian methods are similar, the larger error bars computed with the latter allow them to include the true values of 6. Finally, the posterior distribution
under the fully Bayesian method shifts toward the true value of 6, allowing it to cover the true value while avoiding the large error bars of the pragmatic Bayesian

method (see right panel).
(A color version of this figure is available in the online journal.)

where pg(@,A | Y) = p@ | A,Y) p(A | Y). The fully
Bayesian posterior distribution of € can be viewed as a weighted
version of that under the pragmatic posterior:

p(A 1Y)
p(A)

T
1 P(AY | Y)
—> pOIAY. Y
T2 p(@] ) (AT

Pﬂs(GIY)Z/p(é‘IA,Y) p(A)dA

&

, (10)

where A is drawn from p(A). Inprinciple, we could implement
the fully Bayesian method by obtaining a sample {A®),t =
1,...,T} from p(A) and evaluating Equation (10). (This
technique is known as importance sampling.) Unfortunately,
evaluating p(A | Y) = [p@,A | Y) df is extremely
challenging in this setting. Alternative computational techniques
therefore are needed; we outline our strategy in Section 2.3 and
give details in the Appendix.
The posterior distribution of A under the pragmatic method,

ppB(A 1Y) = /ppB(Q,A | Y)do

/p(9 | A,Y) p(A) dO = p(A),

is simply equal to the prior distribution of A. The fully Bayesian
posterior for A,

pm(A|Y) = /PfB(G»A|Y)d9
= /P(GIA,Y)p(AIY)dé’:P(AIY),

however, can be used to learn what effective-area curves are
more or less consistent with the observed data. We illustrate
how this is done in Section 3.

2.2. The Advantage of a Fully Bayesian Analysis

To illustrate the advantage of the fully Bayesian method over
the pragmatic Bayesian method, we compared their performance
in a simulation study. In Section 3 we reproduce part of

the simulation study of Paper I but this time including the
fully Bayesian method. Here we give detailed results under
the simulation setting called Simulation II in Section 3. In
particular, we simulate an absorbed power-law source model
with three parameters (power-law index I', absorption column
density Ny, and normalization) using the fake_pha routine
in Sherpa (Freeman et al. 2001). The data set was simulated
without background contamination, using the XSPEC model
wabs#*powerlaw and a default photon redistribution matrix
(RMF) for ACIS-S. We consider the energy range from 0.3 keV
to 7 keV, which is divided evenly into approximately 1000 bins.
Here we give detailed results for Simulation I, which setT" = 1,
Ny = 10*' ecm™2, generated 10° counts, and used an extremal
effective-area curve from the calibration library of Drake et al.
(2006). (We use the same extremal effective-area curve as in
Paper I and label it A; it is the curve with the highest value of
the effective-area in the calibration library.)

Figure 2 plots a Monte Carlo sample from the posterior
distribution under the standard method, pgq(6 | Ao, Y), the
pragmatic Bayesian method, ppg(8]Y), and the fully Bayesian
method, pgg (6 | Y), where Ay is the default under the calibration
library of Drake et al. (2006) and here 6 = (I', Ny). The red
square in each panel gives the true value of 8. The MCMC
samplers used in Figure 2 are described in the Appendix.
Although the error bars computed with the standard method are
the smallest, in this simulation the method misses the true value
of 6. The results are precise but inaccurate. This is not unusual
when the default effective-area curve, A, is misspecified, as it
is in this case because the data were generated under a different
curve—one that is nonetheless plausible given the calibration
uncertainty. The pragmatic method accounts for calibration
uncertainty by averaging over all a priori possible effective-
area curves, resulting in much larger error bars that capture
the true value of #—the method is imprecise but accurate.
As pointed out in Paper I, this is a clear advantage over the
standard method. Finally, the fully Bayesian method accounts
for calibration uncertainty by averaging over those effective-area
curves that are consistent with the observed data. The resulting
error bars are only slightly larger than those produced with a
fixed effective-area curve, but the fitted values for 0 have shifted
enough that the error bars still capture the true value. This
example clearly illustrates the benefits of the fully Bayesian
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Table 2
The Four Simulations Used to Compare the Standard, Pragmatic
Bayesian, and Fully Bayesian Methods

Nominal Counts Spectral Model
10° 10* Hard? Soft®
Simulation I X X
Simulation IT X X
Simulation IIT X X
Simulation IV X X

Notes.
2 An absorbed power law with I' = 2, Ny = 108 cm—2.
b An absorbed power law with "' = 1, Ny = 102! cm™2.

method: we can characterize the performance of the standard
method as “precise but inaccurate,” of the pragmatic method as
“imprecise but accurate,” and of the fully Bayesian method as
both “precise and accurate.”

2.3. Fitting the Fully Bayesian Model

We use a Metropolis—Hastings (MH) MCMC sampler to
obtain a correlated sample, {(0;,’3) , A(sz)),t =1,...,T}, from
p(0, A | Y). An introduction to MCMC, MH samplers, and
the other computational methods that we employ appears in
Appendix A.1. We use a type of MH sampler that is known
as an independence sampler. It uses an approximation, g, to
p(6, A | Y) that does not depend on (Gf(];), Ag ) as its proposal
distribution when sampling (95", A%,

For such a sampler to work efficiently, any range of values that
has appreciable probability under p(6, A | ¥) must also have
appreciable probability under g. This is because the only values
that can be simulated with an independence sampler are those
values that can be simulated with g. If there is a range of values
that has negligible probability under g, values in this range are
unlikely to be simulated. To be sure that no important values
of (8, A) are missed, it is critical that g be an overdispersed
approximation to pgg(6, A | Y). That is, g must be a reasonable
approximation to pg(6, A | Y), but with more proclivity to
extreme values.

Fortunately, the pragmatic posterior distribution, pyp(6, A |
Y), provides just such an overdispersed approximation to
pmi(@, A | Y). This is illustrated numerically in Figure 2, in
which the posterior distribution under the pragmatic Bayesian
model (middle panel) is clearly an overdispersed approximation
to that under the fully Bayesian model (right panel). More
generally, the pragmatic Bayesian approach includes all values
of A that are possible under p(A), whereas the fully Bayesian
approach more heavily weighs those values that are more
consistent with Y. Thus, the fully Bayesian posterior distribution
focuses on a narrow range of A. This in turn leads to a narrower
range of values of 9 that are plausible under pp (6, A | Y) than
under ppa(d, A | Y).

Unfortunately, although ppa(6, A | Y) is an ideally suited
overdispersed approximation to pg (6, A | Y), it cannot be used
directly as the proposal distribution, g, because it is difficult
to evaluate. (We need to evaluate g in order to compute p
given below in Equation (11).) In Appendix A.3 we discuss
this difficulty and how we construct a simple approximation to
ppa(0, A | Y) that is a suitable choice for g.

Because g is based on the pragmatic posterior distribution, we
call it a pragmatic proposal. Using Equation (5), A is completely
represented by the low-dimensional e, so we need only sample e
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and 0 and can compute A(e). Thus, we write our approximation
as g(60, e). Specifically, our sampler for the fully Bayesian model
is as follows.

Pragmatic Proposal Sampler

Fort=0,1,...,T,

Step 1: Draw (9P, eP™P) ~ ¢(0), ¢), set APP = A +(A —

J prop
Ag)+ ) j_ye; rjvj, and compute

_ Pm(8”P, AP | Vg (0. ejy)
P (0, Al | Y)g(@prop, eprop)

1)

Step 2: Let u be a uniformly distributed random number
between 0 and 1 and set

(G(H_l) E(H_]) A(z+l)) o (QPrOP, ePrOP, APTOP) ifu < 1%
m o em > Am (6%, e, AD) otherwise *

In our numerical studies, we make one final adaptation.
At each iteration we either use the update described in the
Pragmatic Proposal Sampler with g set to the approximation
to ppe(6, A | Y) described in Appendix A.3, or we conduct a
random-walk update to (6, e) by replacing Step 1 of the sampler
with the following

Alternative Step 1: Draw e?mp = ey) + N(0,0) for
j = 1,...,J and OP°P ~ g(0 | €P™P), set AP™P —=

Af+(A— Ag) + 21{:1 e Prjv;, and compute

PO AT | Vg (6 | )
P (B Afg | Y) (0P | eror)

The choice between the two versions of Step 1 is made
randomly at each iteration of the sampler. Mixing proposal
distributions in this way tends to improve the convergence
of MCMC samplers. We use this Mixed Pragmatic Proposal
Sampler in all of our numerical studies.

3. SIMULATION STUDIES

In this section we use a series of simulation studies to
demonstrate the circumstances under which the fully Bayesian
method is advantageous. In Section 4 we illustrate the method
in real data analyses.

3.1. Replicating the Simulation Study of Paper |

We begin by replicating four of the eight simulation studies
of Paper I, but this time using the fully Bayesian method.
The four simulations are conducted exactly as the one in
Section 2.2, but data were generated with different spectral
models and different nominal counts (see Table 2). Specifically,
the simulation represents a 2 x 2 design, with the two factors
being

1. either 10° or 10* photon counts are simulated, and

2. data are generated under either a hard spectral power-law
model (I" = 2, Ny = 10} cm™2) or a soft spectral power-
law model (T = 1, Ny = 10*' cm™2).

Following Paper I, all four simulated data sets were generated
with the extremal effective-area curve, Aqy, from the calibration
library of Drake et al. (2006). This curve differs substantially
from the default curve used in the standard method and is
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Figure 3. Results for Simulations I-IV. The panels show the posterior distributions (curves), fitted values (x), and 1o error bars (horizontal bars) for the spectral
power-law index, I'. Results for the standard, pragmatic Bayesian, and fully Bayesian methods are plotted in dotted black, dashed blue, and solid red, respectively. (The
posterior distribution under the standard method is omitted to enhance the comparison of the other two methods. To smooth the plotted pragmatic Bayesian posterior
distributions, we use the MH within PCG Sampler of Paper I, see Appendix A.2.) The true value of T is given by the red broken vertical line. In these simulations, we
consider the situation in which the default effective-area curve is misspecified to a degree that is consistent with the variability of the calibration library. Because the
standard method uses this misspecified curve, it performs poorly. Both the pragmatic and the fully Bayesian methods avoid assuming that A is known without error,
allowing them to perform better. Of these two, the fully Bayesian method provides both estimates of I' that are closer to its true values and narrower error bars.

(A color version of this figure is available in the online journal.)

extreme within the calibration library, but it is nonetheless
consistent with the uncertainty described by the library. We
also examined four additional simulations in Paper I where the
simulated data were generated using the default effective-area
curve. We exclude discussion of these simulations here because,
first, it is unrealistic to assume that the true effective area is
known and, second, if such an assumption is made, it only
shows, as expected, the standard method performs the best; see
Xu (2014) for details. In practice, the effective-area curve is
specified with uncertainty, and it is not feasible to correctly
specify its value. The four simulations we conduct (Simulations
I-1V) are numbered Simulations 5-8 in Paper I.

We fit an absorbed power-law model to each of the four
simulated data sets, using the standard, pragmatic Bayesian, and
fully Bayesian methods. In all cases the standard method is run
using the (misspecified) default effective area. This enables us to
investigate the effect of misspecification of Ay, where the degree
of misspecification is consistent with the range of variability
of the calibration library. Posterior distributions, intervals, and
fitted values for I, computed with each of three methods, run on
each simulation, appear in Figure 3. (We use posterior means
and central 68% posterior intervals for fitted values and error
bars throughout the paper.) The joint posterior distribution of
I" and Ny under Simulation II for each of the three methods is
discussed in Section 2.2 and appears in Figure 2.

In all four simulations, the standard method produces signifi-
cantly narrower error bars than the other methods, especially in
the large-count Simulations I and II. Unfortunately, however, as
expected its intervals miss the true value of I by a large margin.

The pragmatic Bayesian method, by contrast, exhibits similar
fitted values but much wider error bars that reflect the variability
in the fits resulting from different choices of A in the range of
A. Finally, the fully Bayesian method uses the data to exclude
some A in the range of A that are inconsistent with the observed
spectra. The result is optimal in that the fitted values shift to-
ward the true value of I" and the widths of the error bars narrow
relative to those produced with the pragmatic Bayesian method.
Thus, like the pragmatic Bayesian method, the fully Bayesian
method provides error bars that contain the true value at nearly
the correct statistical rate (68.2% here), but these error bars
are narrower than those provided by the pragmatic Bayesian
method—and can be much narrower with large counts. We
conduct a large-scale simulation study in Section 3.2 to better
quantify these trends.

The results of the simulations can be understood by consid-
ering the statistical errors (due to Poisson fluctuations in the
counts) and the systematic errors (due to misspecification of the
effective-area curve). The standard method ignores the latter
sources of error, and thus, not surprisingly, it provides mis-
leadingly narrow errors and can exhibit significant bias if the
misspecification of A is substantial. Because it only considers
statistical errors, the standard method underestimates the total
error for large-count spectra. The pragmatic Bayesian method,
on the other hand, incorporates both statistical and systematic
errors, resulting in significantly larger error bars. Because sys-
tematic errors do not dissipate as the sample size grows, the
error bars produced by the pragmatic Bayesian method are not
particularly sensitive to the number of counts. In Paper I, we
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Figure 4. Estimating the range of effective-area curves that are consistent with data. The plots summarize pgg(A | Y) for Simulation II. The true (extremal) and
nominal (default) effective-area curves are plotted in dot—dashed red and dotted black. The pointwise posterior distribution of A is plotted in blue, where the dark (light)
blue area corresponds to the central 68.3% (90%) region of p(A | Y) and the solid blue curve plots the posterior mean. The top panel is on the effective-area scale,
and the bottom panel subtracts off the true effective-area curve, Aet, to highlight differences. The true curve is contained entirely in the blue region. The posterior
mean (solid blue curve) shifts from the prior mean (dotted black) toward the true effective-area curve (dot—dashed red).

(A color version of this figure is available in the online journal.)

illustrate that as the photon counts grow and the statistical errors
become negligible, the error bars produced by the pragmatic
methods will be entirely due to calibration uncertainty.

The power of the fully Bayesian method is that it actually
uses the data to measure the systematic error. Put another way,
it handles systematic error in the same way one would handle
statistical error. Thus, its error bars are wider than those provided
by the standard method because they incorporate both sources
of error, but their width decreases as the number of counts grows
because the data are able to narrow the calibration uncertainty.
This in turn allows us to go one step further and actually estimate
A using its posterior distribution, pgg(A | Y).

We illustrate this in Figure 4, which shows that Ay is
inconsistent with the pg(A | Y) fit under Simulation II. The
shaded light blue area corresponds to a 90% pointwise posterior
region'? for A and contains the true effective-area curve, Acy
(plotted in red). The posterior region, however, is shifted toward
Ay (plotted in black), which serves as the prior mean for A.
Thus, the prior distribution on A has a clear influence on its
posterior distribution. A similar pattern can be seen in Figure 3.
The fitted values of I are pulled from the true value toward the
best value assuming A = A( as computed with the standard
method. We emphasize, however, that the prior distribution on
A used by the fully Bayesian method is in fact making a much
weaker assumption than what is commonly made in practice: the
assumption that A is exactly equal to Ay. The standard method
makes this assumption, and as we demonstrate in Section 3.2,
its fitted values exhibit significant bias when A is misspecified.

10 1n this case a 90% pointwise region is composed of intervals for each
energy, all of which have 90% (central) posterior probability.

3.2. A Frequency Evaluation of the Methods

The 2 x 2 simulation study described in Section 3.1 generated
only one data set for each of the four simulation studies. In this
section we generate 50 spectra for each of the four simulation
settings described in Table 2 and fit each of the resulting 50 x 4
simulated spectra with the standard, pragmatic Bayesian, and
fully Bayesian methods. The fitted values for I" and their 68.2%
error bars computed using the first ten spectra generated in
each simulation appear in Figure 5. Numerical summaries of
the entire simulation study appear in Table 3. The frequency
analyses confirm the trends we highlighted in Section 3.1.

1. In all four simulations, the standard method on average
exhibits the narrowest error bars (mean error bars), the
pragmatic Bayesian method has the widest, and those of
the fully Bayesian method are in between. (This also holds
when A is known with certainty; see Xu 2014.)

2. When A is correctly specified, all three methods perform
well, but the standard method performs best because it uses
precise, butin practice unattainable, knowledge of A. (These
results are not shown; see Xu 2014.)

3. Inthe more realistic situation in which there is uncertainty in
A (i.e., Simulations I-IV), both the standard and pragmatic
Bayesian methods exhibit substantial bias.'' The fully
Bayesian method reduces this bias, resulting in the overall
smallest mean square error.

11 By “bias” we mean statistical bias, which is defined as the difference
between the expected value of a fitted parameter upon repeated replication of
the data and the true value of that parameter.
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Figure 5. Frequency analysis for Simulations I-IV. Each panel gives the fitted values and lo error bars for I resulting from 10 replicate simulations. The red
broken vertical line in each panel indicates the true value of I'. The four rows correspond to the four simulation settings, and the three columns correspond to the
standard, pragmatic Bayesian, and fully Bayesian methods, respectively. Owing to the misspecification of Ag, the standard and pragmatic Bayesian methods both
exhibit significant bias. The pragmatic Bayesian method adjusts for this bias with wider error bars, while the fully Bayesian method reduces the bias. Overall the fully
Bayesian method is able to cover the true value of I' more often with narrow error bars than either of the other methods, especially with large-count spectra (i.e.,

Simulations I and II).

(A color version of this figure is available in the online journal.)

Table 3

Statistical Summaries of the Frequency Simulation Study

Standard Pragmatic Bayesian Fully Bayesian

Mean Mean Mean
Cover-  Error Std Root  Cover-  Error Std Root  Cover-  Error Std root
age® Bars® Bias® Error!  mse® age Bars Bias Error mse age Bars Bias Error mse
Sim If 0.00 0.030 0.092 0.029 0.097 0.62 0.094 0.082 0.030 0.088 0.76 0.065 0.035 0.040 0.052
Sim IIf 0.00 0.010 0.056 0.007 0.056 0.80 0.042 0.053 0.008 0.054 0.78 0.025 0.002 0.017 0.016
Sim III 0.40 0.076  0.099 0.078 0.125 0.68 0.123  0.083 0.079 0.113 0.66 0.084 0.068 0.078 0.103
Sim IV 0.12 0.026 0.057 0.027 0.063 0.48 0.049 0.053 0.028 0.059 0.56 0.040 0.040 0.036 0.053
Notes.

4 The proportion of 68% (1o) intervals that contain the true value of T.

" The mean length of the 1o error bars.
¢ The mean of the fitted values of T" minus its true value.

4 The standard deviation of the fitted values of T.
¢ The square root of the mean of the squared deviations between the fitted value and the true value of I'.
f Results for Simulations I and II are highlighted in bold because they show the largest gain in performance for the fully Bayesian method—specifically,
when the effective-area curve is misspecified with high-count spectra.

4. The advantage of the fully Bayesian method is most striking
when A is misspecified and the data set is large (Simula-
tions I and II). In this case the estimates produced with
the fully Bayesian method have much lower bias and root

mean square (rms) error than those of the other two meth-
ods. Fully Bayesian intervals are much more likely to in-

clude the true value of I" (coverage) than intervals based
on a fixed effective-area fit, and the fully Bayesian error

10

4. DATA ANALYSES

bars can be much narrower than the pragmatic Bayesian
error bars. These effects dissipate with smaller data sets be-
cause substantial data are required to narrow the calibration
uncertainty.

Here we apply the three methods to real data to demonstrate
the practical effects of the fully Bayesian method. We consider
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power-law and multithermal sources observed with ACIS-S and
a nominal blackbody source observed with Chandra HRC-S/
LETG.

4.1. A Sample of Radio-loud Quasars

In radio-loud quasars, X-ray emission originates in close
vicinity to a supermassive black hole and is believed to be caused
by either an accretion disk or a relativistic jet. This emission can
be modeled with a Compton scattering process and the X-ray
spectrum described using an absorbed power law:

A(E; 0) = NETeoENiphotonsem 2 s L keV™!,  (12)
where o (E) is the absorption cross section and the three model
parameters are 6 = (N, I, Ny), with N the normalization at
1 keV, T" the photon index of the power law, and Ny the
absorption column. We consider a small sample of radio-
loud quasars whose spectra were observed with Chandra in
2002 (Siemiginowska et al. 2008; Lee et al. 2011). Standard
data processing including source extraction and calibration
was performed using the CIAQ software (Chandra Interactive
Analysis of Observations).

The number of counts in the observed spectra varies between
8 and 5500. As in Paper I, we excluded two of the spectra
(ObsID 3099, which had 8 counts, and ObsID 836, which is
better described by a weak thermal spectrum) and reanalyzed
the remaining 15 using the standard, pragmatic Bayesian, and
fully Bayesian methods. We account for background contami-
nation using a background spectrum extracted over large annuli
surrounding each source and a highly structured background
model that was originally fit to the blank-sky data provided
by the Chandra X-ray Center (see Paper I for details). Only
the normalization of the background model was fit in the in-
dividual spectral analyses. This approach was used for all but
the two lowest-count spectra (<45, both with short 5 ks ex-
posures), for which background was ignored. The sample of
quasars was originally analyzed by Siemiginowska et al. (2008),
who did not account for calibration uncertainty. A follow-up
analysis accounted for calibration uncertainty using the prag-
matic Bayesian method and resulted in substantially larger error
bars for the high-count data sets (Paper I). As illustrated in
Section 3, systematic errors due to calibration uncertainty
swamp statistical errors for large data sets. For small data sets,
however, the statistical errors may be much larger and the rela-
tive effect of calibration uncertainty is therefore less important.
Here we reanalyze the same spectra with the fully Bayesian
method and illustrate how it is able to deliver low-bias param-
eter estimates with smaller error bars than in the pragmatic
Bayesian method.

We fit each spectrum in three ways:

1. with the standard method,

2. with the pragmatic Bayesian method using the Iterated
MH within partially collapsed Gibbs (PCG) Sampler (see
Appendix A.2), and

3. with the fully Bayesian method using the Mixed Pragmatic
Proposal Sampler.

With each of the three methods, we use the 15 observation-
specific default effective-area curves, Aj, corresponding to each
spectra. For the two Bayesian methods, we use J = 8 in the
PCA summary of the calibration library along with the Aj
in Equation (5). When running the Iterated MH within PCG
Sampler, we set I = 10 and M = 10; that is, at each iteration

11
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we run pyBLoCXS M + I — 1 times, discarding the output of the
first I — 1 runs and keeping the output of the final M runs. In the
Mixed Pragmatic Proposal Sampler, the two proposal rules were
used in equal proportion, and with the random-walk proposal
we seto = 0.1.

Results appear in Figures 6 and 7. Error bars for I" computed
under the pragmatic Bayesian (6,g) and fully Bayesian (6ts)
methods are compared with those computed under the standard
method (Gyq) in Figure 6. The left panel replicates results
reported in Paper I and shows that for large data sets, for which
Ogd 18 small, the pragmatic Bayesian method produces much
larger error bars than the standard method; 6PB accounts for
systematic and statistical errors, whereas G4 only accounts for
statistical errors. For the largest data sets 6,p is twice as big as
G- The right panel of Figure 6 shows that the fully Bayesian
method produces error bars more in line with yq; although for
the largest data sets Gyp is bigger than Gy, it is not as big as 6.

Figure 7 compares the 1o intervals for I" produced by the three
methods. Consider an interval computed under the pragmatic

Bayesian method: Clp(I") = T+ ope(I}, where T is the
estimate of I" under this method. To compare this interval with

that computed under the standard method, we subtract fstd from
CIg(I") and divide by 64q(I"). The result is an interval that
extends from —1 to 1 if Clg(I') and Cly(I') are identical, is

wider if 6y > G4, and shifts to the left or right if pr and

~

Iy differ. These adjusted intervals are plotted in the left panel
of Figure 7. There is little shifting to the left or right because
the pragmatic Bayesian and standard methods produce similar
estimates. For smaller-count data sets the adjusted intervals
are nearly {—1, 1}, but for larger-count data sets the adjusted
intervals are as much as twice as wide. The right panel of
Figure 7 illustrates intervals computed under the fully Bayesian
method, Clgg(I), that are adjusted in the same manner. For the
smaller data sets Clgg(I") and Clgy(I') are similar, but for larger
data sets they differ: the adjusted intervals tend to shift to the
left or right but are not generally much more than two units
wide. This means that the fully Bayesian method tends to adjust
the fitted value and to increase error bars only moderately. In
two cases (ObsID 3097 and 866) the fully Bayesian method
shifts the fitted value of T" by more than 64. This constitutes a
significant shift in the scientific inference for these observations
when calibration uncertainty is accounted for in a principled
Bayesian manner.

Guidelines as to how many counts are needed for the fully
Bayesian fitted values and error bars to differ from those
computed with the standard method would be very useful. In
practice, however, this depends on a number of key factors,
including the instrument in question (i.e., the calibration library),
the energy range over which fits are carried out, the fitted spectral
model, and the true underlying source spectrum. Thus, there
are no useful generic guidelines, and the establishment of such
guidelines in specific situations is an important area of future
research. This example provides a single illustration of this
possibility, where we see that observations with more than about
5000 counts produced noticeably different inference under the
two methods; see Figure 7.

4.2. Fitting a Multithermal Spectral Model

Our analyses thus far have been carried out using a simple
power-law spectral model (in Paper I, in the simulations in
Section 3, and for the observed data in Section 4.1). Here we
illustrate the pragmatic and fully Bayesian methods using a more
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Figure 6. Comparing the error bars for I' computed under the standard (65q), pragmatic Bayesian (6;), and fully Bayesian (6¢) methods using spectra from each
of 15 radio-loud quasars. Smaller values of 6 correspond to data sets with more counts. For high-count spectra, 6, tends to be substantially larger than 6q while
ofp is only moderately larger than Ggq4. Thus, the fully Bayesian method is able to provide a principled accounting for calibration uncertainty with only a moderate

increase in the final error bars.
(A color version of this figure is available in the online journal.)
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Figure 7. Standardized pragmatic (left) and fully Bayesian (right) intervals. Using spectra from the 15 quasars, the left panel plots 1o confidence intervals computed
with the pragmatic Bayesian method, but re-centered and rescaled using the estimate and error bars of I" computed under the standard method: (Clpp — lA'sld) /s (D).
If the pragmatic and standard methods return the same estimates and error bars, the plotted intervals would equal the interval (—1, 1). In fact, the plotted intervals are
as much as twice this wide for large-count data sets, indicating that 6, can be substantially larger than 6q. The right panel plots 1o confidence intervals computed
with the fully Bayesian method, re-centered and rescaled in the same manner. The plotted intervals shift right and left because the fitted values under the standard and
fully Bayesian methods differ. The widths of the fully Bayesian intervals, however, are only moderately larger than the standard intervals.

(A color version of this figure is available in the online journal.)

complex multicomponent thermal model. To do this, we analyze
one of the strongest sources in the Chandra Source Catalog,
¢ Ori, ayoung (<12 Myr) binary system composed of an X-ray-
bright O9 supergiant and a weaker BO subgiant with about a 3”
separation. The source is observed (ObsID 1878) at 15’ off-axis,
situated on the ACIS-S2 chip, and is detected with a count rate
of 1.33 counts s, with > 10° counts in 75.46 ks. Because of the
large off-axis location, the point-spread function is broad, and
the binary cannot be spatially resolved. Furthermore, the source
is spread out over more than 20,000 pixels, with maximum
fluence at <0.0017 counts s~! pixel ™! so that CCD pileup effects
may be ignored.
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Our objective is not to model the spectrum in detail, but
rather to consider the effect calibration uncertainty has on
spectral fitting. (The X-ray emission is thermal, generated from
shocked plasma deep in the wind; see Waldron & Cassinelli
2001; Pollock 2007; Raassen et al. 2008; Herve et al. 2013, for
various models designed to account for X-ray emission from
massive stars.) We construct a variable-abundance absorbed
two-temperature APEC spectral model and fit it to the data.
This roughly mimics previous attempts to model spectra of
¢ Ori obtained with other telescopes such as ASCA (Yamauchi
et al. 2000) and XMM-Newton (Raassen et al. 2008). For
reference, Yamauchi et al. find two temperature components
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Figure 8. Standard, pragmatic Bayesian, and fully Bayesian fits of the 71 and 7> parameters in the spectrum of ¢ Ori. The first row plots a complete Monte Carlo
simulation from each of the three posterior distributions; the solid red lines correspond to the posterior means of 77 and 7> under each fit. The fitted values (posterior
means) for the two parameters are indistinguishable under the standard and pragmatic Bayesian methods but shift noticeably under the fully Bayesian method. Error
bars are quantified by the spread of the simulated parameter values under each of the methods. The error bars under the pragmatic Bayesian method are noticeably
larger than those computed with the other two methods. Thus, the fully Bayesian method again is able to account for calibration uncertainty by shifting the fitted
values rather than by increasing their error bars. The second row presents time-series plots of the Markov chains for 77 used to generate the three Monte Carlo
simulations. While all three chains are fairly well behaved, the fully Bayesian chain occasionally “sticks” at the same parameter value for a number of iterations. This
is an indication that the pragmatic proposal distribution attributes relatively little probability to some regions of the parameter space with appreciable probability under
pm(0, A | Y). Nonetheless, the algorithm performs well enough for valid inference. (Here we only plot every 10th iteration of the fully Bayesian sampler.)

(A color version of this figure is available in the online journal.)

Table 4
Fitted Parameters for ¢ Ori

Model Standard Pragmatic Bayesian Fully Bayesian
Parameters Analysis Analysis Analysis
Ny (10%° cm—2) 14.8 £ 0.90 15.0 +£0.92 15.1+£0.87
Ty (keV) 0.179 £0.0016  0.179 +0.0022  0.181 % 0.0019
T, (keV) 0.474 £0.0063  0.474 +0.0069  0.471 & 0.0067
[C,N, O]* 0.23 4+ 0.018 0.23 4 0.024 0.21 £0.026
[NeJ? 0.48 + 0.031 0.48 £ 0.033 0.47 +0.034
[Ni, Mg, Si, Ca, Fe]*  0.41 £ 0.028 0.41 4 0.032 0.40 £ 0.031
Norm; (102 cm™) 6.3 +0.65 6.4+ 0.78 5.940.56
Normj (102 cm™)  1.05 4 0.057 1.07 £ 0.079 1.00 & 0.059

Note. * Abundances relative to solar (Anders & Grevesse 1989).

at Ty = 0.2, T, = 0.6 keV, at an absorption column fixed at
Ny = 2.610%° cm~2; Raassen et al. find three temperature
components at 73 = 0.55, T 02, Tz 0.07 keV,
Nug = 510% cm~2, with abundances of C, N, and O, being
close to solar photospheric (represented by the compilation of
Anders & Grevesse 1989), and those of Ne, Mg, Si, and Fe
being elevated. The results of applying the standard, pragmatic
Bayesian, and fully Bayesian methods to the data are given
in Table 4. We find significantly higher absorption columns
and lower temperatures and abundances, with our estimated
abundance consistent with the low metallicities measured for
the nearby NGC 2023 star cluster (Lopez-Garcia et al. 2013).
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These results are stable with respect to calibration uncertainty,
with all three methods producing similar best-fit values.

The fits are also summarized in Figures 8 and 9. They show
that relative to the standard method, the pragmatic Bayesian
method delivers similar fitted values for 7| and 75 but accounts
for calibration uncertainty by inflating their error bars. The fully
Bayesian method shifts the fitted values by a small amount and
generally requires a smaller increase in the error bars. In this
case, the posterior correlation of 77 and T, decreases under the
fully Bayesian method; see Figure 9.

The second row of Figure 8 shows time-series plots of
the Markov chains of 7' used to simulate the three posterior
distributions. (The samplers were runwith J =8, 1 = 10, M =
10, and 0 = 0.1.) While all three converge reasonably well,
the fully Bayesian chain occasionally “sticks” at a particular
value of the parameter for a number of iterations. This indicates
that the pragmatic proposal distribution may attribute relatively
little probability to some regions of the parameter space with
appreciable probability under pp(f, A | Y). This can also
be seen in Figure 9, where the 90% contours of (normal
approximations to) the pragmatic and fully Bayesian posterior
distributions are plotted in green and blue, respectively. The fact
that the fully Bayesian contour extends outside the pragmatic
Bayesian contour indicates that we may have trouble exploring
parts of pgg(6, A | Y) using the pragmatic proposal distribution.
(Recall that we require the jumping rule of the independence
sampler to be an overdispersed approximation to pg(6, A | Y).
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Figure 9. Plot superimposing the 90% contours of the three posterior distribu-
tions simulated in the first row of Figure 8. The contours are computed using a
normal approximation to the posterior distribution computed under the standard
(red), pragmatic Bayesian (green), and fully Bayesian (blue) methods. The pos-
terior means under the three methods are plotted, respectively, as a red cross,
a green plus sign, and a filled blue square. Relative to the standard method,
the pragmatic Bayesian method delivers similar fitted values and larger error
bars, while the fully Bayesian method shifts the fitted value but only moderately
inflates the error bars. In this example the correlation of the two parameters
decreases under the fully Bayesian method.

(A color version of this figure is available in the online journal.)
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The Mixed Pragmatic Proposal Sampler, however, mixes the
pragmatic proposal with a random-walk update. This second
component allows simulation of parameter values with relatively
low probability under the pragmatic proposal rule. In this case
the sampler was computationally costly. Owing to its “sticking,”
we ran the fully Bayesian sampler for 30,000 iterations. (The
pragmatic sampler was run for 3000.) This, combined with
complexity of the multithermal spectral model fit with its eight
parameters, resulted in a larger computational burden (>>20x)
than the other analyses carried out here (see Sections 4.1 and 4.3;
those runs typically took 60-90 minutes on a 64-bit 2.2 GHz
CPU with 16 GB of RAM).

In the fully Bayesian run, the data prove to be informative
about the effective areas. The subset of A that is consistent
with the data and the adopted model suggests that the nominal
effective area is underestimated; see Figure 10. This is not
surprising, since effective areas at large off-axis angles are
not as well calibrated as those near the aimpoint. Naturally,
this result is conditional on the validity of the adopted spectral
model of an absorbed two-temperature thermal emission with
variable abundances. Our analysis suggests that at off-axis
angles >15' the Chandra effective areas should be increased by
~10% over the 0.5-2 keV range and by ~5% at high energies
>6 keV.

4.3. Fitting a Blackbody Model to a Grating Spectrum

As an additional example of the versatility of our approach,
we consider data from an entirely different detector, fitted with a

500
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Figure 10. Estimating the range of effective-area curves that are consistent with the spectrum of ¢ Ori. The plots summarize p(A | Y). The pointwise posterior
distribution of A is plotted in blue, where the dark (light) blue area corresponds to the central 68.3% (90%) region of psg(A | Y). The pointwise posterior mean of A
and its default value, A, are plotted as solid blue and dotted black lines, respectively. The top panel shows the full effective areas, and the bottom panel subtracts off
the default effective-area curve, Ay, to highlight the differences. (We cannot subtract off the true curve as in Figure 4 because it is unknown.) The data suggest that Ag
underestimates the true effective area by ~10% over the 0.5-2 keV range and by ~5% at high energies >6 keV, and the vignetting correction must be reduced for

large off-axis angles for Chandra imaging observations.
(A color version of this figure is available in the online journal.)
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Figure 11. Top five principal components of the Chandra LETGS+HRC-S effective-area calibration library. The first (blue), second (red), third (green), fourth (brown),
and fifth (pink) components, weighted by the square root of their eigenvalues, are shown as colored regions. Together, they account for 95.5% of the variance in
the LETGS+HRC-S calibration library. The sum of the similarly weighted contributions from the remaining components is shown in gray. The vertical dashed lines

indicate the wavelength range over which the data analysis is carried out.

(A color version of this figure is available in the online journal.)

blackbody spectral model. We analyze a high-resolution grating
spectrum of an isolated neutron star, RX J1856.5—3754 (RX
J1856). This source has been observed with the LETGS+HRC-S
grating/detector combination numerous times over the Chandra
mission and has accumulated 617.735 ks of exposure. RX J1856
is an intrinsically interesting object: it was originally classified
as an isolated neutron star but was later suspected to be a
quark star (Drake et al. 2002). The X-ray data were fit as a
blackbody spectrum with a temperature of 7 = 61.1 £ 0.3 eV
by Drake et al., resulting in a radius estimation of ~4-8 km.
The optical data are inconsistent with the X-ray predictions
and require fitting by a more complex magnetic hydrogen
atmosphere model, with a temperature of 7o, =~ 37 eV and
a radius R, ~ 17 km consistent with a conventional neutron
star core (Ho et al. 2007). In the X-ray regime itself, these two
models cannot be statistically distinguished (Ho et al.).

Here, for the sake of simplicity, we adopt an absorbed black-
body spectrum model to fit the soft X-ray data. This spectral
model was fit using exactly the same methods and algorithms
as in Section 4.1 (J = 8,1 = 10, M = 10,0 = 0.1.), except
that the background was modeled as a fixed eighth-degree poly-
nomial whose coefficients were determined via a standard fit to
the background spectrum, and was then incorporated into the
source model with a variable normalization.

As was done for the Chandra/ACIS-S, we generate a cali-
bration library based on constrained spline curve modifications
of known subsystem uncertainties in the LETGS+HRC-S sys-
tem (J. Drake et al., in preparation). Figure 11 shows the top
five principal components (in color), which together account for
>95% of the variance in the library. Also shown, in gray, are the
summed contributions of the remaining components, which ac-
count for <5% of the variance. Notice that there are wavelength
regions where this residual could be a significant factor. The two
wavelength ranges over which RX J1856 data are informative
are shown with vertical dashed lines; the residual components
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do not affect the analysis over these ranges. Note that in all of
our analyses, we use J = 8 principal components.

We limit our analysis to the wavelength ranges +[25:59.5,
68:80] A, with the gap centered on the HRC-S chip gap. The
chip gap is excluded because, even though the nominal effective
area Ay includes the effect of dither and corrects for the drop
across the gap, it is subject to additional systematic errors
due to deformations in the locations of the active regions on
the chip, and these are not included in the calibration library.
We co-add the spectra from all positive dispersion data sets
of RX J1856. We exclude the negative-order dispersion data
for the sake of simplicity. It has a chip gap in a different
location, and the uncertainty in its effective area likely exhibits
qualitatively different characteristics compared to the positive
order, and thus using it would make interpretation of the analysis
results difficult. There are ~129 kcount in the spectrum over the
chosen wavelength range, of which ~43.8 kcount are estimated
to be due to the background. Although the large number of
net counts (85 kcount) puts this data set in the range where
calibration uncertainty will likely affect the total error bars, the
large fraction of expected background counts makes this an
inefficient data set to place constraints on the calibration library.
As expected, the application of the pragmatic Bayesian method
increases the error bars on the best-fit model parameters; see
Table 5. For instance, the temperature estimate remains stable
at T = 62.4 eV, but the uncertainty increases from £0.6 eV
for standard analysis to 1.05 eV for pragmatic Bayesian and
decreases slightly to £0.93 eV for fully Bayesian analysis; see
also Figure 12.

Unlike the case with ¢ Ori (Section 4.2), there is no significant
effect on the range of effective-area curves in the calibration
library that are consistent with the spectrum of RX J1856 (see
Figure 13). We attribute this lack of sensitivity partly to the high
background that contaminates the data set and also to the short
wavelength range over which the data set is informative. As we
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Figure 12. Standard, pragmatic Bayesian, and fully Bayesian fits of the temperature and absorption column in the spectrum of RX J1856.5—3754. The plots are
layered as in Figure 8. In this case, however, there is only a small shift of the fitted values (posterior means given by the solid red lines). There is a noticeably less
joint uncertainty in the two parameters under the fully Bayesian fit than under the pragmatic fit. There is no noticeable sticking for the any of the MCMC samplers;

compare the second row with that of Figure 8.
(A color version of this figure is available in the online journal.)

Table 5
Fit Parameters for RX J1856.5—3754
Model Standard Pragmatic Bayesian Fully Bayesian
Parameters Analysis Analysis Analysis
Nu (100 cm~2) 0.91 £0.043 0.91 £ 0.058 0.93 £ 0.056
T (eV) 62.4 +0.58 62+ 1.1 62 +0.9
Norm (%a ergs—! cm™?) 0.311 £ 0.0056 0.31 +0.023 0.32 £ 0.022
0
Background scale 66 £ 1.5 66 + 1.8 65+ 1.7

Note. L3¢ is the source luminosity in units of 1036 erg s~! and Dy is the distance in units of 10 kpc.

see from the principal components displayed in Figure 11, there
are long-range correlations present in the library that will be
selected for when a source with a suitably long wavelength range
is analyzed. In the current analysis, there is a suggestive small
curvature bias of ~1%-2% in the HRC-S/LETG effective area
over the 25-80 A range. This bias, however, is fully contained
within the nominal 1o range of the effective-area curves.

5. DISCUSSION

In this article we demonstrate the advantage of a fully
Bayesian accounting of calibration uncertainty. Relative to the
pragmatic Bayesian method, the fully Bayesian method delivers
estimates with smaller bias and smaller error bars. As with the
pragmatic method, the fully Bayesian method requires large-
count data sets to deliver significant gains over the standard
method. In low-count data sets, uncertainty stemming from
random fluctuations in the counts swamps that due to calibration.
The advantage of the fully Bayesian method stems from its
ability to handle systematic errors due to calibration uncertainty
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in the same way one would handle statistical errors. In this
way it accounts for calibration uncertainty by shifting the fitted
values of spectral parameters. From a scientific perspective,
this is preferable to increasing their reported error bars, the
mechanism by which the pragmatic Bayesian method accounts
for calibration uncertainty.

Fitting a spectral model under the fully Bayesian method
poses significant computational challenges. We illustrate how
we deal with this problem by leveraging the pragmatic Bayesian
fit to deliver parameter values simulated under this fully
Bayesian posterior distribution. This strategy allows us to si-
multaneously fit the effective-area curve and the spectral pa-
rameters. Thus, we are able to use information in large-count
observed spectra to narrow the uncertainty for the calibration
product.

We focus on the application of the fully Bayesian methods
to account for uncertainty in the effective-area curve in X-ray
spectral analysis. The general techniques we employ, however,
have broad applicability in handling systematic errors. Ob-
vious extensions include accounting for uncertainty in other
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Figure 13. Estimating the range of effective-area curves that are consistent with the spectrum of RX J1856.5—3754. The plots summarize pgg(A | Y). The pointwise
posterior distribution of A is plotted in blue, where the dark (light) blue area corresponds to the central 68.3% (90%) region of pss(A | Y). The pointwise posterior
mean of A and its default value, A, are plotted as solid blue and dotted black lines, respectively. The top panel displays the effective areas, and the bottom panel
shows the same data with the default effective area, Ao, subtracted off to highlight the differences. (We cannot subtract off the true curve as in Figure 4 because it is
unknown.) Here the fitted (posterior mean) and default (dotted black curve) are very similar.

(A color version of this figure is available in the online journal.)

calibration products, such as photon redistribution matrices
(RMF), exposure maps, and point-spread functions. Because
all of these calibration products exhibit more complex structure
than an effective-area curve—they are represented by matrices
rather than vectors—more sophisticated methods will be needed
to summarize their calibration libraries into concise and useable
forms.

Less obviously, our methods can be used to account for other
sources of systematic errors. In our fit of the radio-loud quasars
in Section 4.1 and of the background-dominated isolated neu-
tron star RX J1856 in Section 4.3, for example, we used highly
structured background models that were originally fit to the
blank-sky data provided by the Chandra X-ray Center or to
the locally measured background from a spatially offset region.
Only the normalization of this background model was fit to
the individual sources. Just like an effective-area curve, this
background model is a vector that can only be specified with
uncertainty. Ignoring this uncertainly can lead to biases and sys-
tematic errors. Similarly, the comprehensive atomic line emis-
sivity database, AtomDB (Foster et al. 2012), is often used to
specify a spectral model for X-ray data. While this database
has been compiled by carefully combining empirical observa-
tions with theoretical calculations, its entries are not known
exactly. Like a calibration product, its errors exhibit complex
high-dimensional correlations that cannot be summarized with
simple error bars for each entry. A better strategy is to com-
pile an “AtomDB library” akin to a calibration library that can
then be modeled to fully integrate uncertainty in AtomDB into
individual spectral analyses. In principle, we can image fitting
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models that simultaneously account for uncertainly both in mul-
tiple calibration products and in multiple model components. In
practice, this will involve significant modeling challenges such
as accounting for correlations between calibration products and/
or model components. Sophisticated computation methods will
also be required, and large data sets will be needed to narrow
uncertainty on multiple sources of systematic error. Although
such work will involve substantial effort, it is likely to pay sig-
nificant dividends in reducing bias stemming from calibration
and model misspecification, at least when large-count data sets
are available.

We dedicate this paper to the memory of Alanna Connors.
Her commitment to disseminating principled statistical meth-
ods among astronomers and to demonstrating their practical
benefits in real problems influenced not only this work but the
burgeoning discipline of astrostatistics as a whole. She was also
an enthusiastic educator of statisticians, helping them to grap-
ple with the subtleties of astrophysical data and models and to
become actively involved in solving statistical challenges in as-
tronomy. Although the impact of her efforts remains clearly felt,
she is dearly missed.
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APPENDIX
STATISTICAL COMPUTING

In this appendix we outline our computational strategy for
fitting the fully Bayesian model. We begin in Appendix A.1
with a brief review of how Bayesian models can be fit using
MCMC. As we discuss in Section 2.3, our fully Bayesian
samplers are built upon a pragmatic Bayesian sampler. Thus, in
Appendix A.2 we describe how we can improve the efficiency
of the computational method presented in Paper I for fitting the
pragmatic Bayesian model. Appendix A.3 describes the simple
approximation to ppg(f, A | Y) that we use in our fully Bayesian
sampler. Additional details of our algorithms, samplers, and
numerical methods can be found in Xu (2014).

A.l. Fitting Bayesian Models Using MCMC

To compute fitted parameters and their error bars in a Bayesian
analysis, we use quantities such as the mean, variance, and per-
centiles of the posterior distribution. Although in some simple
cases the posterior distribution is a well-known distribution and
these quantities can be derived analytically, numerical meth-
ods are typically used in practice. One very popular numerical
method is Monte Carlo, which involves simulating replicate val-
ues, {yV, ..., ¥}, from the posterior distribution and using
sample means, variances, and percentiles of the replicate values
to compute fitted parameters and error bars.

The most common Monte Carlo methods involve MCMC.
(Brooks et al. (2011) offers a general reference for MCMC,
while van Dyk et al. (2001) and Park et al. (2008) review how
it can be used in X-ray spectral analysis.) A Markov chain is
constructed as an ordered sequence {(v®, t =1,2,...}, each
value of which only depends on the previous value in the chain.
Specifically, suppose we were able to obtain a simulated value,
¥, from the posterior distribution, and using it, we could
randomly generate another value:

v~ KWly®),

so that (" is also a simulated value from the posterior
distribution. In Equation (A1), K is called the kernel of the
MCMC sampler; it describes a random distribution that depends
only on the previous value ¥~ and that we use to simulate a
next value "), Iterating Equation (A1) in this way results in a
chain of values that is called a Markov chain and that delivers a
correlated sample from the posterior distribution. In practice, we
must start the chain at a typically arbitrary value, ¥, and let it
run until it converges to the posterior distribution. Convergence
can be checked by running multiple chains and waiting until
they appear to sample from the same distribution (e.g., van Dyk
et al. 2001; Gelman & Shirley 2011).

Deriving kernels that are easy to use and result in MCMC
samplers that are fast to converge is key in practice. Two
popular methods for deriving MCMC samplers are the Gibbs
sampler (e.g., Casella & George 1992) and the MH algorithm
(e.g., Hastings 1970). The Gibbs sampler proceeds by sampling
each of several components of ¢ for their conditional posterior
distributions given the other components of . Specifically,
again letting ¥ = (6, A),

Two-step Gibbs Sampler:

Fortr=0,1,2,...,T,

Step 1: Draw A ~ p(A | 6D, Y).
Step 2: Draw 0U*D ~ p(@ | A“*D | y).

(AD)
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The partially collapsed Gibbs (PCG) sampler reduces the
conditioning in one or more steps of a Gibbs sampler while
maintaining the validity of the resulting algorithm (van Dyk
& Park 2008). For example, if we draw A in Step 1 of
the two-step Gibbs sampler without conditioning on 6, i.e.,
A™D ~ p(A | Y), the resulting sampler would be a PCG
sampler. PCG samplers typically converge faster than their
parent Gibbs samplers.

The MH algorithm draws from a proposal distribution,
g | ¥®), that is different from the posterior distribution,
but it can be corrected using a rejection step. Specifically,

MH Algorithm:

Fort=0,1,2,..., T,

Step 1: Draw yP°P ~ g(v | ¥®) and compute

o= PP | V)g(y | yPor)
@ | V)g(yerer | ) -

Step 2: Let u be a uniformly distributed random number
between 0 and 1 and set

(t+1) __ I//pmp
V=50

ifu<p
otherwise °

For a given "), the Gibbs sampler and the MH algorithm both
provide a mechanism to randomly generate ¥+, We refer to
this random mechanism as the kernel, denoted by K.

The Sherpa module, pyBLoCXS (Bayesian Low Count
X-ray Spectral analysis in Python) is adopted from the method
of van Dyk et al. (2001) and uses MH algorithms for Bayesian
spectral analysis in the Sherpa environment. pyBLoCXS pro-
vides a convenient and efficient MCMC sampler for drawing
the spectral parameter, 6, from its posterior distribution given
A, that is, from p(@ | Y, A); see Siemiginowska et al. (2011)
and http://hea-www.harvard.edu/astrostat/pyblocxs/ for details
of pyBLoCXS.

In this article, we use Gibbs-type samplers to draw 6 and
A from their joint posterior distribution. We accomplish Step
2 of the Gibbs sampler using pyBLoCXS. That is, pyBLoCXS
is incorporated as a component of an overall algorithm that
simulates from the full posterior distribution, p(8, AlY). To
clarify its role in the overall algorithm, we refer to the pyBLoCXS
kernel as Kpyp. Using an MH algorithm for one or more of
the component steps of a (partially collapsed) Gibbs sampler
is a common hybrid strategy known as MH within (partially
collapsed) Gibbs sampling (e.g., van Dyk & Jiao 2014). Our
algorithm for implementing the fully Bayesian method builds
on the algorithm for the pragmatic Bayesian method. For
computational efficiency, we have modified and improved the
latter compared with that given in Paper I. Here, we first review
the algorithm from Paper I and then detail our improvements
to 1t.

A.2. Fitting the Pragmatic Bayesian Model

Fitting the pragmatic Bayesian model involves simulat-
ing a sequence of effective-area curves from p(A) and run-
ning pyBLoCXS for each simulated curve. Specifically, in
Section 4.2.2 of Paper I, we proposed the following.

MH within PCG Sampler of Paper I

Fort=0,1,2,..., T,

Step 1: Draw e; ~ N(0, 1) for j =1, ..., J and set


http://hea-www.harvard.edu/astrostat/pyblocxs/
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e = (™. ef™) and ATV = A§+ (A — Ay +
J o (+])

Zj:l €; Tjvj.

Step 2 (Inner Loop): Fori = 1 1, simulate §7/1 ~
tep 2 (Inner Loop): Fori =1, ..., I, simulate B

K:pyB(e | 0(l+(i—1)/1); Y, A(H'l)).

The iteration of pyBLoCXS in Step 2 aims to eliminate the
dependence of its final output, 9;;’1), on its starting value, 9;;3).
Only 9;;1) is retained; the intermediate draws from the inner

loop, 9;;1/ b .. , B(Q(Fl) / 1), are discarded. (Notice that the
superscripts on the discarded draws of 0 are fractional; we only
retain the draws of 6 with integer superscripts.) This is necessary

because A](g Y is simulated from its marginal distribution in Step

’

1 and is independent of 6‘;’3). The simulated value 9;;3”) should be

correlated with Agg l), insofar as A is informative for 6 and thus
A and 0 are correlated under ppg(@, A | Y). Likewise, because
Ag]; and Agg D are independent, OSZB) and 95;1) should also be
independent. The number of inner iterations, /, is determined by
examining the empirical autocorrelation function of Kpyp for a

given data analysis. Its value should be set to ensure that O;IB)

and Gé;;l) are approximately independent; see Paper I and van
Dyk & Jiao (2014) for discussion.

While this MH within PCG sampler effectively delivers fitted
values and error bars that account for calibration uncertainty
under ppe(f, A | Y), it can be very slow in terms of its required
computational time. This is owing to the inner workings of
pyBLoCXS which approximates p(6 | A,Y) by fitting the
spectral model via maximum likelihood (i.e., using the Cash
statistic) in Sherpa. This is of little consequence when pyBLoCXS
is used with fixed A, because the Sherpa fit only needs to be
performed once. In the context of the MH within PCG Sampler,
however, pyBLoCXS must be reinitiated with a new Sherpa fit
at every iteration because Aggl) is updated at every iteration.
Because each Sherpa fit requires about 68 s of CPU time, a run
of 3000 MCMC iterations requires 5—7 hr on Sherpa fits.

Below, we describe an alternate implementation of the MH
within PCG sampler that is dramatically faster. In particular, it
fully leverages each of the effective-area specific Sherpa fits by
continuing to iterate as in Step 2 after the dependence on 915’3)
has worn off in order to obtain several simulated values of 6 per
iteration. Specifically, we propose the following.

Iterated MH within PCG Sampler

Fort=0,1,...,T,

Step 1: Draw ei-’M“) ~ N, 1)for j =1, ..., J and set

e = (/™M) and AT = Af+ (A -
J M+

Ao)+ iy M r ;.

Step 2 (Inner Loop): Fori =1, ..., I, simulate G;ghﬂ/l) ~

,prB(e | 6(I+(i71)/1); Y, A(Hl)).
Step 3: For i = 2,..., M, simulate 03" ~ Kyp(0 |
9(Mt+i71). Y A(Hl)).
At iteration t, we only retain er(fBMH), Agéw +1),
(tM+1) (Mt+M)
QPB ...,05

and

and discard the intermediate draws of 6
obtained internally within the inner loop of Step 2. That is,
we retain draws of 6 with integer-valued superscripts and dis-
card those with fractional superscripts. Notice that this strategy

’
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results in M times more simulated values of 8 than of A. The
advantage is that the extra T(M — 1) simulations of 6 require
relatively little computational time. The disadvantage is that
these simulated values are correlated whereas the simulated
values of the MH within PCG sampler of Paper I are essentially
independent.

We illustrate this trade-off using the simulation study de-
scribed in Section 2.2. The left and right columns of Figure 14
show the performance of the MH within PCG Sampler of
Paper I and our Iterated Sampler (run with M = 10), re-
spectively. The first row is a time-series plot of the first 300
consecutive draws of I'”) obtained with the two samplers. The
blocky nature of the draws obtained with the Iterated Sampler
is a result of its infrequent updating of A; each block is drawn
with a common effective-area curve. The second row presents
the same time-series plots, but as a function of CPU time (in
seconds) rather than iteration number. The relative speed of the
Iterated Sampler is apparent. The final row shows scatterplots
of the simulated values of (NI({’), I'®) obtained in about 1 hr.
Again the advantage of the Iterated Sampler is clear, despite the
blocky nature of its simulated values.

Running the Iterated Sampler requires deciding on the values
of both 7 and M, that is, the number of initial simulated values of
6 to discard (1 — 1) at each iteration and the number of additional
extra simulated values to keep (M). The initial iteration in Step
2 is designed to mitigate the dependence of the simulated values
on the input value of 6 at each iteration, e.g., the dependence
of M+ on 9MD To measure this effect, we can compute the
correlation of 8" and 9M1+D

ZtT:l(e(MI) _ épB)(e(MHl) _ épB)
Z?:l(g(Ml) - épB)2

A~
o~

; (A2)

where épB ={1/TM) Z,T:Af 9;'3). A statistical hypothesis test of
the correlation being 0 can be rejected if T&?/(1 —&?) is greater
than about 2 (for large T, e.g., >100). If this threshold is met, the
sampler should be rerun with a larger value of /. Van Dyk and
Jiao (2014) discuss other methods for choosing and validating 1
in the general MH within PCG sampler. (The choice of  is less
important when implementing the fully Bayesian method; see
Appendix A.3.)

An optimal value of M can be obtained by minimizing the
Monte Carlo variance of the estimated posterior expectation of
0. This quantity is approximated with épB and is a common
choice for the fitted value of 6. Xu (2014) shows how the
Monte Carlo variance of épB depends on M and how it can
be approximately minimized on the fly within the Iterated
Sampler. Xu (2014) also discusses various choices of error bars
for épB that may be less affected by the blocky nature of the
chain generated by the Iterated Sampler. We do not purse this
topic here, however, because the Iterated Sampler is only an
intermediate step toward our goal of an algorithm for fitting the
fully Bayesian model.

A.3. Approximating the Pragmatic Posterior Distribution

As discussed in Section 2.3, although p,p(6, A | Y) is ideally
suited as an overdispersed approximation to pp(0, A | Y), it
cannot be used as the proposal distribution, g, in the Pragmatic
Proposal Sampler for the simple reason that we cannot directly
evaluate p,p(0, A | Y). (We need to evaluate g in order to
compute p given by Equation (11).) The problem becomes
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Figure 14. Improved speed of the Iterated MH within PCG sampler. Using the simulation study described in Section 2.2, panels (a) and (b) plot T'® as a function
of iteration number using the sampler of Paper I and the Iterated MH within PCG sampler, respectively. Panels (c) and (d) plot the same, but as a function of CPU

time rather than of iteration. The relative speed of the iterated method is apparent. Panels (e) and (f) are scatterplots of (N, 0 e )) obtained in a run of about 1 hr for
each of the two samplers. The red lines in panels (a)—(d) and squares in panels (e) and (f) indicate the true parameter values. Compare panels (e) and (f): the Iterated
Sampler obtains far more draws per unit time. Thus, despite the blocky nature of the chains in panels (b) and (d), the advantage of the Iterated Sampler in terms of

computational speed is clear.
(A color version of this figure is available in the online journal.)

evident if we write, recalling that 6 and A are a priori independent
under the pragmatic Bayesian assumption,

LY | 6, A)m(6)
p(Y | A)

Evaluating the denominator, p(Y | A) = fp(Y | 6, A)m(6)do,
would require a possibly high-dimensional numerical integra-
tion at each iteration of the Pragmatic Proposal Sampler. To
avoid this difficulty, we propose a simple approximation to
pp(0, A | Y) that serves equally well as an overdispersed
approximation of pp(6, A | V).

Although ppe(9, A | Y) is difficult to evaluate, it has a
relatively simple form. In particular, its marginal distribution
for A can be represented by a J x 1 vector, e, the com-
ponents of which are independent A(0, 1) variables. (Recall
that under the pragmatic Bayesian model, A is simulated ac-
cording to its prior distribution; see Equation (5)). Thus, we
only need to approximate ppg(f | A, Y). To do this, we run
the Iterated Sampler described in Appendix A.2 to obtain

pps(0, A |Y)=p@ | A Y)n(A) = 7(A).

{egBM”) pUMFD UMD fort = 0,..., T} and regress
- . (tM+1) (tM+M) (tM+1)
the M replicates of 6 (i.e., OPB e GpB ) on each €pB

using multivariate Gaussian regression (details are given in Xu
2014). This results in a multivariate normal approximation to
pp(0 | A,Y) that we combine with a multivariate standard

20

normal distribution for e to form the g(6, ¢) used in the Prag-
matic Proposal Sampler. In particular, this choice of g serves
as the needed overdispersed approximation to pg(6, A | Y).
In this context we run the Iterated MH within PCG Sampler
only to obtain the approximation, g. Because g does not need
to exactly match p,p(6, A | Y), the choice of I in this sampler
is less critical. The choice of M, on the other hand, controls
how quickly the sampler runs, and thus remains important for
efficient computation.
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