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ABSTRACT

We use both simulated and real quasar light curves to explore modeling photometric reverberation-mapping (RM)
data as a stochastic process. We do this using modifications to our previously developed RM method based on
modeling quasar variability as a damped random walk. We consider the feasibility of one- and two-band
photometric RM and compare the results with those from spectroscopic RM. We find that our method for two-band
photometric RM can be competitive with spectroscopic RM only for strong (large equivalent width) lines like Hα
and Hβ, and that the one-band method is also feasiblebut requires very highprecision photometry. We fail to
robustly detect Hα lags in single-band quasar light curves from OGLE-III and OGLE-IV despite the outstanding
cadence and time span of the data, on account of photometric uncertainties in the range 0.02–0.04 mag.
Simulations suggest that success could be achieved if the photometric uncertainties were of order 0.01 mag. Single-
band RM for all lines and two-band RM for lower equivalent width lines are likely only feasible for statistical
estimates of mean lags for large samples of active galactic nucleiof similar properties(e.g., luminosity) rather than
for individual quasars. Our approach is directly applicable to the time-domain programs within ongoing and future
wide-field imaging surveysand could provide robust lag measurements for an unprecedented number of systems.

Key words: galaxies: active – galaxies: statistics – methods: data analysis – methods: numerical – methods:
statistical

1. INTRODUCTION

Determination of the masses of the supermassive black holes
(SMBHs) over cosmic history is of interest for a number of
reasons. Unfortunately, most methods of measuring SMBH
masses rely on high angular resolution and are thus currently
feasible only in the local universe. It is possible, however, to
measure the masses of the SMBHs at the centers of active
galactic nuclei (AGNs), or quasars, by use of reverberation
mapping (RM; Blandford & McKee 1982; Peterson 1993,
2014), which substitutes time resolution for angular resolution.
While AGNs constitute only a trace population, they seem to
show, for example, the same MSMBH– *s relation (Ferrarese &
Merritt 2000; Gebhardt et al. 2000; Ferrarese et al. 2001;
Nelson et al. 2004; Onken et al. 2004; Dasyra et al. 2007; Woo
et al. 2010; Graham et al. 2011; Park et al. 2012; Grier et al.
2013a) that has been driving studies of galaxy–SMBH
coevolution (Silk & Rees 1998; Fabian 1999; King 2003,
2005; Treu et al. 2004; Di Matteo et al. 2005, 2008; Murray
et al. 2005; Peng et al. 2006; Shankar et al. 2009; Shankar
2009; Merloni et al. 2010). Moreover, the highest-redshift
quasars (e.g., Mortlock et al. 2011; De Rosa et al. 2014; Carnall
et al. 2015; Jiang et al. 2015) put strong constraints on the
SMBH formation and growth in the early universe (e.g.,
Volonteri 2010; Latif et al. 2013; Latif & Volonteri 2015).

At the present time, published RM studies have for the most
part been restricted to local AGNs (e.g., Peterson et al. 2004;
Denney et al. 2010; Grier et al. 2012a; Bentz et al. 2013; Barth
et al. 2015; De Rosa et al. 2015). Standard RM relies on the
spectroscopic monitoring of broad-line fluxes, which are then
cross-correlated with a continuum light curve, either also
measured from the spectra, measured independently photome-
trically, or constructed from some combination of the two, to

obtain the “lag” or time delay between continuum flux
variations and the emission-line response. The lag is taken to
be the light-travel time from the central engine to the broad-line
region (BLR). By combining the lag with a suitable
measurement of the emission-line width VD , which is taken
to be an estimate of the virial motion of the BLR gas, one
obtains an estimate for the mass of the SMBH
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G
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2
( )t

=
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where f is a dimensionless factor of order unity that depends on
the geometry, inclination, and kinematics of the BLR. The
factor f can in principle be determined for individual AGNs by
modeling the BLR (Pancoast et al. 2011, 2014).
At the present time, it is common to use the AGN MSMBH–σ*

relationship to establish a mean value for this scaling factor; the
most recent published value is f 4.31 1.05á ñ =  for a line
dispersion estimate of VD (Grier et al. 2013a). While use of an
average value fá ñ cannot be expected to yield particularly
accurate masses for individual sources, it is useful for application
to large data sets.
RM results have also established an empirical relationship

between the AGN luminosity L and the BLR size RBLR of the
form

R L , 2BLR ( )µ a

where α ≈ 0.5 (Wandel et al. 1999; Kaspi et al. 2000, 2005;
Bentz et al. 2006, 2009, 2013). This relationship has been
independently established through microlensing studies (Guer-
ras et al. 2013). Its particular value is that the AGN luminosity
can thus be used as a proxy for measuring the BLR radius, thus
bypassing resource-intensive RM.
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It is nevertheless desirable in many cases to measure RBLR

and MSMBH directly. However, it is clear that more efficient
methods must be found if one wishes to extend RM to higher-
redshift, fainter objects. One possibility that is being actively
pursued is to use multiobject spectrographs on large telescopes
to monitor as many as hundreds of quasars simultaneously
(King et al. 2015; Shen et al. 2015). With a large-enough
telescope and a wide-enough field of view, the surface density
of quasars is high enough to make spectroscopic multiplexing
effective.

Another possibility is to make RM measurements with
purely photometric data, using either narrowband(Haas et al.
2011; Pozo Nuñez et al. 2012) or broadband(Chelouche et al.
2012; Chelouche & Daniel 2012; Edri et al. 2012) filters. The
narrowband approach essentially reduces to the spectroscopic
RM problem by subtracting the continuum contribution to the
narrow photometric band containing the broad emission line.

However, the broadband case is considerably more compli-
cated because the emission lines and continuum are not easily
separable. In this case the continuum variability has to be
carefully modeled or removed statistically. Chelouche &
Daniel (2012) developed a method by looking for an excess
cross-correlation signal at nonzero time lags between two
broadband light curves and applied it to a subset of the
Palomar–Green quasar sample, finding broad agreement with
the spectroscopic RM results, albeit with very large uncertain-
ties. The cross-correlation of two bands, one on and one off the
line, or the auto-correlation of one band on the line, must
mathematically have power bothnearzero lag, owing to the
correlation of the continuum or line variability with itself, and
at the emission-line lag, owing to the cross-correlation between
the line and the continuum. This by no means implies the
existence of separate peaks, but only that the presence of the
line emission leads to a broader correlation function. Chelouche
& Zucker (2013, hereafter CZ13) proposed a comprehensive
approach based on cross-correlation functions(CCFs), which
takes into account the continuum time lag between two broad
bands and estimates model uncertainties using Monte Carlo
simulations. However, discussions of photometric RM to date
have not quantitatively addressed the ability to recover lags
accurately as a function of line strength, sampling, and signal-
to-noise ratio (S/N)or made detailed comparisons to the
performance of spectroscopic RM. Moreover, while the work
of CZ13 shows that the existence of a lag can be detected,
whether or not it can be measured with sufficient accuracy that
the method becomes competitive with spectroscopic RM
remains dubious. While the problems of photometric RM are
both fairly obvious and significant, thorough investigation of
the technique is warranted since, as pointed out by CZ13, the
community will soon be awash in photometric monitoring data
on quasars that we must be ready to exploit fully.

Here we consider a somewhat different approach to
extracting lags from photometric data alone. A series of recent
studies (Kelly et al. 2009; Kozłowski et al. 2010; MacLeod
et al. 2010; Andrae et al. 2013; Zu et al. 2013) have shown that
quasar optical variability is well modeled by the damped
random walk (DRW) stochastic process on timescales from
several days to years, although there may be deviations on
shorter timescales(Mushotzky et al. 2011; Zu et al. 2013). Zu
et al. (2011, hereafter ZKP11) further adapted the DRW model
to address RM, where it has several significant advantages
over standard methods. First, irregularly sampled light curves

require some method of interpolation for any intercomparison,
where the standard approaches use either binning(Edelson &
Krolik 1988) or linear interpolation(Gaskell & Sparke 1986).
The ZKP11 approach essentially averages over all possible
continuous light curves that are statistically consistent with the
observed data and the DRW (or other) stochastic process(Ry-
bicki & Press 1992). Second, the means of estimating
likelihoods in the various CCF methods are fairly ad hoc,
while the ZKP11 methods use likelihood functions that can be
interpreted using standard Bayesian or frequentist methods.
Finally, the approach allows generalizations that can auto-
matically include calibration uncertainties, temporal trends,
data correlations, or multiple lines or line velocity bins in the
full likelihood calculation. We have made the analysis software
public,5 and it is increasingly being used in recent RM studies
(Dietrich et al. 2012; Grier et al. 2012a, 2012b, 2013b; Li et al.
2013; Shapovalova et al. 2013; Zhang 2013; Shappee et al.
2014). The spectroscopic RM module in the software has also
provided important cross-checks to some narrow-filter-based
photometric RM studies(e.g., Pozo Nuñez et al. 2013).
For the sake of completeness, we also consider the greater

challenge of single-band photometric RM: a reverberating
emission line in a photometric band will result in an “echo” of
the continuum variations,and in principle, if the DRW is
indeed a good model for the continuum variability, the
emission-line echo should be identifiable, given sufficient
high-quality data.
Here we will apply our modeling approach to a comparison

of spectroscopic and both two- and single-band photometric
RM. In particular, we address whether photometric RM is more
or less observationally efficient than spectroscopic RM. We
will first summarize our approach in Section 2. In Section 3, we
carry out a series of Monte Carlo simulations for all three
approaches as a function of cadence, campaign duration, and
line strength relative to the continuum. In Section 4, we
examine two-band photometric RM of PG 0026+129, for
which contemporaneous spectroscopic and photometric light
curves are available. In Section 5, we use photometric data on
the well-studied Seyfert galaxy NGC 5548 as a second case
study. In Section 6, we examine single-band photometric RM
using Optical Gravitational Lensing Experiment (OGLE)
quasars behind the Magellanic Clouds. We summarize our
results in Section 7 and consider the applicability of these
methods in large-scale surveys such as LSST.

2. METHODOLOGY

In any given photometric band, quasar variability consists of
two components, one from the continuum and the other from
broad emission lines, plus contaminants such as the host-galaxy
flux and narrow emission lines that do not vary on the relevant
timescales(e.g., Peterson et al. 2013). We model the
continuum variability as a Gaussian process(Rasmussen &
Williams 2006; Kelly et al. 2013; Zu et al. 2013)

c t c t t, , , 3( ) { ( )} ( ) k= ¢

where the mean function c is constant and t t,( )k ¢ is the
covariance function between two epochs. For the DRW model
discussed in Section 1, t t t t, exp2

d( ) ( ∣ ∣ )k s t¢ = - - ¢ , where
σ2 and dt are the variance and characteristic timescale of the
process. The variability of the broad emission lines relative to

5 JAVELIN (SPEAR); http://bitbucket.org/nye17/javelin.
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the continuum can be described as

l t t t c t dt , 4( ) ( ) ( ) ( )ò= Y - ¢ ¢

where t( )Y is the transfer function. In this paper we focus on
cases in which there is only one dominant broad line or
multiple broad lines that have similar lags. In particular,
following ZKP11, we explicitly model t( )Y as a top-hat
transfer function centered on time lag τ with width w and
amplitude A, so that

t t A w A w w t w, , for 2 2.
5

( ) ( ∣ )
( )

t t tY º Y = - < +

Here we consider two classes of monitoring bands: a
continuum band(hereafter referred to as the band) unconta-
minated by lines, and a line band(hereafter referred to as the
band) containing both line and continuum contributions. The
light curves in the - and -band light curves are
f c t ucb cb( )= + and f c t l t ulb lb· ( ) ( )a= + + , respec-
tively, where α is the ratio between the continuum variabilities
in the two bands and ucb and ulb represent any contaminating
flux from narrow emission lines and the host galaxy. The key
problem for photometric RM methods is whether we can
distinguish l(t) from c(t) without measuring l(t) directly as is
done in spectroscopic RM. Depending on the available data,
there are two possible approaches to photometric RM.

1. We could have both  and  bands. In this case, The
-band light curve provides an independent constraint on
the structure and statistics of the continuum variability.
Such a model has six parameters,
p w A, , , , ,d{ }s t t aº , where ucb and ulb are nuisance
parameters marginalized in the analysis.

2. If we have only the  band where
f t c t l t ulb lb( ) · ( ) ( )a= + + , then the continuum and
line variabilities have to be inferred simultaneously.
Compared to the two-band model, the number of
parameters in the one-band model is fewer(α is fixed
to be unity so that p w A, , , ,d{ }s t tº ), but the
difficulty is substantially increased owingto the lack of
independent information on the continuum variability as
compared to the lines.

We explore both of these approaches using the statistical
framework described by ZKP11. Here we briefly summarize
this approach, and readers should refer to ZKP11 for additional
details.

Let y be a vector composed of all the light curves, either the
combined - and -band light curves or the one -band light
curve. We model y as

y s n qt t L , 6( ) ( ) ( )= + +

where s t( ) is the underlying variability signal with zero
mean(e.g., c t c( ) - in band) and covariance matrix S,6n is
the measurement error with covariance matrix N, and L is a
x×K matrixwhere x and K are the number of light curves and
total number of data points in y, respectively. In particular, for
the two-band model, L has entries of (1, 0) for the -band data

pointsand (0, 1) for the -band data points, while for the one-
band model L is a vector of all ones. The linear coefficients q
are the light-curve means, including contributions from c , the
mean of l(t), and the host-galaxy light and narrow-line flux (ucb
and ulb).
As derived by ZKP11, after marginalizing over q, the

likelihood of the model parameters is

y p
y y

C L C L
C

exp
2

, 7T
T

1 2 1 1 2
1

( ∣ ) ∣ ∣ ∣ ∣ ( ) = -- - - ^
-⎛

⎝⎜
⎞
⎠⎟

where C=S+N is the overall data covariance and

C C C L L C L L C . 8T T1 1 1 1 1 1( ) ( )= -^
- - - - - -

For light-curve prediction, the best estimate for the mean
intrinsic variability is

s ySC Lq , 91ˆ ( ˆ) ( )= --

where

yq L C L L C 10T T1 1 1ˆ ( ) ( )= - - -

is the best estimate for the light-curve means, and the expected
variance in the estimated variability about the mean is

s s S S C S. 11T2( ˆ) ( )á - ñ = - ^

The only difference between spectroscopic and photometric
RM approaches within this framework lies in the computation
of the covariance matrix S. For two-band photometric RM, Sij
involves three types of entries, the DRW covariance function

t tj i( )k - , the covariance between fcb(t) and flb(t)

f t f t t t c t l t , 12cb i lb j j i i j( ) ( ) ( ) ( ) ( ) ( )ak aá ñ = - + á ñ

and the covariance between two -band light curves

f t f t t t c t l t

l t c t l t l t , 13
lb i lb j j i i j

j i i j

2( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

a k a
a

á ñ = - + á ñ

+ á ñ + á ñ

while for the one-band case, only Equation (13) is relevant and
we can take 1a º . For the simple case of top-hat transfer
functions, all the terms in Equations (12) and (13) have
analytical forms, which can be found in the Appendix
of ZKP11.
Following ZKP11, we use Markov Chain Monte Carlo

(MCMC) methods to estimate the posterior distributions of
model parameters. For the two-band case, we first constrain σ
and dt using the -band light curveand then apply the 68%
confidence limit on each of the two parameters as uncorrelated
lognormal priors to the second step, in which we derive
constraints on all the six parameters using the combined- and
-band light curves. As explained in ZKP11, the uncorrelated
lognormal priors on σ and dt are necessary to exclude a wrong
class of solutions with 0dt  during the joint fit, and they are
much more conservative than the correlated 2D constraints
from the -band light curve. For the one-band case, however,
we drop the first step and fit the model to the -band light
curve directly using uniform priors on logs and log dt . While
we do not do so here, a prior on A a, the line strength in the
band, can be added to “stabilize” the line contribution. The
algorithms for the two photometric RM methods are imple-
mented in a new update of the JAVELIN software, which is the
updated version of SPEAR released with ZKP11 and is publicly
available athttp://bitbucket.org/nye17/javelin.

6 The entries of Sij are simply the values of the covariance function
S S tij ij( )= D , so we have used the same symbol for both.
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3. APPLICATION TO SIMULATED LIGHT CURVES

Similar to its spectroscopic counterpart, lag detection in
photometric RM is very sensitive to the sampling properties of
the light curves, which are mainly characterized by the duration
and the cadence of observations. Photometric RM further
depends critically on the relative strength of the broad lines
compared to the continuum flux within the observational
band(hereafter simply referred to as the “line strength”),
whereas in spectroscopic RM the separation between line and
continuum fluxes is more sensitive to the quality of spectra than
to the line strength. However, since photometry is more
efficient than spectroscopy in collecting photons(but only by a
factor of ∼2 for modern spectrographs), given fixed sampling
conditions and exposure time, photometric RM could be
competitive with spectroscopic RM. Spectroscopic RM data are
more difficult to calibrate, owingto time- and wavelength-
dependent slitlosses and variable host-galaxy contamination.
Photometric RM, on the other hand, is (much) more strongly
restricted in the redshift range accessible to an individual
observation owingto the narrow wavelength coverage of filters
as compared to spectrographs.

To obtain a quantitative understanding of the feasibility of
photometric lag detection, we modeled the traditional spectro-
scopic and the two photometric RM methods using mock light
curves simulated using the Cholesky decomposition technique
described by ZKP11. We considered monitoring baselines of
180, 540, and 1260 days and cadences of 1, 3, and 7 days as a
function of the line strength. The line strength r is characterized
by the ratio of line to continuum fluxes in the band,
r l t c t( ) ( )º . Note that r is a function of both the equivalent
width of the line and the transmission curve of the filter. We
considered 20 log-spaced values of this ratio from 0.01 to 1.0.
For each case we generated 50 random realizations of light
curves assuming a typical local Seyfert 1 galaxy at z∼0 like
NGC5548 with c0.2s = , 40dt = days, 20t = days, and
w=2 days(cf.Figure 10 in ZKP11). We also include the
same constant term u in both bands, so that the -band light
curve is f t c t ucb ( ) ( )= + and the -band light curve is
f t c t l t ulb ( ) ( ) ( )= + + . The light-curve means are still
independently fit even if the input values are the same. For
each photometric light curve, we assume a 1% fractional
photometric uncertainty in the total band flux(i.e., c u+ ). The
impact of any potential deviation from the DRW model on
short timescales should be negligible.

For the simulations, we assume that the continuum and host
contributions to the two bands are the same and that the
host contribution is equal to the mean of the quasar
continuum. Thus, if σc is the noise in the quasar continuum,
the noise in the continuum band (c t u( ) + ) is 2cb c

1 2s s= , the
noise in the line band is r2lb c

1 2( )s s= + , and the noise in
the line flux after subtracting the continuum and the host is

r4l c
1 2( )s s= + , assuming similar width for the two bands.

We set the fractional error of the continuum band to
u c c c2 2 0.01cb cb c

1 2( ¯) ¯ ¯s s s+ = = =- , which means that
the fractional error in the spectroscopic line flux
is l r r0.02 2 0.5l

1 2( )s = + .
Figure 1 summarizes the results of these simulations, where

we show the average likelihood ratio ln max  expected for a
single object as a function of the input line strength r and the
output lag estimate τ for the spectroscopic(left column), two-
band photometric(middle column), and one-band photometric
(right column) methods. The typical ranges of r for the C IV Hβ

and Hα lines and typical broadband filters are indicated by the
vertical bands. These were estimated by convolving the
composite quasar spectrum from Vanden Berk et al. (2001)
with the transmission curves of typical broadband photometric
systems(e.g., Sloan Digital Sky Survey [SDSS] or Johnson
bands). To avoid clutter, we do not show the r range for the
Mg II line. It would lie between the ranges for C IV and Hβ.
The top three panels in Figure 1 show the forecasts for our

fiducial monitoring campaign—daily cadence over one obser-
ving season(i.e., 6months). The mock light curves used for
the second and third rows have lower sampling rates, with 3-
and 7-day cadences, respectively, while having the same
overall temporal baseline as the fiducial campaign. The mock
light curves used for the fourth and fifth rows have lower
sampling rates but longer baselines, maintaining the same
number of epochs(180) as in the first test(the top row).
Unsurprisingly, for any given sampling of the light curves(i.e.,
comparing panels in the same row), spectroscopic RM
performs better than the two-band photometric RM, and both
of them are significantly better than the one-band photometric
RM. Table 1 summarizes the result for r=1 (Hβ). For
example, the lag estimates for the fiducial campaign are
19.4±2.2, 20.1±2.0, and 20.7±11.3 days for the spectro-
scopic, two-band, and one-band photometric RM cases. For
this strong line, the two-band approach is competitive with
spectroscopy, but the one-band approach is not. Within each
method(i.e., comparing panels in the same column), the lag
detection efficiency is very sensitive to the cadence for any
fixed baseline, but largely due to the decrease in the number of
data points for longer cadences—the difference among the first,
the fourth, and the bottom panels in each column, where the
total number of epochs is fixed to 180, is much smaller than
that among the top three panels, where the number of epochs is
varied. In particular, in the middle column for the two-band
test, the fiducial and the two long-baseline tests(bottom two
panels) yield very similar lags of 20±2 days for lines with
r=0.1, while the two short-baseline tests(second and third
panels) find 20±6 days or worse, respectively. However, we
expect the uncertainties in the lag estimates to rise rapidly even
for a fixed number of epochs as the sampling rate decreases
once the cadence is larger than 20 days.
The uncertainties in the lags are also highly sensitive to the

magnitude of the line contribution in the photometric band. As
can be seen in Figure 1, this means that for campaigns with 180
epochs, Hα lags are almost always measurable with high
significance using photometric RM methods, Hβ lags are only
marginally measurable, and the Mg II and C IV lags are never
measurable for light curves with similar sampling properties
and physical parameters. Single-band RM is very challenging
even for Hα and relatively “narrow” broadband filters such as
the SDSS system(Fukugita et al. 1996).

4. CASE STUDY I: TWO-BAND PHOTOMETRIC
RM OF PG 0026+129

The best chance of obtaining robust photometric lags is to
focus on quasars whose Hα line lies within one passband and
where the continuum is cleanly observed in another passband.
The Palomar–Green(PG) quasar light curves from Giveon
et al. (1999) consist of two-band(B and R) light curves of 42
quasars from the PG sample, with typical cadences of ∼20 or
40 days over a 7 yrtime span and an average photometric
uncertainty of 0.017 mag. The sample has a redshift range of
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0.1z0.3, making the B- and R-band light curves suitable
for detecting Hα lags using two-band photometric RM (with B
being the band and R being the band). Many of these
targets were also contemporaneously monitored in order to
make spectroscopic RM measurements(Kaspi et al. 2000). For
these objects, we can assess the performance of photometric
RM by comparing the photometric lag constraints to the
corresponding results using spectroscopic RM. Therefore,
we focus on seven objects—PG 0026+129, PG 0052+251,
PG 0̇804+761, PG 0844+349, PG 1613+658, PG 1617+175,
and PG 2130+099—that botharephotometrically better
sampled(i.e., 20-day cadence) and have spectroscopic Hα
light curves. Chelouche & Daniel (2012) also made

Figure 1. Significance of lag detection as function of broad line strength in spectroscopic(left), two-band(middle),and one-band(left) RM. Panels in the same row
assume the same cadence and duration, labeled in the format (cadence, duration) on the right of each row. The contours are color-coded by the colorbars shown at top,
with the red, yellow, and blue contours roughly corresponding to the 1σ, 2σ, and 3σ confidence regions for one object, respectively. If one could combine the
likelihoods of multiple identical objects in each panel, the corresponding confidence regions for detecting a mean lag will shrink considerably. For example, after
stacking nine objects, the red contours will represent 3σ limits instead of 1σ ( lnD goes from −0.5 to −4.5). There assume 1% measurement uncertainties for the
continuum band, and the top x-axis for the upper left panel shows the corresponding fractional uncertainties in the spectroscopic line flux. See text for details.

Table 1
Lag Estimates for Simulated Hβ Lines

Cad Baseline Np Spec Two-band One-band

1 180 180 19.4±2.2 20.1±2.0 20.7±11.3
3 180 60 20.2±5.1 20.1±6.4 18.6±10.8
3 540 180 20.3±2.2 19.6±2.1 20.9±8.0
7 180 26 19.2±6.7 17.2±7.8 22.8±9.2
7 1260 180 20.4±1.6 19.8±1.9 21.3±6.8

Note. Mean lags and their 1σ uncertainties for the simulated
Hβ lines( f f 0.1line line = ) in Figure 1. “Cad” gives the observing cadence in
days over a period of “Baseline” days, producing Np epochs of observations.
The input lag is 20 days.
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photometric RM measurements for several of these systems,
but with such large uncertainties(∼100–200 days) that the
significance of any comparison is very small.

In each case, we model the continuum-band light curveas
f t c tcb ( ) ( )= and the line-band light curves as
f t c t t c tlb ( ) · ( ) ( ) ( )a= + Y * ,where t( )Y is the top-hat
transfer function centered on lag τ with width w and amplitude
A(Equation (5)), and α scales the continua between the two
bands. For better consistency in the modeling of continuum
variability, we recalculated the spectroscopic lags with
JAVELIN as described by Zu et al. (2011) using the original
Kaspi et al. (2000) light curves. The two methods are largely
consistent with each other, with lag differences smaller than
twice the average temporal sampling(i.e., 2× 20 days) in all
cases except PG 1613+658. The cause for the discrepancy in
PG 1613+658 is unclear, as the observed R-band light curve
simply cannot be matched by the prediction from JAVELIN
using the spectroscopic Hα lag.

We applied our two-band photometric RM analyses to all
seven of these quasars. Unfortunately, all of the cases proved to
be somewhat problematic, usually because of the low
amplitude of Hα variability, but for other reasons as well
(e.g., the original lags for PG 2130+099 were badly
misidentified; see Grier et al. 2008, 2012b).

Only PG 0026+129 yielded a plausible result. Figure 2
shows the posterior probability distributions for the six
parameters in the two-band photometric RM model for
PG0026+129. The distribution of the top-hat width w is
mostly flat within 20 days, which is the sampling interval of the
light curves. The thin blue histogram in the top right panel
shows the posterior probability distribution of the Hα lag
inferred from spectroscopic RM. The lag constraints from the
two RM methods agree with each other well, indicating that the

photometric RM approach is capable of separating the Hα
signals from the continuum variability while recovering the
correct lag. The ratio of A to α indicates that the line variability
is roughly 1/3 of the continuum variability within the Rband,
also consistent with what we expect for Hα based on the
spectral template from Vanden Berk et al. (2001).
One virtue of JAVELIN is that it produces an explicit model

for the mean and dispersion of the light curves constrained by
the data given the best-fitting parameters, as shown in Figure 3.
In each panel the observed light curves are shown by the data
points with error bars, while the solid line and the error “snake”
are the estimated mean of light curves consistent with the data
and their variance, respectively(Equations (9) and (11)). We
also show the decomposition of the model for the R-band light
curve into the line and continuum contributions, as shown in
the top panel, where the dashed and dotted curves indicate the
expected fluxes contributed by the continuum and Hα line,
respectively. It shows unambiguously that the difference
between the B- and R-band light curves can be well described
by a weaker but lagged version of the B-band light curve
representing the Hα light curve.

5. CASE STUDY II: PHOTOMETRIC OBSERVATIONS
OF NGC 5548

As previously noted, CZ13 proposed a modified CCF-based
photometric RM method for simultaneously estimating the
intraband and line lags. The CZ13 method describes the
-band light curve as the sum of two scaled and lagged
versions of the -band light curve with a non-negligible lag
between the continua in the two optical bands and a delta
function for the transfer function of the line. CZ13 searched
through the three-parameter space(intracontinuum band lag,

Figure 2. Constraints from the photometric RM model using the B- and R-band light curves of PG0026+129 for the DRW parameters σ, dt , the lag, the kernel width
w, the transfer function amplitude A, and the ratio between the continua in the two bands α. The thin histogram in the top right panel is the estimate of the lag from
spectroscopic RM.
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line lag, and the line-to-continuum flux ratio) for the model
thatmaximizes the correlation coefficient R between the
observed and predicted -band light curves. Aside from
assuming different models for the -band light curve, the
two key differences between the CZ13 method and JAVELIN
are as follows:

1. In order to predict the -band light-curve values at
unobserved epochs, CZ13 employs linear interpolation
rather than interpolating in a manner consistent with the
underlying process.

2. To characterize the uncertainties in their parameter
estimates, CZ13 generate a sample of mock light curves
as the sum of the data light curves and Gaussian random
deviates with the estimated uncertainties as the dis-
persionsand then infer the parameters for each mock data
set to compute the error distributions. JAVELIN employs
a MCMC Bayesian approach that is self-consistent within
the underlying statistical framework.

To compare the performance of the CZ13 method and
JAVELIN, we applied both methods to the two-band(V and
R) light curves of NGC5548 from Sergeev et al. (2005) that
CZ13 used as their principal example. While there is no Hα
light curve for this period, NGC 5548 is sufficiently well-
characterized that the Hα lag can be estimated from the AGN
luminosity. NGC5548 was at a near-historic low-luminosity
state at the time of the Sergeev et al. (2005)
observations(2001–2002; see Figure 1 in Peterson et al.
(2013) for an NGC 5548 continuum light curve over the past
two decades). The LAMP spectroscopic RM campaign in 2008,
when the continuum was at a similarly low level, yielded lags
for Hβ and Hα of 4.25 1.33

0.88
-
+ days and 11.02 1.15

1.27
-
+ days,

respectively(Bentz et al. 2010). Thus, we expect a similar
Hα lag at the time of the Sergeev et al. (2005) observations.

The results of our analysis of the NGC 5548 photometry are
shown in the left panels of Figure 4, where the top panel
compares the two inferred lag distributions and the bottom
panel shows CZ13ʼs correlation coefficient R as a function of
lag using the best-fitting CZ13 model found at fixed lag.
JAVELIN yields a lag of ∼14 days for Hα, in excellent
agreement with the luminosity-based prediction. The CZ13
method yields a lag of ∼24 days, in poor agreement with both
the predicted value and the JAVELIN result. We note,
however, that our result using the CZ13 method agrees with
the estimate in Figure 7 of CZ13, showing peaks at >20 days,
but lag estimates quoted in their Table 1 are smaller and in
better agreement with both the predicted lag and the JAVELIN
measurement. The discrepancy between the CZ13 and
JAVELIN estimates of the Hα lags can be largely attributed
to the different interpolation schemes, modulo the difference in
assumed transfer functions.
The significance of the CZ13 lag detection is illustrated by

the R curve in the bottom left panel of Figure 4, with the gray
band indicating the 68% uncertainty range in R derived by
bootstrapping the light-curve data following their procedures.
Since the line-band flux is always dominated by the continuum,
R is strong even at zero lag(R 0.9850 = ), and itgradually
increases until hitting a plateau at ∼10 days. Therefore,
although the lag distribution derived by CZ13 is longer than 20
days, the statistical significance of the long lags is barely higher
than for 10- to20-day lags.
Apart from having a shift in the estimated central lags, the

two lag distributions in the top left panel of Figure 4 also have
different shapes, with a continuous, quasi-normal distribution
for JAVELIN and a discrete array of sharp peaks for the CZ13
method(it is unclear whether the lag distribution derived by
CZ13 has this spiky feature owingto their large temporal bins).
To investigate the origin of these differences, we simulated
5000 sets of two-band photometric light curves that have the

Figure 3. Comparison between the data and the mean of the predicted light curves for PG0026+129, using the best-fitting parameters from Figure 2. The
bottompanel shows the average of the DRW light curves matching the continuum light curve for the best-fit parameters and the rms scatter of these light curves. The
toppanel shows the resulting fits to the line band, as well as the decomposition into the Hα line and continuum contributions.
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same sampling and error properties as the NGC5548 light
curves using parameters of f0.1 Bs = , 566.2dt = days,
τ=16.2 days, w=2.0 days, A=0.5, and α=0.64. To
eliminate any discrepancies caused by assuming a different
transfer function width w and intraband lag, we choose not to
use the best-fitting parameters from the left panel, which
prefers a larger w and a shorter τ, and we impose zero lag
between the continua in the two broad bands. For each set of
the mock light curves, we compute lag distributions from the
5000 experiments for each of the two methods. The results are
shown in the two right panels of Figure 4, where the two lag
distributions recover the input 16.2-day lag(vertical dashed
line) but the shape difference persists. As expected, the lag
distribution derived from JAVELIN in the top right panel is
continuous and resembles the distribution we see in the top left
panel for the data. For the CZ13 test, a close examination of the
pattern in the bottom right panel reveals that the discrete peaks
occur halfway between integer-day lags while the distribution
is heavily suppressed at integer-day lags. This peculiar pattern
is a numerical artifact caused by the use of linear interpolation
and a w=0 transfer function(i.e., a δ function) in the CZ13
method. The Sergeev et al. (2005) observations were obtained
on a nightly cadence, and we reproduced that cadence for the
mock light curves, so no interpolation is required at integer lags
to calculate the correlation coefficient R. At half-integer-day
lags, the linear interpolation acts like a transfer function with
w=1 day instead of w=0, smoothing the light curve, and
producing a better correlation by(essentially) reducing the
fluctuations due to noise. This problem becomes worse when
the quasar variability has a short characteristic timescale
compared to the sampling cadence and linear interpolation
becomes an increasingly poor approximation. We think
thatthis problem is intrinsic to the method, but the binning
of the lag probability distribution in CZ13(their Figure 7) does
not allow us to cross-check this issue against their results. We
note, however, that the instability of measuring short delays
(∼1 day) between two broadband continua (or equivalently the
lack of robustness in small interband delay uncertainties)is a

well-known problem in determining gravitational lens time
delays (see,e.g., Tewes et al. 2013) even for light curves far
superior to those used here.

6. CASE STUDY III: SINGLE-BAND OGLE QUASAR
LIGHT CURVES

The simulations in Section 3 demonstrate that while it is
possible to measure Hα lags using single-band photometric
RM, the light curves have to be densely sampled with small
photometric uncertainties over a long baseline. Currently, one
of the best data sets of single-band light curves is from the
OGLE experiment,7where quasars behind the Small and the
Large Magellanic Clouds(SMC and LMC) have been
monitored with a ∼2-day cadence for over 8 yrin the Iband
by OGLE-III(Udalski et al. 2008) and for ∼2.5 yrby OGLE-
IV(Soszyński et al. 2012; Kozłowski et al. 2013b). Most of
these quasars were identified by Kozłowski et al. (2011, 2012,
2013a) in part from candidates variabilityselected using the
DRW model(Kozłowski et al. 2010). As a test application of
the one-band photometric RM method, we selected 34 quasars
that have prominent, broad Hα emission lines that lie in the
Iband, relatively strong variability, and at least 400 epochs in
OGLE-III. Each quasar also has a shorter light curve from
OGLE-IV(∼350 epochs). We do not combine the two OGLE
campaigns for the same object, but derive two lags separately
as a means of checking the results. The typical photometric
uncertainties of the light curves are ∼0.02–0.04 mag.
The left column of Figure 5 shows the lag distributions

derived by applying the one-band photometric RM to the
OGLE-III and OGLE-IV light curves for five random quasars
in the sample. In each panel, dark and light histograms on the
left show the constraints from the OGLE-III and OGLE-IV
light curves, respectively. The quasars are expected to have Hα
lags of roughly 200–300 days based on their optical

Figure 4. Comparison between the JAVELIN and the CCF-based method of CZ13, using the NGC5548 light curves from Sergeev et al. (2005)(left) and mock light
curves(right). The vertical band in the topleft panel indicates the expected lag given the luminosity state of NGC5548 at the time of observation. See text for details.

7 There are still better, regular light curves of small numbers of AGNs(e.g.,
Mushotzky et al. 2011), but the broad Kepler filter bandpass makes it poorly
suited to this problem.

8

The Astrophysical Journal, 819:122 (12pp), 2016 March 10 Zu et al.



luminosity(i.e., estimated by assuming a typical quasar
spectrum normalized by the I-band absolute magnitude using
the scaling relations in MacLeod et al. 2010). The five objects
all have peaks in their lag distributions between 200 and 300
days;however, none of them show consistent lag constraints
between the two OGLE campaigns. The rest of the quasars in
the sample all exhibit similar inconsistencies, indicating that
the OGLE light curves collected to date are still insufficient for
doing one-band photometric RM, despite the long baseline and
high cadence.

The nondetection is likely caused by the relatively large
photometric uncertainties compared to the line variability
signal. To test the feasibility of one-band photometric RM
given OGLE’s sampling rates and photometric errors, we
generated two sets of mock light curves that have exactly the
same sampling epochs as object MQS J044125.27-
702310.5(top left panel of Figure 5) using f0.1 Is = ,

350dt = days, 250t = days, w=9 days, and A = 0.3. In one
case, we used the original average photometric error of 0.021

mag, and in the other, we used half this average error(i.e.,
0.011 mag). We then repeated the analyses for both sets of
mock light curves, with the results shown in the middle and
right columns of Figure 5, where the input lag is indicated by
the vertical dashed line in each panel. The probability
distributions in the middle column derived from the mock
light curves look less “spiky” than those derived from the data
light curves in the left column, possibly because our mock light
curves ignore the flux contributions from broad lines other than
Hα. Nonetheless, the one-band RM method fails to detect the
Hα lags for the mock light curves with the same photometric
errors as the OGLE data, but unambiguously recovers the input
lags in all five cases after the photometric uncertainties are
reduced by half, as shown in the right column of Figure 5.
Therefore, the key problem for one-band photometric RM is
that it needs very highprecision photometry compared to what
is usually obtained for typical sources in large-scale variability
surveys.

Figure 5. Lag estimates from one-band photometric RM, using either the OGLE-III or OGLE-IV light curves(left), andmock light curves using the original
photometric uncertainties(middle)and half these photometric uncertainties(right). In the panels using mock data, the input lag is indicated by the vertical dashed line.
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7. CONCLUSIONS

We have developed a stochastic modeling approach to
analysis of photometric RM using the statistical framework
introduced by ZKP11, assuming that the continuum variability
is described by a DRW model and the line transfer function is a
tophat. The approach can be applied either for two-band
photometric RM, where there is a line band and an independent
continuum band, or to one-band photometric RM, where there
is only a line band.

By applying the spectroscopic and the two- and one-band
photometric RM methods to a suite of simulated light curves,
we find that two-band photometric RM can be competitive with
spectroscopic RM only for strong (large equivalent width) lines
like Hα and Hβ in terms of lag detection efficiency for fixed
sampling conditions. The one-band method, however, requires
light curves of much higher photometric quality than is
generally achieved and is thus very challenging for any line.
For all three methods we also find that when the average
sampling interval is smaller than the lag, the lag detection
significance is most sensitive to the total exposure time
accumulated over all the monitoring epochs and almost
independent of cadence.

Application to test cases showsthat the photometric and
spectroscopic lag estimates are broadly consistent with each
other and have comparable lag uncertainties. We also used the
one-band photometric RM approach to analyze a sample of
variable OGLE quasars with strong Hα emission. The lag
estimates from separately analyzing the OGLE-III and OGLE-
IV light curves generally do not agree. One-band RM fails even
for the quasars with some of the best-existing long-term light
curves. Simulations show that the problem is that the 0.02–0.04
mag photometric uncertainties of the OGLE quasar light curves
are simply too large, but that the one-band method may succeed
if the uncertainties were reduced to ∼0.01 mag. Single-band
RM is likely most promising for computing average lags for
samples of quasars with similar physical properties(e.g.,
luminosity) rather than for individual objects.

In our simulations, we find that for the same observing
cadence, two-band photometric RM requires measurement
uncertainties ξ=0.85 times smaller than spectroscopic RM to
measure a lag with the same accuracy. A common argument for
photometric RM is that it requires far less telescope time, so it
is interesting to examine this claim quantitatively. Let t0 be the
time required to reach a given S/N level with a
spectrograph that has the efficiency of an imager. Spectro-
graphs are less efficient than imagers,8and the difference for
modern low-resolution spectrographs is a factor of 21 ~- .
Thus, the actual integration time required for spectroscopic RM
is t tS

1
0= - . Two-band photometric RM requires two images

and requires exposure times ξ−2 longer because higher-S/N
data are required to achieve the same lag precision, leading to a
total integration time of t t2I

2
0x= - . Thus, the ratio of the

required integration times is t t 2 1.48I S
2x= »- . Thus, the

advantage of two-band photometric RM over spectroscopy is
by no means obvious. Adding target acquisition times may
ultimately favor imaging because of more demanding telescope
pointing requirements for spectroscopy, but only because
smaller telescopes have not adequately invested in minimizing

such overheads. Other considerations are that spectra are more
difficult to calibrate owingto variable slitlosses and host
contamination, while photometric filters strongly restrict the
accessible redshift range per observation compared to
spectroscopy.
The conclusion that there is no particular benefit to

photometric RM over spectroscopic RM for a single object
contradicts a growing “conventional wisdom.” The issue is that
conventional wisdom is based on the integration times that
spectroscopic RM campaigns actually use compared to imaging
integration times rather than the integration time they could get
away with if all that is desired is an average lag. For the latter
purpose, spectroscopic RM campaigns are grossly overinte-
grating, in large part because their present-day goals are
focused on measuring lags as a function of velocity within the
line (Denney et al. 2009; Bentz et al. 2010; Grier et al. 2013b).
The real potential gain for photometric RM is that wide-field
imaging may allow the measurement of lags for many objects
in parallel, but even there, the advantage does not trivially lie
with imaging—as noted earlier, pilot RM programs (King et al.
2015; Shen et al. 2015) are already being pursued with wide-
field spectrographs like SDSS/BOSS(Dawson et al. 2013) or
AAT/AAOmega(Sharp et al. 2006) that are better matched to
the surface density of quasars on the sky than are existing wide-
field imagers.
The problem with using wide-field spectrographs for RM is

largely sociological—in any form, RM requires a large
commitment of telescope time, regardless of the size of the
telescope, and competition for large, wide-field telescopes is
fierce. In contrast, there are imaging telescopes dedicated to
photometric surveys, including monitoring programs such as
DES(TheDark Energy Survey Collaboration 2005), Pan–
STARRS(Kaiser et al. 2002), and ultimately LSST(LSST
Science Collaboration 2009). LSST will monitor millions of
quasars in six filters over a 10 yr baseline, with 200 visits per
filter each year. Figure 6 shows the expected lag detection
significance for two-band RM using simulated LSST light
curves(14-day cadence with 1% photometric uncertainties)
using quasar variability parameters of σ=0.1, 0.2, and 0.3
mag and DRW timescales of 50dt = , 100, 200, and 400 days.
In each panel, we set the input lag to be 0.5 dt , which can
always be robustly measured for Hα using LSST. The Hβ lags
can only be measured within 10% for light curves with σ>0.2
mag and lag >100 days, while the C IV signals are still too
weak to detect. However, since the JAVELIN method is based
on likelihoods, unlike the CCF methods proposed by Fine et al.
(2012, 2013), it is straightforward to multiply the likelihoods of
individual quasars to calculate an average lag for quasars of
similar luminosity and redshift, which, according to the
luminosity–radius relation (Equation (2)),should share similar
emission-line lags. For example, we can multiply the Hβ or
C IV lag likelihood functions of LSST quasars in the same bin
of redshift and luminosity and calculate an average lag for
that bin. In some sense, this is what we see in Figures 1 and 6,
which show the average likelihoods expected for a single
quasar—the combined likelihood for nine similar quasars
would be the same distribution after multiplying the
likelihood ratios by 9, with consequent narrowing of the
confidence regions, so that the red contours in Figures 1 and 6
would approximately represent 3σ confidence regions
( ln 4.5D = - ) instead of 1σ ( ln 0.5D = - ). This compo-
site photometric RM method will be particularly useful for

8 Aside from less photon-collecting efficiency, further disadvantages of
spectrographs include slitloss and the high S/N required for the measurements
of narrow [O III] lines used for internal photometric calibrations.
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“piggybacking” on surveys that produce a large number of
undersampled quasar light curves. Therefore, provided thatthe
systematic errors in photometry can be controlled to the sub-
0.01 mag level, we expect that the number of RM systems will
grow dramatically with the incoming high-quality photometric
quasar light curves in the near future.
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