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ABSTRACT

During 2016-17, the Juno and Cassini spacecraft will both perform close eccentric orbits of Jupiter and Saturn,
respectively, obtaining high-precision gravity measurements for these planets. These data will be used to estimate
the depth of the observed surface flows on these planets. All models to date, relating the winds to the gravity field,
have been in the forward direction, thus only allowing the calculation of the gravity field from given wind models.
However, there is a need to do the inverse problem since the new observations will be of the gravity field. Here, an
inverse dynamical model is developed to relate the expected measurable gravity field, to perturbations of the
density and wind fields, and therefore to the observed cloud-level winds. In order to invert the gravity field into the
3D circulation, an adjoint model is constructed for the dynamical model, thus allowing backward integration. This
tool is used for the examination of various scenarios, simulating cases in which the depth of the wind depends on
latitude. We show that it is possible to use the gravity measurements to derive the depth of the winds, both on
Jupiter and Saturn, also taking into account measurement errors. Calculating the solution uncertainties, we show
that the wind depth can be determined more precisely in the low-to-mid-latitudes. In addition, the gravitational
moments are found to be particularly sensitive to flows at the equatorial intermediate depths. Therefore, we expect
that if deep winds exist on these planets they will have a measurable signature by Juno and Cassini.
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1. INTRODUCTION

At the observed cloud level of both Jupiter and Saturn,
atmospheric dynamics are dominated by strong east—west
(zonal) jet streams (Figure 1), reaching velocities of 140 ms~ !
on Jupiter and over 400ms~' on Saturn (Vasavada &
Showman 2005). It is currently unknown how deep these jets
extend (e.g., Li et al. 2006; Del Genio & Barbara 2012), and
the only available direct measurements below the cloud-level
are from the 1995 Galileo probe to Jupiter that found 160 ms ™'
winds extending down to at least 22 bars at the entry point of
the probe (6°N; Atkinson et al. 1996). Addressing this question
is one of the main goals of the Juno mission to Jupiter and of
the Cassini proximal orbits around Saturn. Their aim is to
determine the depth extent of atmospheric circulation on these
planets through precise measurements of their gravity field
(Hubbard 1999; Kaspi et al. 2010). This may allow us to
answer the long lasting debate regarding the depth of the
dynamics on giant planets, and thus shed light on the
mechanisms the could be driving the jets (e.g., Busse 1976;
Williams 1978; Cho & Polvani 1996; Showman et al. 2006;
Kaspi & Flierl 2007; Scott & Polvani 2007; Lian &
Showman 2010; Liu & Schneider 2010; Liu et al. 2013).

The Juno mission was launched in 2011 and will arrive at
Jupiter in 2016 equipped to perform high-precision measure-
ments of the gravity field with expected accuracy that will
allow meaningful measurements up to at least Ji, (Bol-
ton 2005). In 2017, NASA’s Cassini mission will conclude its
13-year tour of the Saturnian system, with planned proximal
orbits of Saturn obtaining the same type of data for Saturn, just
before the spacecraft terminates its operation by descending
into Saturn’s interior. For both spacecraft, the detection of the
gravity signal will be done by Doppler tracking of the
spacecraft trajectory.

In recent years, in anticipation of the arrival of Juno at
Jupiter, several studies have looked at the effect of interior flow
on the gravitational signature of the planet. To leading order,
the gravity spectrum is affected by the planet’s oblate shape
and radial density distribution. However, on giant gas planets,
since they are composed mainly of light elements and have no
solid surface, the relative effect of density perturbations due to
their internal and atmospheric dynamics can be significant and
affect the measured gravity field. Particularly, if the strong
winds extend deep enough into the planets’ interior, their
relative effect on gravity becomes larger. This was first noted
by Hubbard (1982) and later developed further by Hubbard
(1999). In these studies, potential theory (the adjustment of
potential surfaces under rotational and internal structure
constraints) was used to show that if differential rotation on
Jupiter penetrates the depth of the planet, then the resulting
high-order gravity moments will be stronger than the
corresponding solid-body moments. This approach was
recently further developed using more accurate concentric
MacLaurin-based interior models (Hubbard 2012, 2013; Kong
et al. 2012).

These studies have allowed accurate estimation of the
gravity field, but have been limited to flows following full
cylindrical symmetry because these potential theory models are
limited to fully barotropic systems in which the flow is constant
along lines parallel to the axis of rotation. A second approach
proposed was using thermal wind balance models (Kaspi
et al. 2010, 2013b; Kaspi 2013; Liu et al. 2013), where the
gravity field resulting from any given wind field could be
calculated; however, these models are limited to spherical
symmetry, resulting in the inability to calculate the static (solid-
body) gravity spectrum and neglecting the effect of the planet
oblateness on the wind contribution to the gravity moments.
Kong et al. (2012) calculated this effect for the case of the full
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Figure 1. (a) Surface winds on Jupiter (Porco et al. 2003) and (b) surface winds
on Saturn (Sanchez-Lavega et al. 2000).

barotropic flow, and found it to be small. Similarly, using a
thermal-wind-based model with an oblate mean state density
structure, we find that the effect of oblateness on the dynamical
contribution to the gravity moments is small (Kaspi
et al. 2013a, 2016).

Because Jupiter and Saturn are gaseous, aside from the
cloud-level winds, there is no apparent asymmetry between the
northern and southern hemispheres. Therefore, the gravitational
moments resulting from the shape and vertical structure of the
planets have identically zero odd moments (Kaspi 2013).
However, the observed cloud-level wind structure does have
hemispherical differences, and it was shown that, even if these
asymmetries extend only O(100) km below the surface, their
contribution to the odd gravity moments is measurable
(Kaspi 2013). Unlike the even moments that have a contribu-
tion both from the static density distribution and the dynamics,
the odd moments are caused purely due to dynamics. Thus, any
odd signal detected (J3, Js, J7, ...) will be a sign of a dynamical
contribution to the gravity signal, and this might be one of the
first signals of deep dynamics that might be measured by Juno
and Cassini. Also using the thermal wind approach, Liu et al.
(2013) calculated the penetration depth of the winds on Jupiter
with the additional assumption that the entropy gradient in the
direction of the spin axis must be zero. This requirement sets
the penetration depth of the winds, and they have also found
that such a wind structure should be detectable by Juno and
Cassini (Liu et al. 2014).

All studies to date have been only in the direction of forward
modeling; thus, given a hypothetical wind structure (based on
the observed surface winds and some assumption regarding the
penetration depth) the gravity moments are calculated via the
effect of the winds on the density structure (e.g., Hubbard 1999;
Kaspi et al. 2010; Kong et al. 2012; Liu et al. 2013). However,
in order to analyze the gravity field that will be detected by
Juno and Cassini, we need to solve the inverse problem, and
calculate the zonal wind profile given the gravity field. This
causes difficulty since a gravity field is not necessarily
invertible, and a given gravity field might not have a unique
corresponding wind structure. Here, we address this issue by
proposing an adjoint based inverse method that will allow the
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investigation of the giant planet dynamics using the observed
measured gravity field. This method has been used extensively
in the study of oceanic and atmospheric fluid dynamics (e.g.,
Tziperman & Thacker 1989; Mazloff et al. 2010; Moore
et al. 2011; Kalmikov & Heimbach 2014). In this study, we
present results based on the zonal winds only, but this method
will enable us to relate them to the full gravity maps, not only
for the zonal moments, but for the full 3D gravity fields
including contributions from longitudinal variations in the wind
structure and meridional winds. These variations might be
detectable if the depth of these longitudinal features have a
depth of at least a few thousand kilometers (Parisi et al. 2016).
Moreover, the adjoint model we present in this study is derived
using the forward model based on the thermal wind method.
However, the inversion method is more general and can be
applied to more complex models (e.g., Zhang et al. 2015) or
general circulation models as is often done in ocean science
(e.g., Galanti et al. 2003; Mazloff et al. 2010).

In Section 2, we describe the thermal wind forward method
for calculating the wind induced contribution to the gravity
moments, its adjoint counterpart, and the optimization
procedure used to find the depth of the winds. In Section 3,
we discuss the results for several cases, a case with wind depth
that is not varying with latitude, a case where the wind depth on
Jupiter is allowed to vary with latitude, and the same analysis
applied for Saturn. We also discuss sensitivities to flow
perturbations in the planet deep interior. We discuss the results
and their implications for the Juno and Cassini missions in
Section 4.

2. METHODS
The relation between the density structure of the planet and
the resulting gravity signature can be interpreted using the
zonal gravity moments, which are defined as

b=~ [Bprdr, M

Ma
where M is the planetary mass, a is the mean planetary radius,
P, is the nth Legendre polynomial, and p is the local density
(Hubbard 1984). The density can be divided into the solid-body
component p(r, ), and a dynamical component p’(r, )
arising from the fluid motion (6 is latitude), so that
p=p+ p' (see Kaspi 2013 for more details). Similarly, in
our analysis, we separate the gravity moments to the static
gravity signal, which is due to the static density mass
distribution of the planet and is calculated using an internal
structure model, and the contribution from the dynamical
density perturbations due to the zonal flows. Because our main
goal is to determine the penetration depth of the observed zonal
flows, we take these as a given and allow a wide range of
penetration depths, which are the parameters we are trying to
optimize.

2.1. The Thermal Wind Forward Model

Starting from the observed cloud-level winds, we first need
to establish the nature of the subsurface flow. Since the planet
is rapidly rotating, and Coriolis accelerations are dominant over
the inertial accelerations (small Rossby number), surfaces of
constant angular momentum will be nearly parallel to the axis
of rotation (Kaspi et al. 2009; Schneider & Liu 2009).
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Conservation of angular momentum then implies, to leading
order, that the flow is mainly zonal, i.e., that any meridional
circulation will be much weaker than the zonal flow. These
zonal flows have been shown in numerical models to have a
structure that is aligned with the axis of rotation, yet with wind
speeds that decay with depth (Kaspi et al. 2009). Therefore,
similar to Kaspi et al. (2010) we assume that the zonal wind
field has the form

u@u@)zzmexp(r;;“), @)

where uy(r, 0) are the observed cloud-level zonal winds
extended constantly along the direction of the axis of rotation,
but here we allow the e-folding decay depth of the cloud-level
wind, H(0), to vary with latitude. This enables extra degrees of
freedom in the possible structure of the winds compared to
previous studies such as Kaspi et al. (2010), Kaspi (2013), and
Liu et al. (2013). A latitudinal dependent decay depth can occur
for several reasons, such as the internal convection extent
varying with latitude (e.g., Aurnou et al. 2008), ohmic
dissipation being latitudinally varying (Liu et al. 2008; Liu &
Schneider 2010), moist convection having different latitudinal
behavior (Lian & Showman 2010), or by different dynamics
inside and outside the tangent cylinder surrounding the metallic
hydrogen envelope (e.g., Heimpel & Aurnou 2007; Gastine
et al. 2013; Heimpel et al. 2015). The latitude dependent H is
defined as a summation over the first 20 Legendre polynomials

19
H(0) =) hiPi(0), (3)
i=0
where h; are the coefficients by which the shape of H(0) is
determined. Such a formulation allows for a solution to be
found separately for different spatial scales of the winds and its
resulting gravity signals. Note that, when setting #;_; 19 = 0,
the depth of the winds is set to be constant with latitude. Since
we expect the dynamics to be in the regime of small Rossby
numbers, the flow to leading order is in geostrophic balance,
and therefore thermal wind balance must hold so that

QQ - V)[pul = Vo' x g, 4

where () is the planetary rotation rate, u(r) is the full 3D
velocity, g,(r) is the mean gravity vector,' and p'(r, 0) is the
dynamical density anomaly (Pedlosky 1987; Kaspi et al. 2009).
Here the thermal wind balance is written in a general form
without making any assumptions on the depth of the
circulation. The mean static density p(r) and g,(r) are
calculated using the model of Hubbard (1999; see also
Hubbard et al. 2014). Note that, in principle, the specific
choice of these background fields affects the dynamical density
anomalies; however, we found that using p(r) and g, (r) from
different sources hardly affects the solution of the dynamical
gravity field. Therefore, we consider p(r) and g,(r) as known
parameters and do not try to optimize them.

' The gravity vector is calculated by integration of the static density p, and is
therefore only a function of radius. Zhang et al. (2015) suggest a correction to
this equation by adding a term associated with the nonradial component of the
gravity vector due to dynamics. However, as also shown by the same authors,
for the values of decay scale heights considered here and for gravity moments
with n > 2, such a term is small.
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Integrating the zonal component of Equation (4) latitudin-
ally, the dynamical density p’(r, #) can be calculated, and will
depend only on the decay parameter H () and a radially
depending integration constant p;) (r), which, for small Rossby,
numbers is small compared to the solid-body radial density
profile, so that pg < p (Kaspi et al. 2013b). This integration
constant, which physically represents a perturbation to the
horizontal-mean radial density profile due to dynamics, does
not contribute to the gravity field since it only depends on
radius while the Legendre polynomials are only functions of
latitude with a zero mean, and therefore do not contribute to the
gravity moments in Equation (1). For this reason, calculations
of the gravity signal using the thermal wind method as applied
here are limited to spherical geometry. Then, the dynamically
induced gravity moments due to the density anomaly p’ are

a 27

A= [ [ ay
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1
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using spherical coordinates so that ¢ is longitude and
1 = cos 0. Note that unlike the dynamical gravity moments,
the static gravity moments are dominated by the oblate shape of
the planet, and therefore need to be calculated by other methods
(e.g., Zharkov & Trubitsyn 1978; Hubbard 2012; Kong et al.
2012; Hubbard et al. 2014; Wisdom & Hubbard 2016).

In this study, we will simulate the gravity moments, but it is
important to note that the resulting gravity signal itself, which
can be estimated from radio tracking data, can then be
calculated by taking the radial and latitudinal derivatives of

the gravity potential V (r) = 1 — ‘ZO:Z(%)”J,,B, () to give the
radial and latitudinal components of the anomalous gravity

perturbations due to wind given by

68, = & > (n + HXAJP, (1), (6)
n=2
> 1 dp,

68 = 8y Y_ (1 — P2 XN'AJ, " @)
n=2

where g¢ is the mean surface gravity for the spherical planet,
A =a/(a + r,), and r,, is the local distance in the spacecraft’s
trajectory to the 1 bar surface. Note that for high moments this
signal increases rapidly as the spacecraft is close to periapse.

In summary, given the observed cloud-level winds, and
assuming a penetration depth of the winds and the dynamical
balance between them and the density structure, we can
calculate the resulting gravity perturbation on the planet
surface. However, the problem we need to solve is the inverse
one: given the gravity measurements, what would be the H(6)
that would best explain them. For that, we develop the adjoint
model described in the next section.

2.2. The Adjoint Model

An efficient way to address the problem of determining the
internal structure of the wind field, given the observations of
the gravity moments J,,, a forward model such as that described
above, and the observed cloud-level winds, is the adjoint
method. This method allows for an effective optimization of
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the model solution with respect to a cost function and control
variables (e.g., Thacker & Long 1988; Tziperman &
Thacker 1989; Tziperman 1992; Wunsch & Heimbach 2007;
Mazloff et al. 2010). The adjoint method has been used
extensively in geophysical fluid dynamics problems on Earth,
both in the ocean (e.g., Marotzke et al. 1999; Galanti
et al. 2003; Ferreira et al. 2005; Kalmikov & Heimbach 2014)
and in the atmosphere (e.g., Moore et al. 2011; Blessing
et al. 2014). It is used for sensitivity studies as well as for
optimization of parameters and data assimilation.

The cost function is the physical quantity we wish to
minimize. It can be a measure of the deviation of the model
solution from the observations, or simply the model solution
itself. The control variables can be any parameter or model
variable that has an effect on the cost function. The adjoint
model is then a backward run of the derivatives of the cost
function with respect to the model variables, linearized over its
solution from the forward integration, with the final solution of
the adjoint model being the sensitivity of the cost function with
respect to the control variables. This sensitivity can be studied
by itself, or be used to direct the model toward a solution that
minimizes the cost function. In this study, we will use the
adjoint mainly for optimization, but also examine the adjoint
sensitivities that enable us to evaluate the sensitivity of our
solutions to the wind velocities at different depths.

The cost function is defined as the difference between the
model calculated moments and those measured, and the control
variable is the decay parameter H (). We define the cost
function as

19
T=AT-W-AJ+ > h, ®)
i=0

AJ = Je — Jo, )

where J¢ is the N size calculated model solution, J° are the
observed gravity moments, and W is a matrix of size N X N
with weights given to each moment (diagonal terms) and
covariance between moments (off-diagonal terms). In general,
the values of the weights are set as the inverse of the
observational error covariance matrix (Finocchiaro &
Iess 2010), but given the conceptual nature of this study, for
simplicity, we set the weights to be W;; = 4 x 10'® and zero
elsewhere, representing simulated uncertainties of 5 x 10™° (a
value similar to the high moments, see more in Section 3). The
second term in Equation (8), which is set to be much smaller
than the first and controlled by the value of ¢, acts as a
constraint on the optimized solution demanding that the values
of h; be as small as possible as long as they do not affect
substantially the first term, thus reduce the effect of the
unphysical initial guess on the final solution. For example, if a
certain h; has a large value in the initial guess, but has little
effect on the cost function, i.e., it has a small projection on the
gravitational moments, the second term acts to reduce its value.
On the other hand, if that 4; has a significant projection on the
gravitational moments, and therefore on the cost function, its
value will be optimized. This second term should only come
into play once the cost function has been substantially reduced,
otherwise it will dominate the optimization process and instead
of minimizing the difference between the model gravitational
moments and the observed ones, the values of all &; will be
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reduced regardless of their contribution to the moments. It is,
therefore, important to keep the second term very small
compared to the initial value of the cost function (at least by
two orders of magnitude) to allow a physical optimization of
the problem. With that, the value of e should also not be too
small, otherwise it will have no effect on the optimization
process. For each case presented here, the value of the
parameter € was set according to the initial value of the cost
function, to keep the necessary ratio.

Our goal is to minimize the cost function, i.e., bring the
model solution closer to the observed, and therefore we need to
calculate its sensitivity to changes in the decay parameter H ().
For simplicity, we start with a single H, so that the sensitivity is

9JI°)
OH

with the modeled moments formulated as a series of operators

J¢ = R (K (F3(H))), (1)

ANH) =

(10)

where F is the solution of Equation (5), F, is the solution of
Equation (4), and F3 the solution of the spherical structure of
the wind Equation (2), which is a function of H.

Therefore, the model Jacobian matrices for the three
equations can be written in the form (e.g., Marotzke et al. 1999)

A = 270D (8—‘7_)(%)(3—”)(8—”). (12)
on \ar )\ ap Nou)\om

Taking the transpose results in matrix-vector multiplications we

get
= (L) (e (22 (2 (6_5) a3
- \0H oH) \ou) \ 9p ) \oJe)’
which is the adjoint model to be used.

The solution of the adjoint model A7 is the sensitivity of the
cost function to a perturbation in the control variable H.
Modifying the control variable iteratively according to the
adjoint solution will result in a minimization of the cost
function. In the case of a latitudinal dependent wind depth,

where H() is a function of the coefficients A;, the adjoint
solution has the form

v (97 _ (o8 (8_)(@)
"\ ok oh; ) \oH ) \ ou

-\ T
« |28 (aj‘) L2, (14)
o ) \aar

where A/ is the adjoint sensitivity with respect to the ith
coefficient of Equation (3). Alternatively, the adjoint sensitiv-
ities could be formulated using Lagrange multipliers (e.g.,
Thacker & Long 1988; Tziperman & Thacker 1989). A detailed
example on how the adjoint model is derived using the
Lagrange multipliers is given in the Appendix.

The effectiveness of the adjoint method comes from its
ability to provide the sensitivity to all control variables (in our
case, h;) in a single run of the forward and backward models.
Having the adjoint solution, we can now proceed to construct
the optimization of the model solution.
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Figure 2. Example of the adjoint optimization. (a) The reduction of the cost
function with iterations and (b) the change in the penetration depth as function
of iterations. The solid line is for the optimization starting from an initial guess
of H = 5000 km, while the other lines show the same optimization, but with
the initial guess being H = 4000 km, H = 2000 km, and H = 1000 km. In all
cases, the same solution is reached. Note that due to the nonlinear nature of the
problem the convergence rate is different for the cases with initial guesses of
H = 5000 km and H = 1000 km, even though they begin at the same distance
from the solution. Also note that the dashed and dashed—dotted lines in (a)
overlap.

2.3. Optimization Procedure

Once the gradient of the cost function A is obtained, the
control variables (either a single depth H, or coefficients 4;) are
modified so that in the next iteration the cost function will have
a lower value. In the case of a single H, there is only one option
to change the control variable—in the direction opposite to the
value of the adjoint solution. In the case of optimizing #;,
moving directly (steepest descent) is not efficient, therefore, a
conjugate gradient method is applied so that the direction of
modifying the control variables is the optimal one (Hes-
tenes 1980). The extent of the change is also controlled using a
line search (Hestenes 1980), so that the change in the control
variable does not cause the cost function to move beyond the
global minimum. The global minimum is defined to be reached
when each of the gravitational moments is as close to the value
of the observed one as the size of the uncertainty assigned to it.
Therefore, after each iteration, we check the value of each
element in AJ to see whether it is small compared to the
observational uncertainty (in our case, 5 X 1079, and if all of
the calculated moments are within this uncertainty the
optimization is complete. At the final iteration, the Hessian
matrix C (second derivative of the cost function) is calculated
in order to estimate the uncertainties associated with each
control variable (Tziperman & Thacker 1989). Inverting the
Hessian matrix C, we get the error covariance matrix G.
Finally, the cross-correlated uncertainties G;; are projected into
the physical space of H, and are used as formal bounds on the
solution. Note that if the control variable is a single depth H,
the size of the Hessian matrix is 1 x 1. The adjoint
optimization was tested with various wind depths, and is
found to be able to reach a solution within 10 to 60 iterations
(see the examples in Figures 2 and 3). In addition, an important
criteria for the robustness of the solution is whether the
minimum reached is global, i.e., would the same solution be
reached if starting from different initial guesses? In order to test
this, we tested each of the experiments presented in this study,
starting from different initial guesses and checking if the same
solution is reached. An example of such a test is shown in
Figure 2, where the different curves show the optimization
process for different initial guesses. We found that in all
experiments discussed in Section 3 the adjoint optimization is
insensitive to the choice of the initial guess—the same solution
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is being reached regardless of the initial guess, only the number
of iterations needed might change. Therefore, we conclude that
the global minimum of the problem is indeed being reached
and the method is valid for the problems presented.

3. RESULTS

We now show how the adjoint method is used to produce a
wind structure, given the surface wind velocities and a set of
gravity moments. In all cases presented below, the following
approach was taken. First, the forward model was run with a
chosen depth of winds and the gravitational moments were
calculated. These moments are then defined as the simulation.
This solution is used to mimic the upcoming Juno or Cassini
observations. In order to allow for observational errors, a
uniformly distributed error with a magnitude of 5 x 10™° is
added to the gravity moments. This value corresponds to the
average error measurement we expect for lowest order
moments (Finocchiaro & Iess 2010). Second, the adjoint
optimization is used to find the solution closest to the simulated
moments, starting from an initial guess and then searching for
the solution using the optimization procedure.

3.1. Inversion of the Gravity Signal

We start with a Jupiter case, where first, for simplicity, the
observed winds of Jupiter are set to penetrate to the same depth
in all latitudes. Therefore, the adjoint optimization is trying to
minimize the cost function with respect to a single depth H.
The simulation is done with H = 3000 km, and the initial guess
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Figure 3. Jupiter gravitational moments for (a) a case with no errors in the
simulated moments, and (b) a case with random errors. Shown are the
simulation (red), initial guess (black), and solution (blue). Filled (open) circles
denote positive (negative) values.
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Figure 4. Case with simulated H = 3000 km and the initial guess
H = 5000 km. Shown are the radial component of the gravitational anomalies
(in mGals), as a function of latitude, for the simulation (red), the initial guess
(black), and the solution (blue).

was set to H = 5000km. The progression of the adjoint
optimization is shown in Figure 2 (solid lines). It can be seen
that the within five iterations the cost function value is reduced
by an order of magnitude, and the calculated wind depth is
getting closer to the simulated one. The gravitational moments
for the simulation, initial guess, and solution are shown in
Figure 3 for a case without errors in the simulated moments
(panel (a)) and for a case with errors (panel (b)). While, in the
former case, the moments reach a perfect fit to the simulation,
in the latter case, the lower moments are fitted well and the
higher moments are less so, since the errors applied to the
simulation have a relatively larger effect on the higher
moments, which are smaller.

The gravitational moments can be transformed into the
actual latitudinal dependent gravity anomalies (Equation (6)).
The radial component of these anomalies, calculated at the
planet’s 1 bar level, are shown in Figure 4, for the adjoint
solution, together with the simulation and initial guess. Note
that as a result of the complex surface wind structure (Figure 1),
even with a single H the resulting gravity field has a
pronounced asymmetry between the northern and southern
hemispheres. While the initial guess differs considerably from
the simulation, the solution matches the simulation well. The
difference between the simulation and the solution is a result of
the errors we apply to the simulation. In a case with no random
errors the solution is identical to the simulation (not shown).
Given the good agreement between the adjoint solution and the
simulation, it is clear that most of the gravity signal is
contained in the lower moments. Note that the differences in
the moments (Figure 3) have only a minor effect on the actual
gravity field; therefore, for the next more complicated cases, we
show the gravity field and not the gravitational moments.

Next, the wind penetration depth is allowed to vary with
latitude. In this case, the adjoint optimization is trying to
minimize the cost function with respect to the set of coefficients
h;. The simulation was done with an H(6) that is deeper at the
equator and shallower toward the poles, representing possibly
deeper dynamics outside of the tangent cylinder (Aurnou
et al. 2007), where drag might be playing a lesser role (Liu &
Schneider 2010). The simulation H (f) has an asymmetry
between the hemispheres, and the initial guess was chosen to
reflect a complex dependence on latitude (Figure 5(b)). The
adjoint solution over most latitudes (see below) is in good
agreement with the simulation, in both the gravity anomalies
(Figure 5(a)) and the depth of the winds (Figure 5(b)).

The adjoint model also gives us the ability to rigorously
estimate the uncertainty associated with the solution. This is
done by calculating the Hessian matrix and from that the error
covariance matrix (Figures 6(a) and (b), respectively). The
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Hessian matrix gives an estimate to the sensitivity of the cost
function to cross perturbations in the control variables; the
higher the value, the better our ability to determine the values
of these parameters. Inverting the Hessian matrix reveals the
covariance of the uncertainties associated with each control
variable (Figure 6(b)). The highest uncertainties are in the
diagonal terms of the higher coefficients, meaning that the
coefficients are not significantly affecting each other, and that
most of the uncertainties are in the spatially highly variable
features (higher moments). In order to further verify this, the
covariance matrix can be used to calculate the uncertainty in H
at each latitude using

en (0) = D _Pi(O)P;(0)Gy 5)

where G;; are the cross-correlations between the coefficients #;
and h;, and P,(0) is the Legendre polynomial at latitude 6. The
uncertainty in H (Figure 6(c)), is found to be largest near the
poles since this is where the winds are weakest. This
uncertainty is also plotted in Figure 6(b) to illustrate the
usefulness of the solution for H. It is clear that where the
uncertainty in H is small, the solution matches the simulation
well (low latitudes), and, where the uncertainty is large, the
solution deviates considerably from the simulation (high
latitudes). This has implications for the expected usefulness
of the upcoming gravitational measurements by Juno and
Cassini in determining the depth of the winds on both Jupiter
and Saturn. Even in a case where the uncertainties of the
measured gravity field are very small, due to the weak wind
close to the poles it will not be possible to determine with
certainty the depth of the flow in the polar regions. Moreover,
the planned periapses of the orbit of both Juno and Cassini are
at low latitudes, meaning that the sensitivity to higher latitude
induced signals will be smaller (Finocchiaro & Iess 2010;
Finocchiaro 2013).

Next, we repeat the experiment for Saturn. The main
difference between the planets, aside from the different
physical parameters, is in the surface wind pattern (Sanchez-
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Figure 5. Case with latitudinal dependent decay depth H(6). (a) The
gravitational anomalies (in mGals) as a function of latitude, and (b) the depth
of the winds. Shown are the simulation (red), initial guess (black), and solution
(blue). For the solution of the wind depth, also shown are the associated
uncertainties (blue shading).
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Figure 6. (a) Hessian matrix associated with the adjoint solution. (b) The error
covariance matrix. (c) The uncertainties in the solution for the depth of the
winds, as calculated from the diagonal of the error covariance.

Lavega et al. 2000, 2007; Garcia-Melendo et al. 2011). While,
on Jupiter, the winds vary considerably with latitude, on
Saturn, the much stronger winds have a simpler latitudinal
pattern (Figure 1). As in the case of Jupiter, the simulation was
done with H that is deeper at the equator and shallower toward
the poles, with an asymmetry between the hemispheres; the
initial guess was chosen to reflect a complex dependence on
latitude (Figure 7(b)). Since the shape of the surface winds are
much different in the Saturn case, the resulting gravity
anomalies are also very different (Figure 7(a)). Still, similarly
to the Jupiter case, the solution matches closely the simulation
in the low latitudes and less so closer to the poles. This
characteristic is evident in the associated uncertainties, shown
in Figure 7(b) as the shaded area around the solution.

3.2. Changing the Physical Assumptions

Thus far, we have used the same physical assumptions in
both the model used for calculating the “simulation” and the
model used to find the “solution.” However, a valid question is
how well the adjoint optimization would work when the model
used to find the solution is different from the one used for
generating the simulation—in reality, we should expect that
any model used to interpret Juno observations will lack some
of the physics embedded in the observations.

In order to get insight into the matter, we examine two cases
in which the model used for optimization differs from that used
for the simulation. First, we set the “simulation” with the depth
of the wind being constant with latitude, and ask the
optimization to look for a depth that varies with latitude
(Figure 8). The simulation was done with H = 4000 km, the
initial guess was set with depths of winds that vary between
3000 km near the equator and 1000 km near the poles. The
optimized solution follows the simulated depth closely, aside
from the polar regions, where it deviate by about 1000 km (as
expected from its uncertainties). This experiment challenges
the optimization more than the previous ones, but is still within
the framework of the physical model used for both simulation
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and optimization, since we can view the simulation as done
with latitude, varying depth set with Equation (3) with
]’lo = 4000 km and h1,19 =0.

A more challenging setup can be done by generating the
simulation with a latitude varying depth and looking for a
solution in which the depth of the wind is assumed to be
constant with latitude. In such a case, we can expect that the
simulated solution could not be reached, since the physical
model used in the optimization lacks some of the physics used
in the simulation. We set the experiment with the simulation
based on the same depth distribution as in the previous section,
and set the initial guess to be H = 2000 km (Figure 9). As
expected, it can be seen that the solution H = 4327 km does
not match the simulated one, yet it is in the proximity of the
wind depth in the equatorial region. Moreover, looking at the
actual gravity field (Figure 9(a)), the solution captures most of
the signal contained in the simulation, especially in the low and
mid-latitudes.

The two experiments discussed here show that the adjoint
method can deal with cases in which the physical assumptions
regarding the depth of the wind used in the optimization differ
from those used in the simulation. In the next section, we
discuss the sensitivity of the solution to deep flow patterns, an
additional complication.

3.3. Sensitivity to Deep Wind Patterns

Aside from the question of how deep the cloud-level winds
penetrate, it might also be the case that a different structure of
flow exists in the interior, that does not have any signature at
the observed cloud-level wind. Because deeper levels have
more mass, it is possible that the measured gravity signal will
come from these levels (Galanti & Kaspi 2015). As long as this
flow structure is large scale it will also likely be geostrophic
and, therefore, in thermal wind balance with an associated
density modulation that will affect the gravity field. Using the
adjoint method, we can get an estimate on the sensitivity of the
cost function to perturbations in the two-dimensional wind
field, regardless of the surface winds. In fact, this can be also
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Figure 7. (a) The Saturn gravitational anomalies (in mGals) as a function of
latitude, and (b) the depth of the winds. Shown are the simulation (red), initial
guess (black), and solution (blue). For the solution of the wind depth, also
shown are the associated uncertainties (blue shadow).
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Figure 8. Case where the simulated wind depth is constant with latitude and
the solution varies with latitude. (a) Jupiter gravitational anomalies (in mGals)
as function of latitude, and (b) the depth of the winds. Shown are the simulation
(red), initial guess (black), and solution (blue). For the solution of the wind
depth, also shown are the associated uncertainties (blue shadow).

done in 3D, using the Tesseral moments (Parisi et al. 2016), but
because the aim of this study is to present this method, we keep
the analysis simple with just the 2D (zonally averaged) wind
fields. To perform this estimate, the forward model was run
with a wind depth of 5000 km (this choice does not affect the
solution, aside from some minor nonlinear contributions).
Defining the cost function to be the sum of the square of the
gravitational moments

T =Y W), (16)

the adjoint model is integrated to produce the adjoint
sensitivities, which are the sensitivity of the cost function to
any of the model prognostic variables. In our case, they include
the gravitational moments, the density perturbations, the wind
structure, and the depth parameter (see Equation (13)). The
value of the sensitivities is the change in the cost function
expected when perturbing the variable with a unit change.
We then save the adjoint variables of both the density and

wind,
\I T
e 0):(‘” ) ( 07 ) ,

ap ) \oase
ap\ (oJ¢ T(aJ)T

M(z, ) == s 17

vz, 0) (au)(ap] o (17)

which are a function of latitude and depth. The adjoint solution
for the sensitivity to the density and wind is specific to the
model’s numerical structure in general, and to the grid structure
in particular. Given that the grid in the model is not regular, i.e.,
the size of the grid box changes with depth, the adjoint solution
needs to be normalized by the size of the grid box in order to
show the physical sensitivity. Figure 10 shows the normalized
sensitivities to density perturbations and wind perturbations.
While the sensitivities to the density mostly bears the shape of
J>, and are highest close to the surface (due to the strong
dependence of the gravitational moments on the distance from
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the surface), the sensitivities to the zonal velocity show a
different structure. There exists a single pattern of positive
sensitivities, located close to the equator, with the maximum
around a depth of 10,000 km from the surface. The sensitivities
decay gradually toward high latitudes. This is due to the nature
of the thermal wind balance, in which the vertical gradient of
the density is a function of the latitudinal gradient of the wind,
so that a wind perturbation at a certain depth will imply a
density perturbation from that depth to the surface. This implies
that the highest sensitivities to deep winds, if they exist, will be
to winds at the range of ~10,000 km below the cloud level and
limited to low latitudes. The possibility that deep flows exist
separately from the surface wind and their affect on the gravity
field must be further examined in future studies.

4. DISCUSSION AND CONCLUSION

Modern observations of the gas giants since the 1970s have
allowed these planets to be studied in great detail, particularly
regarding processes at their cloud level. However, much of the
processes controlling the levels below have remained unknown
mainly due to the lack of observational data. This will likely
change in the coming few years as the upcoming Juno mission
and Cassini proximal orbits bring the possibility of investigat-
ing the sub-cloud levels in detail with several different
instruments. Particularly, radio measurements will provide
high-precision gravity soundings, i.e., data that can be used to
estimate the depth of the observed surface flows on these
planets. All models to date, relating the winds to the gravity
field, have been in the forward direction, thus allowing only a
calculation of the gravity field from a given wind model. Here,
we propose a method to solve the inverse problem of deriving
the depth of the winds from the gravity data. We use an adjoint
based inverse dynamical model to relate the expected
measurable gravity field, to perturbations of the density and
wind fields, and therefore to the observed cloud-level winds. In
order to invert the gravity field to be measured by Juno and
Cassini into the circulation, an adjoint model is constructed for
the dynamical model, thus allowing backward integration of
the thermal wind model.
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Figure 9. Case where the simulated wind depth varies with latitude, but the
solution has a constant depth. (a) Jupiter gravitational anomalies (in mGals) as a
function of latitude, and (b) the depth of the winds. Shown are the simulation
(red), initial guess (black), and solution (blue).
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The thermal wind method allows perhaps the simplest
relation between the flow velocity and the dynamically
balanced density gradients, which can be then related to the
gravity field. Therefore, we have applied the adjoint method to
the thermal wind model; however, the methodology presented
here is not specific to this model and could be used to study and
optimize any type of model, ranging from simple conceptual
models to complex general circulation models (e.g., Marotzke
et al. 1999; Galanti et al. 2003; Mazloff et al. 2010). In any
such model, the adjoint method will allow for the backward
calculation of the flow field that best matches the measured
gravity field. Models with more complex physics will allow the
inclusion of processes not taken into account here such as
magnetic effects, internal convection, etc. Nonetheless, as long
as the large-scale motion on these planets is controlled to
leading order by the rotation of the planet, even models
containing more physical processes would be to leading order
in thermal wind balance. Therefore, this analysis captures the
leading order dynamical balance between the gravity and the
winds. More sophisticated wind structures with more complex
depth and latitudinal dependencies, and weaker coupling to the
cloud-level wind can also be considered.

This tool proves to be useful for various scenarios,
simulating cases in which the depth of the wind is constant,
or varies with latitude. We show that it is possible to use the
gravity measurements to derive the depth of the winds, both on
Jupiter and Saturn, also taking into account measurement
errors. We find that due to the winds on both planets being
much stronger in the equatorial regions, the model solutions are
better determined in the low to mid-latitudes, while the depth of
the winds close to the poles cannot be determined with good
accuracy. Comparing Jupiter and Saturn, it is found that the
latitudinal shape of the winds considerably affects the gravity
field. The adjoint method also shows which regions of the
planet have the highest impact on the gravity field. We find that
the gravitational moments are most sensitive to winds at depths
of around 10,000 km, especially at the equatorial region, but
the signature of deep flows will appear in the gravity field even
if the flows are much shallower. Therefore, if deep winds exist
on these planets, they will likely leave a measurable signature
on upcoming measurements.

We thank the Juno science team, Eli Tziperman, and Adam
Showman for useful discussions and comments. This research
has been supported by the Israeli ministry of Science under
grants 3-11481 and 45-851-641, and the Helen Kimmel Center
for Planetary Science at the Weizmann Institute of Science.
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APPENDIX
AN EXAMPLE OF THE DERIVATION
OF THE ADJOINT MODEL

In order to give a better understanding of the adjoint method,
we illustrate the derivation of the adjoint equations for a simple
case. The same principle could be applied to any set of partial
differential equations (see another example in Tziperman &
Thacker 1989). Consider a simple one-dimensional advection-
diffusion equation in steady state for a tracer c(x)

uc, = kcy, (18)

where the parameters we wish to optimize are u and k (the
parameters in this example are equivalent to the depth of the wind
in our experiments, and the tracer is equivalent to the density or
velocity fields). We set the two boundary conditions as

uc — kcxlx:O = ko,
uc — kalx:L = FL. (19)

The cost function is set to be the difference between the
calculated tracer ¢ and the observed tracer ¢°®

fl L __ ,.obs 2
szfo (c(x) — s (x))2dx.

Next, we define a Langrange function to include the constraints
due to the dynamical Equation (18)

L=J+ j;L Auc, — keg)dx, (20)

where ) is the Lagrange multiplier that will turn out to be the
adjoint variable for the tracer c. Because the second term is
identically zero, the values of £ and J are equal. The minimum
of the cost function J (model solution) is reached when the
Langrange function £ has an extremum (zero derivative).
Consider an arbitrary variation in the function c,

L
6L =L(c+ éc) — L(c)= j(; (c(x) — ¢°P(x))bcdx

L
—}—f A(ube, — kbcy)dx,
0
(21

where éc is an infinitesimally small arbitrary function in x,
aside from the boundaries where it must conform to the
boundary conditions (see the details below). Applying integra-
tion by parts, we get

oc= [ " @) — () — (W + KA ]dcdr
0

+ Mube — kbe, -y + SckA 15 ,. (22)

Now, we need two conditions under which 6L is zero. The
second line in Equation (22) has exactly the formulation of the
boundary conditions stated above, but for the variation éc.
Since the boundary conditions should not change with
variations in c, this term is zero by definition. Next, we can
demand that the third line vanishes for any dc, i.e., that the
boundary conditions for the adjoint variable M\ are
kA ]5_, = 0. We can do so because \ is not a physical
variable so its boundary conditions could be set to fit the
requirement on L. Finally, we demand that 6L is zero for any
function 6c; therefore, the integrand in the first line of
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Equation (22) must vanish, which gives an equation for the
adjoint variable A

UMy + kX = c(x) — ¢ (x). 23)

Finally, once we have the formulation for the adjoint
variable A, we can optimize the cost function with respect to the
parameters u and k. The derivative of the cost function with
respect to these two parameters could be easily found by the
differentiation of Equation (20) with respect to the two
variables, so that

oL L oL L
E = j(‘) )\dex, % - _L )\Cxxdx-

Thus, calculating A (the sensitivity of the cost function with
respect to the tracer c¢), and then integrating using Equation (24),
we can find the gradient of the cost function with respect to the
control variables, i.e., the direction in which those parameters
should be changed in order to reach the minimum of the cost
function. Note that the control variables should be modified in
the direction opposite the adjoint solution. Given that solving
this example, and the actual model described in this study,
needs to be done numerically, it is important that the adjoint
model is actually derived from the finite difference formulation
of the forward model, and not from the analytical version. The
adjoint of the finite difference was shown to be more accurate
than the finite difference of the adjoint (Sitkes &
Tziperman 1997).

(24)
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