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ABSTRACT

In this study, we obtain the size distribution of voids as a three-parameter redshift-independent log-normal void
probability function (VPF) directly from the Cosmic Void Catalog (CVC). Although many statistical models of
void distributions are based on the counts in randomly placed cells, the log-normal VPF that we obtain here is
independent of the shape of the voids due to the parameter-free void finder of the CVC. We use three void
populations drawn from the CVC generated by the Halo Occupation Distribution (HOD) Mocks, which are tuned
to three mock SDSS samples to investigate the void distribution statistically and to investigate the effects of the
environments on the size distribution. As a result, it is shown that void size distributions obtained from the HOD
Mock samples are satisfied by the three-parameter log-normal distribution. In addition, we find that there may be a
relation between the hierarchical formation, skewness, and kurtosis of the log-normal distribution for each catalog.
We also show that the shape of the three-parameter distribution from the samples is strikingly similar to the galaxy
log-normal mass distribution obtained from numerical studies. This similarity between void size and galaxy mass
distributions may possibly indicate evidence of nonlinear mechanisms affecting both voids and galaxies, such as
large-scale accretion and tidal effects. Considering the fact that in this study, all voids are generated by galaxy
mocks and show hierarchical structures in different levels, it may be possible that the same nonlinear mechanisms
of mass distribution affect the void size distribution.

Key words: catalogs – galaxies: clusters: intracluster medium – large-scale structure of universe – methods:
numerical – methods: statistical

1. INTRODUCTION

The seeds of the present-day large-scale structure of the
universe are formed from random Gaussian density fluctuations
in the early stages of its evolution. In these random density
fluctuations, matter evolves from a linear to a highly nonlinear
regime driven by gravitational instabilities. These instabilities
in the primordial Gaussian density field form the complex
structure of the universe that we observe today. As a result, it is
natural to describe the probability distribution function (PDF)
of the density fluctuations as a crucial statistical tool to identify
different types of environments of the universe. For example, a
Gaussian matter distribution function represents the linear
regime, while the distribution function that deviates from
Gaussian shows a highly nonlinear regime. In this framework,
there are two important building blocks of the large-scale
structure; galaxies/overdense regions and voids/underdense
regions. Initially these two features are formed from the same
primordial Gaussian density field. While voids are formed from
the minima of the density field, galaxies are formed in the
density maxima. In time when galaxies grow in mass, voids
tend to empty in their mass due to their peculiar gravitational
force through the nonlinear regime. Although there are
different phenomenological models of the PDF of overdense
regions (such as galaxies, galaxy clusters,..etc.) in nonlinear
regimes (Saslaw 1985, p. 506; Gaztañaga & Yokoyama 1993;
Lahav et al. 1993; Ueda & Yokoyama 1996), the statistical
models of void probability functions (VPFs) (Fry 1986; Coles
& Jones 1991; Elizalde & Gaztanaga 1992) are based on the
counts in randomly placed cells following the prescription of
White (1979). In addition to this VPF, the number density of
voids is another key statistic to obtain the void distribution.
Patiri et al. (2006) show that this number density can be

estimated analytically by using numerical simulations or mock
catalogs.
The phenomenological models of PDFs of overdense

regions, especially the one-point and the two-point PDFs, are
well studied. The two-point PDF is a tool for modeling the dark
halo biasing as well as for obtaining the errors in the one-point
statistics (Colombi et al. 1995; Szapudi & Colombi 1996),
while the one-point PDF is a useful tool for showing the
clustering of the universe with higher-order moments-statistics
such as skewness and kurtosis (Kayo et al. 2001). Observa-
tions, as well as models based on cold dark matter numerical
simulations of galaxy distributions, indicate that the density
distribution is well-approximated by a log-normal rather than a
Gaussian PDF (Hamilton 1985; Coles & Jones 1991; Bouchet
et al. 1993; Kofman et al. 1994; Taylor & Watts 2000). Also,
Bernardeau (1992, 1994) show that the PDF computed from
perturbation theory in a weakly nonlinear regime approaches
log-normal when the primordial power spectrum is propor-
tional to an index = -n 1. Later on, Kayo et al. (2001) found
that the one-point log-normal PDF can describe the density
distributions accurately, not only in the weakly nonlinear
regime, but also in the highly nonlinear regime by using the
nonlinear density fluctuations from N-body simulations with
Gaussian initial conditions. Kayo et al. (2001) also indicate that
this PDF is fairly independent of the shape and the power
spectrum of density fluctuations. However, the underlying
mechanism of the cosmological origin of the log-normal
distribution remains unknown.
In this study we determine that a specific standard parametric

model can fit samples of void radii from the Cosmic Void
Catalog (CVC) of Sutter et al. (2012) after suitable estimation of
the parameters in the model. The three mock catalogs under
study, referred to by the nicknames given in the CVC, are N-body
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Mock, Halo Occupation Distribution (HOD) Sparse, and HOD
Dense. Using these samples we show that the system of three-
parameter log-normal distribution provides a fairly satisfactory
model of the size distribution of voids that is strikingly similar to
the galaxy mass distribution of Kayo et al. (2001), assuming the
void size is proportional to its mass content ( »R M3 ). To do
this, we follow three standard steps in the statistical analysis.
These are the exploratory phase, the choice of a probability
model, estimations of the parameters of the model, and finally the
graphical and numerical assessment (see chapter 4, Sections 4.1
and 4.2 in Fisher et al. (1993) and the introduction in Sheskin
(2011) for an overview of basic principles and some terminology
employed in the fields of descriptive statistics, estimation, and
goodness-of-fit procedures).

2. VOID CATALOG AND NUMERICAL DATA

To investigate the void size distribution function statistically
in simulations, here we use the public CVC of Sutter et al.
(2012). CVC has two main catalogs: a complete catalog that is
suitable for void galaxy surveys, and a bias-free catalog of
voids that provides a fair sampling of void shapes and
alignments in which the void effective radii vary between 5
and -135 Mpc h 1 (Sutter et al. 2012). All the data samples we
use here from the CVC are generated from a Λ cold dark matter
(ΛCDM) N-body simulation by using an adaptive treecode N-
body method called the 2HOT code (Sutter et al. 2014a,
2014b). Sutter et al. (2014a, 2014b) extract halos from the N-
body simulation, and use the position and masses of halos to
produce a HOD model. Therefore, galaxy catalogs are
produced from a halo population by using the HOD code of
Tinker et al. (2006) and the HOD model by Zheng et al. (2007).
Sutter et al. (2014a, 2014b) generate three mock catalogs; HOD
Dense, HOD Sparse, and N-body Mock. In these catalogs,
voids are identified with by the modified version of the
parameter-free void finder ZOBOV (Neyrinck 2008; Lavaux &
Wandelt 2012; Sutter et al. 2012).

HOD Dense and HOD Sparse are produced by dark matter
simulations of 10243 particles in a 1 Gpc h−1 box and all
particles are kept in real space at z=0 and are tuned to the
observational HOD fits (Sutter et al. 2014a). As a result, the
difference between these two catalogs comes from their
resolutions as well as their tuned observational data sets. The
HOD Sparse mock catalog consists of 1422 voids with

-14 Mpc h 1 effective minimum radii ( = -R 14 Mpc heff,min
1)

and this void catalog represents a relatively low-resolution
galaxy sample with densities of ´ -3 10 4 particles per cubic
Mpc h−1, matching the number density and clustering of the
SDSS DR9 galaxy sample (Dawson et al. 2013) using the
parameters found by Manera et al. (2013) (s = 0.596Mlog ,

= ´ -M h M1.2 100
13 1 , ¢ = -M h M101

14 1 , a = 1.0127, and
Mmin chosen to fit the mean number density). The HOD Dense
catalog has 9503 voids with effective minimum radii

=R 7eff,min Mpc h−1 and includes relatively high-resolution
galaxy samples with densities of 4×10−3 dark matter
particles per cubic Mpc h−1, matching the SDSS DR7 main
sample (Strauss 2002) using one set of parameters found by
Zehavi et al. (2011) (s = 0.21Mlog , = ´ -M h M6.7 100

11 1 ,

¢ = ´ -M h M2.8 101
13 1 , a = 1.12). The N-body Mock catalog

is a single HOD Mock in real space at z= 0.53, generated by a
dark matter simulation of 40963 particles (with a particle mass
resolution )´ -h M7.36 1010 1 in a 4 Gpc h−1 box and is tuned
to SDSS DR9 in full cubic volume by using the HOD

parameters found in Manera et al. (2013). Although the N-body
Mock catalog is processed slightly differently than HOD
Sparse and HOD Dense, it is a HOD mock catalog and it uses
Planck first-year cosmological parameters (Planck Collabora-
tion 2014). The N-body Mock consists of 155, 196 voids
(Sutter et al. 2014b).
It is particularly important to mention that both the N-body

Mock and HOD Sparse catalogs represent voids generated from
the relative low-density galaxy mocks, while HOD Dense
consists of void populations generated from a relatively high-
density galaxy mock catalog. As a result, these samples may
help us to identify some possible relations between the void
size distribution and the environment. Here we take into
account the maximum tree depth as an indicator of an
environment. Note that the maximum tree depth is the length
from the root to the tip of the tallest tree in the hierarchy, and
it indicates the amount of substructures in the most complex
void in the sample (Sutter et al. 2014a). According to
this, HOD Dense and Sparse have maximum tree depths of
10 and 4, respectively (Sutter et al. 2014a), while N-body
Mock shows only the root voids, at the base of the tree
hierarchy, and therefore they do not have parents, which
indicates that the maximum tree depth of this sample is 0
(Sutter et al. 2014b).
Here the samples HOD Sparse, HOD Dense, and N-body Mock

are denoted as ( )( ) ( )
 =R ri i

1 1
1 1,422, ( )( ) ( )

 =R ri i
2 2

1 9,503, and
( )( ) ( )

 =R ri i
3 3

1 155,196 respectively. While ( )R i ( =i 1, 2, 3)
represent the names of the samples, ( )r i stand for data points.

3. EXPLORATORY PHASE

The first step in the exploratory phase consists of examining
the basic graphical and numerical indicators of the samples as
histograms, parameters of location (range, mean, median and
mode) or dispersion (standard deviation), and shape (skewness,
kurtosis).
Let us first consider the raw data plots. Informative features

appear from a cursory inspection of the histograms. Whereas
those of ( )R 1 and ( )R 2 (see Figure 3) present the features of
samples drawn from a single parent population, an unexpected
local mode occurs in ( )R 3 about the value 50Mpc h−1; see the
left panel of Figure 1. This suggests that N-body Mock, ( )R 3 ,
should be usefully considered as a sample drawn not from a
single population but from two or more void populations with
different central density values. In other words, it is reasonable
to perform a task of classification. The latter is meant in the
classical sense in mathematical statistics, as, e.g., in Section
44.1 of Kendall & Stuart 1977b); it consists of differentiating
between two or more populations on the basis of multivariate
measurements.
In this respect a closer inspection of the 14 remaining

numerical characteristics of the voids suggests that the central
density will provide us with a criterion of classification. Out of
the 155, 196 voids under study, 147, 528 voids have a central
density equal to zero. The sub-sample of ( )R 3 consisting of
the radii of these voids will be denoted as ( )R0

3 . Remarkably,
the local mode observed in ( )R 3 no longer occurs in ( )R0

3 . The
latter satisfies the basic graphical properties expected from a
sample drawn from a single population; see Figure 1 (right
panel).
Let us now turn to the numerical study of our samples ( )R 1 ,

( )R 2 , and ( )R0
3 . The mean and the centered moments of a sample

2
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( )  =R ri i N1 are = å-
=R N ri

N
i

1
1 and = å-

=m Nk i
N1

1
( )- = ¼r R k, 2, 3,i

k . The variance m2 is the most
common index of dispersion, whereas the widely used indices
of the shape of a sample distribution are the skewness

=b m m1 3
2

2
3 and kurtosis =b m m2 4 2

2 (see formulas
(1.235)–(1.236) on p. 51 in Johnson et al. 1994 and (3.85)–
(3.86) on p. 85 in Kendall & Stuart 1977a). The values of these
moments computed from the samples are given in Table 1.

In Table 1, we see that the three empirical distributions share
the property of being significantly positively skewed ( >b 01 )
and leptokurtic ( >b 32 ). Recall that the skewness b1 measures
the degree to which a distribution is asymmetrical. The kurtosis
b2 measures the curvature of a distribution. While a leptokurtic
(resp. platykurtic) distribution is characterized by a high (resp.
low) degree of peakedness, a mesokurtic distribution presents a
peakedness considered medium whenever =b 32 , which is the
kurtosis of a normal distribution with arbitrary average and
variance (see Sheskin 2011for more details). Among the
classical parametric families of distributions, the density of the
three-parameter log-normal random variable ( )q z s=R LN , , ,
given by

( )
( )

( )
{ ( ) }

q s p
q=

-
>q z s

- q z

s

- -

p r
e

r
r

2
, , 1, ,

rlog 2

2 2

(see ( ) ¢14.2 on p.208 in Johnson et al. 1994) appears as a
natural candidate to fit the size distributions of the samples
HOD Dense, HOD Sparse, and N-body Mock. A random
variable R follows the distribution of ( )q z sLN , , if

( )q-Rlog follows a Gaussian distribution with a mean ζ

and variance s2. This three-parameter log-normal distribution
is strikingly similar to the galaxy distributions that Kayo et al.
(2001) obtain from the N-body simulations. Our motive is
confirmed by the close proximity of the pairs ( )b b,1 2 ,
computed from our sample, to the log-normal line observed
in the skewness-kurtosis plane represented in Figure 2 (see
Figure 12.3 in Johnson et al. 1994 for a similar pattern
involving several parametric families of distributions). As is

seen in Figure 2, the void distributions from the mock samples
of CVC can be considered to behave as log-normal distribu-
tions with respect to their skewness and kurtosis.

Figure 1. Void size distributions of the full N-body Mock data set, ( )R 3 (left panel) and its sub-sample, ( )R0
3 consisting of the voids with only zero central density (right

panel).

Table 1
First Moments, Skewness b1 and Kurtosis b2 of the Sample Distributions

Sample ( )R 1 ( )R 2 ( )R0
3

r 40.415 16.671 31.978
m2 235.752 40.052 96.034
m3 4,416 386.278 898.965
m4 306,994 11,109 38,131
b1 1.488 2.322 0.912
b2 5.523 6.925 4.134

Figure 2. Kurtosis b2 as ordinate against the skewness b1 as abscissa for the
log-normal distribution (red solid line). The dots represent the kurtosis and the
skewness of the size distributions of voids for HOD Sparse ( )R 1 , HOD Dense

( )R 2 , and the sub-sample of N-body Mock ( )R0
3 .

3
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Some characteristics of a random variable ( )q z sLN , , are,

1. range: ( )q ¥, ;
2. mode: q + z s-e

2
;

3. median: q z+ exp ;
4. mean: q + z s+e 22

.

This concludes the exploratory phase of our study and we
will now deal with the task of estimating the three parameters
of the log-normal model for ( )R 1 , ( )R 2 , and ( )R0

3 .

4. ESTIMATION

The task of estimation for a three-parameter log-normal
distribution involves well-known computational difficulties
related to the non-convergence of the maximum-likelihood
estimator for the threshold parameter θ. This issue is discussed
in Johnson et al. (1994, Section 4.2). Therefore the most
convenient standard tool is the moment-method. This consists
of equating the first three sample moments, R , m2, and m3, to
the corresponding population values. This estimation method is
described in Johnson et al. (1994, Section 4.2), in particular
formulas (14.45)–(14-46). It proceeds as follows. First, one has
to compute the unique real-valued solution w̃ of the equation,

( ˜ )( ˜ ) ( )w w- + = =b m m1 2 , 22
1 3

2
2
3

which is easily seen to be given by the explicit formula,

˜ [ ( ) ]

[ ( ) ] ( )

w = + + + -

+ + - + - -

b b

b b

1 2 1 2 1

1 2 1 2 1 1, 3

1 1
2 1 3

1 1
2 1 3

(see Johnson et al. 1994, particularly the last equality on
p. 228). Once this auxiliary coefficient has been determined, the
estimators (ˆ ˆ ˆ )q z s, , of ( )q z s, , are,

1. ˆ ( ˜ )s w= log 1 2,
2. ˆ [ ˜ ( ˜ ) ]z w w= -- -mlog 11

2 2
1 1 ,

3. ˆ ˜ ˆq w= - zR e1 2 ,

(see the formulas of Section 4.2 in Johnson et al. 1994). The
estimates computed from our samples are given in Table 2. The
goodness-of-fit of our model is illustrated in two ways. First, it
is illustrated numerically by Tables 3–5, where expected values
and observed values are given for three void distributions.
Second, it is illustrated graphically by Figure 3, which displays
the sample histograms with the curves of the log-normal
densities whose parameters are the estimates computed from
the samples. In both cases the goodness-of-fit is evidently fairly
good. Note that for ( )R 1 the p-value associated with
Kolmogorov, Cramér–von Mises, and Anderson–Darling
statistics equals the remarkably high value of 0.99.

5. CONCLUSIONS AND DISCUSSION

We now know that voids dominate the total observed
volume of the large-scale structure (Kirshner et al. 1981; Geller
& Huchra 1989; da Costa et al. 1994; Shectman et al. 1996)
and that they are very sensitive to their environments, which
can strongly affect their shapes as well their distributions
(Sheth & van de Weygaert 2004; Russell 2013, 2014). There-
fore the void size distribution functions may play an important
role in understanding the dynamical processes affecting the

Table 2
Estimates Computed from the Sample Distributions

Sample ( )R 1 ( )R 2 ( )R0
3

q̂ 0.770 3.284 0.223
ẑ 3.610 2.493 3.412
ŝ 0.373 0.449 0.301

Table 3
Interval, Observed, and Expected Void Frequencies of the Data Set

( )R 1 (HOD Sparse), LN(0.770, 3.610, 0.373)

Interval Observed Frequencies Expected Frequencies

[0,10) 0 0
[10,20) 56 57
[20,30) 334 320
[30,40) 429 424
[40,50) 296 306
[50,60) 163 168
[60,70) 77 81
[70,80) 37 37
[80,90) 16 16
90 14 13

Table 4
Interval, Observed, and Expected Void Frequencies of the Data Set

( )R 2 (HOD Dense), ( )LN 3.284, 2.493, 0.449

Interval Observed Frequencies Expected Frequencies

[0,5) 0 0
[5,10) 953 901
[10,15) 3448 3576
[15,20) 2947 2782
[20,25) 1267 1326
[25,30) 500 547
[30,35) 215 218
[35,40) 99 88
[40,45) 39 36
[45,50) 23 16
50 12 12

Table 5
Interval, Observed, and Expected Void Frequencies of the Data Set, ( )R0

3 of the
N-body Mock Catalog with the Estimates ( )LN 0.223, 3.412, 0.301

Interval Observed Frequencies Expected Frequencies

[0,5) 0 0
[0,20) 11 487 11 495
[20,25) 28 035 25 508
[25,30) 31 631 33 088
[30,35) 27 770 29 407
[35,40) 20 605 20 781
[40,45) 12 894 12 718
[45,50) 7 295 7 098
[50,55) 3 848 3 732
[65,70) 2 129 1 889
60 1 834 1 812

4
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structure formation of the universe (Goldberg & Vogeley 2004;
Croton et al. 2005; Hoyle et al. 2005).

In this study, we show that the system of three-parameter
log-normal distributions gives a satisfactory model for the size

distributions of voids obtained from the three different HOD
mock catalogs of CVC; N-body Mock, HOD Sparse, and HOD
Dense. These catalogs are especially important since they may
allow us to compare HOD mock voids in different

Figure 3. Void frequencies from the samples ( )R 1 , ( )R 2 , and ( )R0
3 with the density curves of LN(0.770, 3.610, 0.373), LN(3.284, 2.493, 0.449), and LN(0.223, 3.412,

0.301), respectively (from the top left, top right, and bottom left).

5
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environments. As mentioned previously, HOD Dense and
HOD Sparse provide us with the data sets for obtaining the size
distributions at z=0 (Sutter et al. 2014a), while the N-body
Mock catalog has155, 196 voids at z= 0.53 in the full volume-
set of mock galaxies (Sutter et al. 2014b). We find that the N-
body Mock catalog, ( )R 3 , shows sub-void populations with
respect to their central densities (left panel of Figure 1). From
these
sub-populations we choose the population including voids with
only zero central density. This sub-sample is named ( )R0

3 ,
which consists of 147, 528 voids and a maximum tree depth of
0. The size distribution obtained from this sub-sample satisfies
the three-parameter log-normal distribution of other catalogs.
As is seen, this sub-sample has the smallest value of the
maximum tree depth compared to the two catalogs we use in
this study. This is especially important since it provides us with
a third environment to compare the relationship between the
maximum tree depth and the two shape parameters of the log-
normal size distribution. Then we compare the void size
distributions obtained from these mock data. As a result, we
show that all three samples fit the three-parameter log-normal
distribution. As is seen in Figure 2 and Table 3, the HOD
Sparse sample, ( )R 1 , remarkably passes the Kolmogorov,
Cramér–von Mises, and Anderson–Darling statistical tests with
a high p-value of 0.99, which seldom occurs with a large
sample.

Recalling that the skewness b1 of the log-normal distribution
indicates the asymmetry of the void size distribution, in Figure 2
and Tables 3–5, HOD Dense ( )R 2 , is the most asymmetric sample,
with a skewness owith the density curves off =b 2.3221

compared to the void populations in N-body Mock, ( )R0
3 , with

=b 0.9121 , and HOD Sparse, ( )R 1 , with =b 1.4881 (also see
Table 1 to compare with the other parameters of the void size
distributions between the three samples). Also, the void size
distribution of N-body Mock, ( )R0

3 , is the least asymmetric of the
three samples. In addition, we find that the void distribution in
HOD Dense indicates a higher kurtosis, »b 72 , than the void
population in the HOD Sparse sample, »b 5.52 , while the N-
body Mock sub-sample shows the lowest kurtosis =b 4.1342 . As
is seen, there may be a relation between the values of kurtosis,
skewness, and the maximum tree depth of the void size
distribution. Note that HOD Dense has the highest maximum
tree depth, 10, as well as the highest values of kurtosis »b 72 and
skewness =b 2.3221 of the three samples, while the size
distribution obtained from the N-body Mock sub-sample ( )R0

3

consists of the lowest values of the distribution shape parameters
( =b 0.9121 and =b 4.1342 ) and a maximum tree depth of 0,
taking into account only the root voids. Considering that the
maximum tree depth is a measure of the amount of void
substructures, it may be possible to determine a connection
between the number of void substructures and how the void size
distribution is skewed and peaked.

Note that all the void size distributions have positive
skewness and the strength of the skewness may be related to
the length of the tail of the distribution in radius (see Figure 3).
In addition, it is natural to see a thin tail due to the shape of the
log-normal distribution in any case. For example, HOD Dense
( ( )R 2 ) and HOD Sparse ( ( )R 1 ) show slightly longer tails on the
large radius side compared to the distribution of the N-body
Mock sub-sample ( ( )R0

3 ), which has the smallest skewness
(Table 1 and Figure 3). These thin tail formations of the log-
normal void size distributions derived from the simulations are

particularly interesting due to a possible connection of
dynamical interplay between void size and galaxy distributions.
Assuming that the void size is proportional to its mass content
( »R M3 ), here we realized that the one-point galaxy
distribution obtained by Kayo et al. (2001) from the N-body
simulations seems to be strikingly similar to the log-normal
void distribution that we obtain (see Equation (1)). On the other
hand, the void log-normal distribution has one more additional
parameter than the galaxy distribution of Kayo et al. (2001),
which provides a better fit to the void data sets. From small-
scale to large-scale matter distributions in the universe, i.e.,
from the interstellar to the intergalactic medium, there are
models and observational studies to explain the skewed log-
normal matter distribution. For example, Schneider et al.
(2013) conclude that statistical density fluctuations, intermit-
tency, and magnetic fields can cause excess from the log-
normal distribution, and also that the core formation and/or
global collapse of filaments and a non-isothermal gas
distribution lead to a power-law tail. Pudritz & Kevlahan
(2013) show that the observed skewed log-normal galaxy
distribution could arise from repeated shock interactions,
without the need for fully developed turbulence. Recently, it
has been shown that it is possible to see large-scale bulk flows
that indicate the possibility of the effects of large-scale
turbulence on structure formation may not be ignored. Related
to this, Wang et al. (1979) found a large-scale bulk flow of
approximately a sphere of radius -170 Mpc h 1 produced by the
massive structures associated with the SDSS Great Wall.
Taking into account the fact that voids and galaxies/over-
densities are formed from the same primordial density field,
then the similarity between the void size and galaxy mass
distributions may be expected. As a result, it is possible that the
galaxy and void distributions are analogous to each other. This
analogy may be caused by void substructures due to the inner
as well as outer tidal streams, since it has been shown that the
interiors of voids are filled with subvoids, galaxies, and even
filaments by N-body simulations and observations (Benson
et al. 1986; Mathis & White 2002; Gottlöber et al. 2003;
Kreckel et al. 2011). Note that proving this connection between
void and galaxy mass distribution deserves its own systematic
statistical study, particularly using real data sets, therefore we
leave the answer of this puzzle to a future study.
In addition to this, the peaks of the distributions are given by r

in Table 1. r provides the most dominant void sizes in the void
size distribution. Figure 3 and Table 1 show that » -40.4 Mpc h 1

size voids dominate the HOD Sparse sample, ( )R 1 , while the size
distributions of the HOD Dense sample, ( )R 2 , and the N-body
Mock sample, ( )R0

3 , are dominated by voids with radii
» -17 Mpc h 1 and » -32 Mpc h 1, respectively. This indicates that
the size distributions of HOD Sparse and the N-body Mock sub-
sample tend to have larger voids compared to the voids in HOD
Dense due to their low-density environments. This result agrees
with Watson et al. (2014), Jennings et al. (2013), and Russell
(2013, 2014). On the other hand, as previously mentioned, the N-
body Mock catalog has higher redshift, z= 0.53, than the other
two samples, therefore the N-body Mock sample may imply larger
size voids at z=0 compared to HOD Sparse.
Although there have been some theoretical attempts to

understand the dynamical, thermal, and chemical evolution of
the void population, and the interplay between galaxies and the
intergalactic medium (Sheth & van de Weygaert 2004; Shang
et al. 2007; Viel et al. 2008; Russell 2013, 2014), a systematic
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investigation of void size distributions is still lacking. There-
fore, in this study we show that the void size distributions
satisfy the three-parameter log-normal distribution and that this
distribution may be a good candidate to show the large-scale
environmental effects on voids. It also seems that there is a
relation between the strength of the maximum tree depth and
the three-parameter log-normal void size distribution para-
meters: skewness and kurtosis. On the other hand, an extended
statistical study of the size distributions of voids in real data, as
well as more simulated data, is crucial to fully understand the
effects of the large-scale dynamical network between galaxies,
filaments, and voids, and obtain more precise results.

The authors would like to thank Paul Sutter for insightful
comments and suggestions regarding the Cosmic Void Catalogs.
The three void catalogs used here can be found in the folder
voidcatalog2014.06.08 athttp://www.cosmicvoids.net.
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