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ABSTRACT

We analyze the resolved stellar populations of the faint stellar system, Crater, based on deep optical imaging taken
with the Advanced Camera for Surveys on the Hubble Space Telescope. Crater’s color–magnitude diagram (CMD)
extends ∼4 mag below the oldest main-sequence (MS) turnoff. Structurally, we find that Crater has a half-light
radius of ∼20 pc and no evidence for tidal distortions. We modelCrater’s CMD as a simple stellar population
(SSP) and alternatively by solving for its full star formation history. In both cases, Crater is welldescribed by an
SSP with an age of ∼7.5 Gyr, a metallicity of [M/H]∼−1.65, a total stellar mass of  ~M 1e4 M , anda
luminosity of ~ -M 5.3V , located at a distance of d∼145 kpc, with modest uncertainties due to differences in the
underlying stellar evolution models. We argue that the sparse sampling of stars above the turnoff and subgiant
branch are likely to be 1.0–1.4 M blue stragglers and their evolved descendants, as opposed to intermediate-age
MS stars. We find thatCrater is an unusually young cluster given its location in the Galaxy’s outer halo. We
discuss scenarios for Crater’s origin, including the possibility of being stripped from the SMC or the accretion from
lower-mass dwarfs such as Leo I or Carina. Despite uncertainty over its progenitor system, Crater appears to have
been incorporated into the Galaxy more recently than z∼1 (8 Gyr ago), providing an important new constraint on
the accretion history of the Galaxy.
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1. INTRODUCTION

The Sloan Digital Sky Survey (SDSS;York et al. 2000) has
revolutionized our understanding of the faintest stellar systems.
The deep, wide-field imaging of SDSS facilitated the discovery
and characterization of dozens of faint dwarf galaxies and
globular clusters (GCs) in and around the Milky Way (MW;
e.g., Willman et al. 2005a, 2005b; Belokurov et al. 2006, 2007,
2009, 2010; Zucker et al. 2006a, 2006b; Irwin et al. 2007;
Koposov et al. 2007; Kim et al. 2015a)and has proven
transformative for our understanding of the nature of dark
matter, the impact of cosmic reionization in the local universe,
and how stars form in extremely shallow gravitational
potentials (e.g., Simon & Geha 2007; Bovill & Ricotti 2009;
Brown et al. 2014; Weisz et al. 2014a).

The faint object renaissance catalyzed by SDSS has
continued to grow as new wide-field photometric surveys scan
previously underexplored regions of the sky. Within the past
year, dozens of new faint objects have been discovered in the
south (e.g., Koposov et al. 2015a; Laevens et al. 2015a, 2015b;
Martin et al. 2015; The DES Collaboration
et al. 2015a, 2015b), dramatically increasing the census of
known faint stellar systems, including the putative satellite

galaxies of the LMC (e.g., Koposov et al. 2015b; Simon et al.
2015; Walker et al. 2015).
Among the first objects discovered in this new era was

Crater10 (Belokurov et al. 2014; Laevens et al. 2014). Crater
appears to be a predominantly ancient and metal-poor system,
similar to the majority of MW GCsand many of the faintest
MW satellites. However, the presence of stars near the “blue
loop” and above the oldest subgiant branch (SGB) led
Belokurov et al. (2014) to speculate that Crater may have
had multiple generations of star formation, unlike the majority
of stellar systems of similar size, luminosity, and proximity to
the MW. The presence of multiple, recent epochs of star
formation in Crater would provide qualitatively new insight
into how such extremely lowmass objects can retain or accrete
fresh gas and form stars, despite having such shallow potentials
and being well within the virial radius of the MW.
However, there has been considerable debate over whether

Crater is a GC or a faint galaxy. The codiscovery paper by
Laevens et al. (2014) concluded thatCrater is a GC with an
unusually large size ( ~r 20h pc) and distance (  ~d 145 kpc).
Stellar spectroscopy by Kirby et al. (2015) demonstrated that
three of the four luminous putative blue loop stars are actually
low-mass MW foreground stars, effectively ruling out star
formation in Crater within the past Gyr. This study also
revealed a small spread in metallicity and a stellar velocity
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* Based on observations made with the NASA/ESA Hubble Space Telescope,
obtained at the Space Telescope Science Institute, which is operated by the
Association of Universities for Research in Astronomy, Inc., under NASA
contract NAS 5-26555. These observations are associated with program
#13746.
9 Hubble Fellow.

10 Independent codiscovery resulted in multiple names for this object: Crater,
Laevens I, PSO J174.0675-10.87774. We have adopted “Crater” for this paper.
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dispersion that appears consistent with a system made entirely
of baryons. They also conclude that Crater is a GC.

In contrast, Bonifacio et al. (2015) argue that Crater is more
likely to be a dwarf galaxy. Based on spectroscopy of two red
giant branch (RGB) stars, they find a velocity dispersion that is
larger than expected if only baryons were present. Face-value
interpretation of this result implies the existence of dark matter
and thus categorizes Crater as a galaxy (Willman & Strader
2012), although Bonifacio et al. (2015) acknowledge that the
small number of stars and uncertainties on their velocities make
this a tentative conclusion. Moreover, Bonifacio et al. (2015)
show that the sparse sampling of stars above the oldest SGB are
consistent with a ∼2 Gyr stellar isochrone, which is incompa-
tible with Crater being a simple stellar population (SSP).

However, this region of the color–magnitude diagram
(CMD) is also occupied by blue stragglers, the products of
binary star evolution, and their descendants, which can mimic
the presence of intermediate-age single stars (e.g., Ferraro
et al. 2015). Unfortunately, the faintness of these sources
makes follow-up spectroscopy prohibitively expensive at this
time, and we must rely on other means for interpretation.

In this paper, we present deep optical imaging of Crater
taken with the Hubble Space Telescope (HST) and characterize
its stellar populations by analyzing the resulting deep CMD.
The HST-based CMD extends several magnitudes fainter than
existing ground-based data, providing anew perspective on the
nature of Crater. Using CMD analysis methods that are
routinely applied to Local Group and nearby dwarf galaxies
(e.g., Weisz et al. 2011, 2014a), we undertake a detailed
characterization of Crater’s stellar populations and conclude
that it is a GC and not a dwarf galaxy.

This paper is organized as follows. In Sections 2 and 3, we
present the observations, describe the data reduction,discuss
the CMD, and derive the structural parameters of Crater. In
Section 4, we summarize our method of CMD analysis, and we
present the results in Section 5. Finally, in Section 6, we
examine Crater in the context of known dwarf galaxies and the
MW GC population and discuss possible formation and
accretion scenarios.

2. OBSERVATIONS AND DATA REDUCTION

Observations of Crater were taken with Advanced Camera
for Surveys (ACS; Ford et al. 1998) aboard HST on 2014
November 11 and 12 as part of HST-GO-13746 (PI: M.
Walker). The observations consisted of deep integrations in
F606W (Rband) and F814W (Iband) with multiple exposures
to mitigate the impact of cosmic rays. We did not dither to fill
the chip gap as Crater easily fit on one ACS chip. The basic
properties of Crater and our observations are listed in
Table 1,and a false-color image of Crater is shown in Figure 1.

We performed point-spread function photometry on each of
the charge transfer efficiency corrected (flc) images using
DOLPHOT, an updated version of HSTPHOT (Dolphin 2000)
with HST-specific modules. The parameters used for our
photometry follow the recommendations in Williams
et al. (2014).

We culled the catalog of detected objects to include only
well-measured stars by requiringSNR > 5F606W ,
SNR > 5F814W , (sharpF606W + sharpF814W) < 0.12 , and
(crowdF606W + crowdF814W) < 1.0. Definitions of each of
these parameters can be found in Dolphin (2000). We
characterized completeness and photometric uncertainties using

∼50,000 artificial star tests (ASTs). We plot the completeness
fractions in Figure 2. The similarity of completeness fractions
as afunction of radius confirms that our observations of Crater
are not particularly crowded, even in the central regions. Our
HST photometric catalog is available through MAST.11

Table 1
Observational and Structural Properties of Crater

Quantity Value

R.A. (J2000) 11:36:16.5
Decl. (J2000) −10:52:37.1
Obs. dates 2014 Nov 11 and 12
Exp. time (F606W, F814W) (s) 3915, 4095
50% completeness (F606W, F814W) 27.6, 27.1
Stars in CMD 3620
Distance (kpc) 145±3
MV −5.3±0.1

M (103 M ) -
+9.9 0.05

0.1

r1 2,Plummer (arcsec) 0.46±0.01

r1 2,Plummer (pc) 19.4±0.4

r1 2,exponential (arcsec) 0.43±0.01

r0,King radius (arcsec) 0.39±0.02

c=log(rt/r0) 0.76±0.05
1−b/a <0.055 (90%)

Note. Observational and structural properties of Crater. The distance, stellar
mass, absolute luminosity, and structural parameters were computed from our
analysis of Crater’s HST-based CMD.

Figure 1. Colorized cutout of the composite F606W and F814W HST/ACS
image of Crater.

11 https://archive.stsci.edu/hst/
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3. THE DATA

3.1. The CMD and Membership Identification

We plot the HST/ACS CMD of Crater in Figure 3. Crater is
clearly a predominantly older stellar system (3 Gyr), based on
the lack of a luminous main sequence (MS). In terms of
population complexity, the narrowness of the RGB, oldest MS
turnoff (MSTO), and extent of the main SGB suggests that the
majority of stars in Crater were formed with a similar age and
metallicity. The presence of a red clump and absence of a blue
horizontal branch indicate that Crater is not an ancient and
extremely metal-poor system, such as M92 or MW satellites of
similar luminosity (e.g., VandenBerg et al. 2013; Brown
et al. 2014). As noted in Belokurov et al. (2014), Crater’s
horizontal branch appears to be unusually red for its metallicity,
when compared to other MW GCs.

Beyond these dominant attributes, the CMD of Crater
exhibits several secondary features. The first is a set of four
luminous stars located at F606W∼19 and F606W
−F814W∼0.5 identified by Belokurov et al. (2014) as
putative blue loop stars with ages <1 Gyr. If these are

bonafide “blue loop” stars, we would expect to see a larger
number of luminous blue stars corresponding to the young MS
brighter than F606W∼21. None are observed.
A second interesting feature is located immediately above

the primary SGB at F606W∼23.5 and F606W
−F814W∼0.2. The colors and magnitudes of these stars are
consistent with either being ∼2–5 Gyr old MS stars or blue
stragglers. From the bright end of this feature, another set of
stars extends diagonally up to F606W∼22, where it intersects
with the RGB. Bonifacio et al. (2015) identify these stars as
being consistent with a ∼2 Gyr MSTO and SGB with a
photometric metallicity of [M/H]=−1.5.
Finally, the set of stars located to the red of the RGB at

F606W−F814W∼1.3–1.5 at all magnitudes are likely low-
mass MW foreground stars. Such stars are also likely to overlap
with other parts of the CMD, notably the RGB, which can lead
to confused interpretation of the stellar populations. However,
the number and CMD distribution of putative foreground
sources appear wellmatched to models of distribution of MW
stars (e.g., Girardi et al. 2005; de Jong et al. 2010), allowing for
straightforward accounting of intervening sources.
To aid in identification and removal of nonmembers, we use

stellar spectroscopy obtained with theMichigan/Magellan
Fiber System (M2FS; Mateo et al. 2012) on the Magellan/
Clay telescope as described in M. Mateo (2016, in preparation).
Stars observed with M2FS are indicated by red points in the
right panel of Figure 3. Only those enclosed within blue
squares are likely members. The M2FS spectroscopy shows
that three of the four putative blue loop stars are not members
of Crater, Instead, they are foreground stars, which is consistent
with the spectroscopic findings presented in Kirby et al. (2015).

Figure 2. Completeness fractions vs. F606W and F814W input magnitude
from our artificial star tests. We plot them for two differential radial regions to
show that the completeness functions do not strongly vary with position. The
jaggedness of the inner region profiles (blue) reflects the relatively small
number of stars in a given magnitude bin.

Figure 3. HST/ACS CMD of Crater. The red points in the right panel indicate
stars with Magellan/M2FS spectroscopy. Those in blue squares are confirmed
members of Crater. The photometric uncertainties are shown in green, and the
50% completeness limit, as determined by ASTs, is indicated by the orange
dashed line.
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The Kirby et al. (2015) analysis of the fourth “blue loop” star
has proven inconclusive. It has a systematic velocity that is
close to that of Crater, which would favor it being a member.
However, it would take an extremely unusual star formation
history (SFH) or initial mass function (IMF) sampling to
produce a single, young blue star.

The M2FS spectroscopically confirmed members trace out a
narrow RGB and the red clump. Unfortunately, spectroscopy of
stars fainter than the red clump is prohibitively expensive at
this time.

3.2. Structural Parameters

We leverage the exquisite depth of the HST data to
investigate the spatial structure of Crater. Specifically, we
model the distribution of stars in Crater with two-dimensional
elliptical Plummer, exponential, and spherical, single-compo-
nent King (1966) models following the procedure described in
Koposov et al. (2015a).

For the purposes of this analysis, we only use objects
classified as stars with F606W<27 to ensure high complete-
ness (>90%) across the entire catalog. We also remove obvious
contamination from MW dwarf stars redward of the Crater MS
and RGB (F606W−F814W  1).

The model parameters we use to describe Crater’s structure
are as follows: Crater’s center, half-light radius, ellipticity,
positional angle, surface density of background stars, and
central surface density. For the King model we assume zero
ellipticityand fit for the central dimensionless potential f0,
radius, and background density using the the publicly available
Python library limepy (Gieles & Zocchi 2015). For each
model, we sample the posterior probability distribution with a
Markov Chain Monte Carlo (MCMC) technique, assuming
uniform priors on all parameters. The resulting measurements
from marginalized distributions for the main parameters are
listed in Table 1.

Aside from ellipticity, all of the marginalized distributions
are welldescribed by Gaussians. In Figure 4, we plot the one-
dimensional density profile of Crater together with the most
probable Plummer, exponential, and King models. The
observed density profile shows no significant deviations from
either model. The maximum likelihood value is somewhat

higher for the King fit than for the Plummer fit (Δlog(L) ∼4)
and the exponential fit (Δlog(L) ∼8), but this is expected given
the King model’s extra free parameter.
Additionally, we note that the best-fit concentration for the

King model (c=0.76) is low compared to other GCs. Only 20
out of 157 MW GC clusters have a lower concentration (e.g.,
Harris 1996). Most of these are “young halo” clusters, for
which it has been pointed out that their concentration is lower
(i.e., large core radii) than for old halo clusters and bulge/
diskclusters. This structural property is also found for clusters
in external dwarf galaxies (Mackey & Gilmore 2004).
From this modeling, we find that Crater has an ellipticity of

<0.055 at 90% confidence level, indicating thatit is consistent
with being circular. The measured half-light radius from the
Plummer fit is = ¢ r 0.46 0.011 2 , which is consistent with
themeasurement of Laevens et al. (2014) and is 30% smaller
than the estimate in Belokurov et al. (2014). The half-light
radius measured using an exponential density profile is

= ¢ r 0.43 0.011 2 and is consistent with the half-light radius
implied by the King fit (0.42 +/− 0.01). Assuming a
heliocentric distance of 145 kpc, the half-light radius of Crater
is 19.4 0.4 pc. The combination of being circular and
welldescribed by a Plummer profile suggests that Crater is
unlikely to have experienced drastic tidal stripping.

4. METHODOLOGY

We analyze the stellar populations of Crater using the CMD
modeling software package MATCH (Dolphin 2002). In brief,
MATCH requires a user-specified stellar evolution library, stellar
IMF, binary fraction, and search ranges in distance, extinction,
age, and metallicity. For a given combination of these
parameters, MATCH constructs a set of SSPs that are linearly
combined to form a composite CMD. The weight of each SSP
is the star formation rate (or total stellar mass) at that age/
metallicity combination. The composite CMD is then con-
volved with the observational noise model (photometric
uncertainties and completeness) as determined by the ASTs.
Finally, the synthetic and observed CMDs are compared in bins
of color and magnitude of specified size (0.05 and 0.1 mag,
respectively), and the probability of the observed CMD given
the synthetic CMD is computed using a Poisson likelihood
function. More details on the general methodology of MATCH
can be found in Dolphin (2002).
We model Crater’s CMD in two ways: first byassuming

thatit is an SSP, and second by solving for its full SFH. In both
cases we used the parameters listed in Table 2 and employed
two different stellar evolution libraries, Dartmouth (Dotter
et al. 2008) and PARSEC (Bressan et al. 2012), in order to
quantify the sensitivity of our result to the choice of stellar
evolution model. While the PARSEC models are currently only
available with solar-scaled abundances, i.e., [α/Fe] = 0.0, the
Dartmouth models allowed us to explore several α-enhance-
ments ranging from [α/Fe] = -0.2 to +0.4.
We took an iterative approach to modeling the CMD such

that we started with coarse resolution searches in distance and
extinction (0.05 dex resolution) and, upon convergence, used a
finer grid resolution (0.01 dex) for the final solutions.
Following several previous analyses of deep HST-based

CMDs (e.g., Weisz et al. 2012, 2014b), we masked out the red
clump and horizontal branch regions of the observed CMD for
the fitting process, as indicated in Figure 5. The physics of
these evolutionary phases are highly uncertain (e.g., Gallart

Figure 4. Radial stellar density profile of Crater based on our HST photometric
catalog. The red, orange, and blue lines indicate the best-fit Plummer,
exponential, and King profiles, respectively.
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et al. 2005), and their inclusion in theCMD fitting process can
be problematic. Instead, we rely on the more secure MSTO
andsubgiant sequences for this analysis.

To model the possible contamination from the MW for stars
fainter than where M2FS spectroscopy is available (i.e.,

>m 21F606W ), we use a statistical model of the MW
foreground based on analysis presented in de Jong et al. (2010).

We determine uncertainties in Crater’s properties differently
for the SSP and complex stellar population assumptions. When
we require Crater to be an SSP, we compute likelihood values
over every possible combination of parameters in the grid. This
approach has the advantage of sampling the entirety of
likelihood space, which allows for convenient marginalization
and full consideration of stochastic effects (e.g., Weisz et al.
2015). Because of the smoothness of the likelihood surface, we
marginalize over a finely interpolated grid to measure the most
likely values and associated confidence intervals for each
parameter to a higher degree of precision than is afforded by
the native resolution.

When solving for the full SFH, computing a full grid of
solutions is not tractable in a reasonable amount of computa-
tional time. Instead, MATCH finds the most likely solutionand
uses an MCMC routine to explore the likelihood surface around
it. Specifically, we use a Hamilonian Monte Carlo (Duane
et al. 1987) approach to sampling SFH space as described in
Dolphin (2013). For quantifying the uncertainties on Crater’s
most likely SFH, we used 5000 MCMC realizations.

5. RESULTS

5.1. Crater as an SSP

As shown in panels (a)–(c) of Figure 5, Crater is well-
described by an SSP. Qualitatively, the observed and model
CMDs have similar appearances and the MSTO, SGB, and
RGB have luminosities, colors, and stellar densities that appear
in excellent agreement. This impression is quantitatively
reinforced by the residual significance diagram (panel (d)).
This diagram shows that the model CMD does an excellent job
of reproducing the observed CMDs; there are no systematic
mismatches between the model and observed CMDs (e.g.,
clumps or streaks of all black or white bins), which indicates
good data–model agreement.

However, there are two discrepant areas that warrant
discussion. First, the luminous blue stars above the predomi-
nant MSTO are an area of mismatch. In the event that these are
intermediate-age MS stars, our model of an SSP would not be
appropriate for Crater, leading to this type of data–model
disagreement. On the other hand, these stars may be blue
stragglers, which are not included in the PARSEC or
Dartmouth libraries, again resulting in a poor data–model
match. We discuss the nature of these stars in Section 5.2.
The second poorly fit region is the red clump. As discussed

in Section 4, the observed red clump (RC) was masked from
the fit. Given its exclusionand outstanding issues in the
physics of modeling the red clump (e.g., Gallart et al. 2005), it
is not surprising that this feature is not welldescribed by the
models. However, because we have excluded it from the fit, it
does not affect our characterization of Crater.
The derived physical parameters of Crater are listed in

Table 3. In general, the different models produce compatible
values for distance, extinction, and total stellar mass. The most
notable variations are in age and metallicity. Within the
Dartmouth models, the age and metallicity are sensitive to the
level of α-enhancement. While the age only exhibits modest
variations as a function of [α/Fe], the mean metallicity varies
by ∼0.6 dex. Of these solutions, the observed CMD is best
described by an [α/Fe] = +0.4, although values of 0.0 and
+0.2 cannot be ruled out at a confidence level >95%. The
model with [α/Fe] = -0.2 provides a drastically worse fit to
the CMD. In addition to being a marginally better fit, the model
with [α/Fe] = +0.4 also produces a metallicity that is in
good agreement with spectroscopic measurements. However,
as shown in Figure 6, the color and magnitude differences in
isochrones with various amounts of α-enhancements are quite
subtle.
To examine the sensitivity of Crater’s parameters to stellar

physics, we compare derived parameters for the solar-scaled
Dartmouth and PARSEC models (see Figure 6). These two
libraries show an age difference of ∼0.8 Gyr and a metallicity
difference of 0.15 dex. The age difference is due to slight
variations in the shape of the MSTO and SGB between the two
models, as shown in Figure 6. The amplitude of this difference
reflects the uncertainties due to choices in underlying stellar
physics and is in line with the expected precision for absolute
ages of stars and SSPs, which is 10% of the age of the object
(e.g., Soderblom 2010; Cassisi 2014). The ∼0.15 dex offset
metallicity is due to subtle differences in the RGB slopes of the
two models.
Finally, we computed the stellar mass and integrated

luminosity for Crater by summing up the mass and light from
the best-fit SSP models. While this approach does not include
the contribution of blue stragglers, it does mitigate the
contribution of nonmember stars to the total luminosity. The
stellar mass measurements for Crater are listed in Table 3,
and the integrated V-band magnitude, from the Dartmouth
[α/Fe]=+0.4 model, is listed in Table 1. We calculated
uncertainties on these quantities using the SSP solutions that
fell within the 68% confidence intervals of the best-fit models.
Our total integrated luminosity for Crater is slightly smaller
than that presented in Belokurov et al. (2014) and a magnitude
larger than that inLaevens et al. (2014). Variations of total
luminosity between the stellar models are negligibly small. As
an empirical check, we integrated the observed F606W
luminosity function, after statistically accounting for likely

Table 2
Model Parameters

Quantity Range Resolution

( )-m M 0 20.60–21.10 0.05, 0.01
AV 0.0–0.5 0.05, 0.01
IMF Kroupa (2001) fixed
log(age) 9.0–10.15 0.05
[M/H] −2.3 to −0.5 0.05
[ ]a Fe - + +0.2, 0.0, 0.2, 0.4 fixed
Binary fraction 0.1, 0.35, 0.6 fixed

Note. Parameters and their ranges and resolutions used as input into MATCH.
Parameters with multiple resolutions indicated were solved for iteratively: first
through a large search with the coarser resolution and then via a focused search
at the higher resolution. α-enhancements are only currently available for the
Dartmouth models. We tested several values for the binary fraction, but
foundthat it did not substantially affect determination of the other physical
parameters.
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foreground objects, and correcting for distance and extinction,
we find ~ -M 5.35F606W , which is consistent with the model-
based approach described above.

5.2. Crater as a Complex Stellar Population

We now relax the SSP assumption and model the full SFH of
Crater, i.e., we allow it to be fit by an arbitrary sum of SSPs as
described in Section 4. In panels (d)–(f) of Figure 5, we plot the
model CMD for the full SFH fit, and in Figure 7 we show the
cumulative SFH (blue; the fraction of stellar mass formed prior
to a given epoch) and the best-fitting Dartmouth SSP with [α/
Fe] = +0.4 (orange). For simplicity, we only show the results
for a single Dartmouth modeland note thatfitting with other
Dartmouth or PARSEC models produces a similar result.

Compared to the SSP scenario, Figure 5 shows that there are
fewer highly discrepant regions in the residual significance
CMD (panel (f)). This is due to the increasednumber of free
parameters in the model. Blue stars above the MSTO have been
modeled by populations of intermediate-age MS stars.

The main result of this analysis isshown in Figure 7. The
full SFH shows that >95% of the stellar mass in Crater formed
in a single event around ∼7.5 Gyr ago. This is fully consistent
with the best-fit SSP age as discussed in Section 5.1and
reinforces that Crater is welldescribed by an SSP, even when a
complex population is allowed.

The remaining ∼5% of the stellar mass formed either slightly
before or after the main epoch. The small amount of mass formed
prior to ∼7.5 Gyr ago can be attributed to the code compensating
for slight mismatches between the isochrone and observed CMD.
Similarly, the small amount of mass formed ∼3 Gyr ago is the
result of fitting the luminous blue stars as MS stars.

However, as illustrated in Figure 8, it is equally plausible
that these blue stars are blue stragglers. The leftpanel shows
that single-star isochrones clearly overlap the main locus of
blue stars. For comparison, in the rightpanel, we overplot

select models of blue stragglers, including their evolution off
the MS, from Sills et al. (2009). These models are for a slightly
more metal-poor population, [M/H] ~ -2.3, but Sills et al.
(2009) suggestthat the properties of blue stragglers are not a
strong function of metallicity.
Visually, it is not possible to determine whether the single-

star or blue straggler model sequences better describe the data.
However, there are a few reasons to believe that these stars are
blue stragglers. First, the ratio of putative MS to SGB stars is
unrealistic for a standard IMF (e.g., Kroupa, Salpeter). If this
was a genuine intermediate-age population, we would expect
far more MS than SGB stars, given that a star’s SGB phase
lasts only ∼10% of its MS lifetime. The observed ratio is
roughly unity. Second, we have established that Crater is likely
a GC, not a dwarf galaxy. Given that all known GCs in the MW
host blue stragglers, we expect the same from Crater. Third, a
cursory inspection of the spatial distribution of the blue
stragglers shows that it is similar to other MW GCs (e.g.,
Ferraro et al. 2015), although the small number of blue
stragglers in Crater precludes anything beyond a qualitative
comparison.

6. DISCUSSION

6.1. Dwarf Galaxy or GC?

From our analysis, it is clear that Crater is a GC and not a
dwarf galaxy. Its stellar mass is consistent with being formed at
a single age and metallicity, within the precision allowed by a
given stellar evolution model. The sparse population of blue
stars above the main turnoff and SGB can plausibly be
explained as blue stragglers and their evolved descendants.
Moreover, the complete lack of an ancient population
(>10 Gyr) would make Crater unlike any known dwarf galaxy,
all of which are known to host ancient, metal-poor populations
(e.g., Tolstoy et al. 2009; Brown et al. 2012, 2014; Weisz et al.
2014a). Our finding that Crater is a GC is inline with both

Figure 5. Hess diagrams illustrating the SSP (top row) and full SFH (bottom row) models of the Crater CMD using the Dartmouth models with [α/Fe] = +0.4. The
area inside the orange region was excluded from the fitting. The color bars in panels (c) and (f) are in units of σ, where white and black represent the most extreme
deviations.
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Laevens et al. (2014) and Kirby et al. (2015), who reach the
same conclusion using different observations. The strongest
evidence in favor of Crater being a dwarf is presented by
Bonifacio et al. (2015), who find a velocity dispersion in excess
of expectations from assuming thatCrater is a purely baryonic
system. However, this analysis is based on spectroscopy of
only two stars with large uncertainties in their velocities. Using
larger samples, Kirby et al. (2015) and M. Mateo (2016, in
preparation) find velocity dispersions that are consistent with
expectations for a stellar system composed entirely of baryons
of Crater’s mass. On the whole, the properties of Crater do not
satisfy the criteria for being classified as a galaxy as articulated
by Willman & Strader (2012).

6.2. An Enigmatic GC

In Figures 9 and 10 we plot Crater’s properties relative to
those of the general MW GC population. Data for the MW

clusters are drawn from a variety of sources, and owingto the
potential for systematics, we only undertake a qualitative
comparison of Crater relative to other clusters. Specifically,
ages and metallicites of the MW GCs are primarily drawn from
VandenBerg et al. (2013), where available, and otherwise from
Dotter et al. (2008, 2010). The distances, luminosities, and
sizes are taken from the 2010 update to the MW GC catalog of
Harris (1996).12 Properties from thenewly discovered halo
clusterKim 2are from Kim et al. (2015b). We have not
included all known MW GCs on this plot. For example, we
have excluded some of the lowest-lumionsity GCs (e.g.,
Koposov 1 and 2, Segue 3; Koposov et al. 2007; Belokurov
et al. 2010; Fadely et al. 2011), which do not have well-
characterized stellar populations compared to more lumi-
nous GCs.
As shown in Figure 9, Crater is among the youngest, largest,

and most distant of the MW’s GCs. Although it shares a similar
metallicity and distance toseveral halo GCs (e.g., AM-1, Pal
4), its stands out owingto its young age, which is comparable
only to a handful of GCs located within ∼40 kpc of the Galactic

Table 3
Measured Single Stellar Population Properties of Crater

Property Dartmouth Dartmouth Dartmouth Dartmouth PARSEC

[α/Fe] = -0.2 [α/Fe] = 0.0 [α/Fe] = +0.2 [α/Fe] = +0.4 [α/Fe] = 0.0

Age (Gyr) 6.7±0.4 7.5±0.4 7.5±0.4 7.5±0.4 6.7±0.4
[M/H] −1.03±0.02 −1.33±0.03 −1.55±0.04 −1.66±0.04 −1.47±0.03
( )-m M 0 20.83±0.03 20.82±0.03 20.82±0.03 20.81±0.03 20.82±0.03
AV 0.09±0.03 0.10±0.03 0.10±0.03 0.10±0.03 0.11±0.03
Mass (103 M ) -

+9.7 0.05
0.1

-
+9.8 0.05

0.1
-
+9.8 0.05

0.1
-
+9.9 0.05

0.1
-
+10.0 0.07

0.1

Note. Derived properties for Crater as an SSP. We list the most likely value and the 68% confidence intervals. The uncertainties are only statistical in nature, i.e., they
scale with the number of stars on the CMD.

Figure 6. CMDs of Crater with the best-fitting PARSEC and Dartmouth
isochrones overplotted. Variations in the inferred physical properties are due to
subtle differences in the model shapes of the oldest MSTO, SGB, and slope of
the RGB. Points in the rightpanel have been grayed out to provide increased
visual contrast with the isochrones.

Figure 7. Comparison between the full SFH of Crater (blue) and its best-fit
SSP (orange) as measured with the Dartmouth models ([α/Fe] = +0.4). The
shaded blue region indicates the 68% confidence interval in the SFH as
determined with 5000 MCMC iterations. The full SFH shows that >95% of
Crater’s total stellar mass formed at a single age, which is consistent with it
being an SSP. The small percentage ofCrater’s stellar mass that formed
∼3 Gyr ago is due to the code modeling likely blue stragglers as intermediate-
ageMSstars, and it is unlikely to be genuine intermediate-age star formation.

12 http://www.physics.mcmaster.ca/~harris/mwgc.dat
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center (e.g., Whiting 1, Pal 1, Terzan 7). These young clusters
are typically associated with the accretion of Sagittarius; it is
clear that Crater is not. Furthermore, Crater exhibits a smaller
magnitude difference between the MSTO and horizontal
branch (HB) (ΔMV ∼ 2.7) when compared toGalactic center
GCs of a similar metallicity (ΔMV ∼ 3.0; e.g., Buonanno
et al. 1998).

The unusual properties of Crater provide new insight into
how various mechanisms (e.g., major merger, accretion of
satellites) contributed to the assembly of the MW. To

demonstrate this, in Figure 10, we plot the age–metallicity
relationship for the population of MW GCs, including Crater,
and overplot predictions from the GC formation models
presented in Li & Gnedin (2014). These models combine the
dark-matter-only Millenium II simulations ofBoylan-Kolchin
et al. (2009) with a semianalyticmodel for GC formation as
described in Muratov & Gnedin (2010). These models assume
that GCs are formed during major mergers, and are in good
qualitative agreement with bulk trends for most MW GCs.
However, Crater, along with a handful of other young MW

GCs, is a significant outlier compared to the model of Li &
Gnedin (2014). This suggests that while major mergers can
plausibly explain the bulk of the MW’s GC population, other
mechanisms (e.g., accretion of low-mass satellite galaxies) are
needed to explain these systems. By virtue of being young,
metal-poor, and located in the outer stellar halo, Crater may
instead be the signpost of a previously unknown MW accretion
event, with its age indicating that such an event occurred more
recently than ∼8 Gyr ago ( ~z 1, assuming a Planck cosmol-
ogy; Planck Collaboration et al. 2014). We discuss the possible
origins of Crater further in the following section.

6.3. Where Did Crater Originate?

Given its likely extragalactic origin, we can use the
properties of Crater to better understand its host galaxy. Based
on its position in the Galaxy, Crater (LMS, BMS,
VGSR=+80.6943, −5.87460, +150 km s−1, where “MS”
denotes the Magellanic Stream coordinate system) is well-
matched to the location of tidal debris from the Magellanic
Stream as predicted by the models of Besla et al. (2012).
Furthermore, Crater’s heliocentric velocity of ~+150 km s−1

(Kirby et al. 2015) is consistent with the measured gas velocity
of the Magellanic Stream of 100–200 km s−1 (Nidever
et al. 2010). Thus, it is plausible that Crater was accreted
during an interaction between the MW and the Magellanic
Clouds.

Figure 8. CMDs of Crater with select PARSEC isochones overplotted in the
left paneland tracks of collisional blue stragglers from Sills et al. (2009)
overplotted on the right. A comparison of the two sets of models illustrates the
similarity between the two intermediate-age single stars and blue stragglers.

Figure 9. Age, metallicity, half-light radius, and galactocentric distance of
Crater relative to the general population of MW GCs. Point sizes are
proportional to the cluster half-light radii. Crater is a clear outlier compared to
most MW GCs.

Figure 10. Ages and metallicities of MW GCs, with predictions from the GC
formation models of Li & Gnedin (2014) overplotted as contours. The point
sizes are proportional to the cluster half-light radii. From darkest to lightest, the
contours indicate the expected fraction of GCs: 10%, 50%, 90%, and 97%. The
models, which posit that GCs form in major mergers, capture the bulk of the
MW cluster populations. However, Crater is a clear outlier,indicatingthat
mechanisms in addition to mergers are necessary to explain the entire MW GC
population.
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However, as shown in Figure 11, Crater’s age and
metallicity are not obviously compatible with the age–
metallicity relationships of the LMC or SMC (Leaman
et al. 2013). Compared to the SMC age–metallicity relation-
ship, Crater is either too metal-poor for its age or too young for
its metallicity. This discrepancy is larger when compared to
the LMC.

It may be the case that Crater is simply an anomalous cluster
from the SMC. A handful of SMC clusters are known to be
offest from the galaxy-wide age–metallicity relationship. A
particularly relevant example is that of Lindsay 38, which has
an age of ∼6.5 Gyr and a metallicity of [M/H] = -1.49, as
determined from deep HST imaging presented in Glatt et al.
(2008). Its similarity to Crater suggests that itis at least
plausible that Crater originated as an anomalous cluster in the
SMC before being captured by the MW.

Alternatively, if we assume that clusters should roughly
follow their host galaxy’s age–metallicity relationship, it appears
that Crater likely originated in a fairly lowmass dwarf galaxy.
As shown in Figure 11, even relative to a less massive dwarf
galaxy, WLM ( ~ ´=M 4 10z

star
0 7

M ; McConnachie 2012),
Crater is slightly offset from the age–metallicity relationship.
Fornax, which is a factor of ∼2 less massive than WLM, has a
nearly identical age–metallicity relationship. Although both
Fornax and WLM contain GCs, they are generally older
(>10Gyr) and more metal-poor ([M/H] < -2.0) than Crater
(e.g., Buonanno et al. 1998; Hodge et al. 1999). The exception is
Fornax4, which resembles Crater in metallicitybut is 3–4 Gyr
older (Buonanno et al. 1999).

Instead, if GCs do trace the age–metallicity relationship of
the host, then it is likely that Crater formed in a system similar
in mass to Leo I or Carina. Both have had continuous star
formation throughout their lifetimes (e.g., Weisz et al.
2014a)and have present-day stellar metallicities similar to
Crater. However, the mean metallicity of Carina, as presented
in de Boer et al. (2014), does not reach Crater’s value until
∼5 Gyr ago, indicating that it is not an exact match. Of course,
such quantities highly depend on the SFH of a particular

system, and this type of mismatch may suggest that Crater’s
progenitor happened to enrich slightly more quickly than
Carina. On the other hand, there is no known stream near
Crater, which decreases the likelihood of Crater’s accretion
being attributable to a dwarf galaxy that was destroyed by
the MW.
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