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ABSTRACT

The nature of dark energy can be probed by the derivative ( ) ∣=Q dq z dz 0 at redshift z = 0 of the deceleration
parameter q(z). It is probably static if <Q 1 or dynamic if >Q 2.5, supporting ΛCDM or ( )L = - q H1 2,
respectively, where H denotes the Hubble parameter. We derive ( )p= -q a cH1 4 0

2, enabling a determination of
q(z) by measuring Milgrom’s parameter, ( )a z0 , in galaxy rotation curves, equivalent to the coefficient A in the
Tully–Fisher relation =V AMc b

4 between a rotation velocity Vc and a baryonic mass Mb. We infer that dark matter
should be extremely light, with clustering limited to the size of galaxy clusters. The associated transition radius to
non-Newtonian gravity can conceivably be probed in a freefall Cavendish-type experiment in space.
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1. INTRODUCTION

To leading order, large-scale cosmology is described by a
Friedmann–Robertson–Walker line-element

( ) ( ) ( )= - + + +ds dt a t dx dy dz , 12 2 2 2 2 2

with a dynamical scale factor a(t). Here, the evolution of a(t) is
parameterized by ˙=H a a and the deceleration parameter
= - -q H a a¨2 , with the dot referring to differentiation with

respect to time. Evolving (1) by general relativity, a dark
energy density pL >8 0 is inferred from the observed three-
flat cosmology with deceleration

( )= W - W <Lq
1

2
0 2M

in SN Ia surveys (Riess et al. 1998; Perlmutter et al. 1999).
Here, r rW =M M c and prW = LL 8 c, where r p= H3 8c

2

denotes the closure density. Λ is commonly referred to as a
cosmological constant. The value WL 0.7 suggests that our
cosmology is presently approaching a de Sitter state with a
cosmological horizon at the Hubble radius =R c H0. A de
Sitter state is fully Lorentz invariant, and in our current
universe is broken only by the presence of a minor amount of
matter.

A tell-tale signature of dark energy in accelerated cosmolo-
gical expansion (2) is static or dynamic behavior. Here,
we consider the problem of discriminating between ΛCDM
and a dynamic dark energy in the form of ( )L = - q H1 2,
recently proposed as a back reaction of the thermodynamic
properties of the cosmological horizon (van Putten 2015a),
motivated by holographic arguments (Bekenstein 1981; ’t
Hooft 1993; Susskind 1995; van Putten 2012) and a modified
Gibbons–Hawking temperature (Unruh 1976; Gibbons &
Hawking 1977; Cai & Kim 2005). This dynamical dark
energy has the property that it vanishes in the radiation-
dominated era, leaving baryon nucleosynthesis unaffected.
In this era, the surface gravity of the cosmological
horizon vanishes when it touches the light cone of distant
inertial observers. These two alternatives predict distinct values

of the derivative ( )=Q dq z dz at redshift z = 0:

( )< >Q Q1, 2.5 3stat dyn

in ΛCDM, and, respectively, ( )L = - q H1 2.
Indicative of a holographic origin of Λ is a dimensional

analysis based on =L c G0
5 and the associated pressure

=p L c AH0 on the cosmological horizon, where p=A R4H H
2 .

In a pure de Sitter space ( )= -q 1 , r = -L p by Lorentz
invariance, whereby W =L 2 3, in remarkable agreement with
observations. See also Easson et al. (2011) for a derivation
based on entropic forces.
From (3), q(z) can be used to distinguish between ΛCDM

and a dynamical Λ, provided it is resolved sufficiently
accurately about z = 0. Current data from SN Ia surveys,
however, seem inconclusive, which appears to be due to
systematic errors that are possibly related to the tension with
Planck data on the Hubble parameter (Ade et al. 2014; Planck
Collaboration 2014).
Here, we consider a new probe of q(z) in galaxy rotation

curves and its implications for the clustering of dark matter.
This approach is based on a finite sensitivity of weak gravity to
Λ (static or dynamic). Gravitational attraction beyond what is
inferred from (luminous) baryonic matter is generally observed
in galaxies and galaxy clusters (Famae & McGaugh 2012) at
accelerations of 1Å s−2 or less. This apparent non-Newtonian
behavior is commonly attributed to dark matter, based on the
success of Newton’s theory of gravity in the solar system and
its extension to strong gravity by embedding in general
relativity. Supporting data for the latter are derived from orbital
motions at accelerations ( ) –= - -a R c r 10 10g

2 6 2 m s−2 of
planets in the solar system at distances r, where

=R GM c 1.5g
2 km denotes the gravitational radius of

the Sun with Newton’s constant G. Its extension in general
relativity to higher accelerations has been fully vindicated by
precession measurements in the Hulse–Taylor binary pulsar
PSR 1913+16 ( –=a 10 100 2 m s−2) (Hulse & Taylor 1975).
However, our observations of dark matter take us to the
opposite limit of extremely weak gravity, not probed by our
solar system or strong field counterparts in compact binaries.
The parameter regime of about 1Å s−2 takes us away from
existing tests of Newtonian gravity by a factor of about 104,
which is not small. Importantly, this scale is similar to the scale
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of cosmological acceleration =a cHH , where c denotes the
velocity of light and H is the Hubble parameter. Currently,
H 670 km s−1 Mpc−1 (Ade et al. 2014; Planck Collabora-

tion 2014).
To realize our new probe of q(z), we consider weak gravity

on the cosmological background (1) parameterized by (H, q) in
a recent formulation of unitary holography (van Putten 2015b).
In geometrical units with Newton’s constant G and the velocity
of light c equal to unity, Λ and L are of dimensions cm−2 and
cm−1, respectively, corresponding to dark energy volume, and
surface density, respectively. The latter may be recognized as
the thermal energy density ( )pS = =T H 41

2
, defined by a de

Sitter temperature p=T H 2dS (Gibbons & Hawking 1977).
While pL 8 is notoriously small, L ´ - -1.21 10 cm56 2,

( ) pS = L ´ - -4 2 6 10 cm29 28 is not. An immediate
implication is a critical transition radius for gravitational
attraction. Around a central mass =M M M1011

11 of a typical
galaxy, S =A M for a two-sphere with area p=A r4 2, giving
a transition radius

( )= =r MR M4.6 kpc. 4t H 11

1
2

The transition radius (4) is common to galaxy rotation curves
and bears out in well in a a 0.1t H ( )=a GM rt t

2 in a
deviation of centripetal accelerations a relative to the New-
tonian acceleration aN expected from the observed baryonic
mass (Milgrom 1983; Famae & McGaugh 2012), here shown
in Figure 1. (4) defines strong gravitational interactions in
r rt and weak gravitational interactions in r rt with

accelerations, respectively,

( ) a a a a, . 5H H

In geometrical units, holography hereby identifies aH as a
critical acceleration in galaxy rotation curves.

In Section 2, we express gravitational attraction in terms of a
conformal factor, encoding information on particle positions in
unitary holography. The Newtonian limit is recovered in
Section 3, and extended to non-Newtonian asymptotic behavior
in r rt in (4) on a de Sitter background in Section 4. A
further extension to (1) is given in Section 5, in which a finite
sensitivity in r rt to Λ is proposed as a new estimator for q
(z), proposed to determine (3). We summarize our theory in
Section 6 with an outlook on future tests.

2. CONFORMAL FACTORS FROM DISTANCE
INFORMATION

Unitary holography expresses distances of a particle of mass
m to time-like holographic two-surfaces in terms of information

p j= DI 2 defined by a total phase difference j = kr , derived
from its propagator with a Compton wavenumber =k mc ,
where ÿ denotes the Planck constant. Holographic imaging is
hereby an extension of holographic bounds originally devel-
oped for black hole spacetimes (Bekenstein 1981; ’t Hooft
1993; Susskind 1995) to spacetimes outside of black hole event
horizons. Thus, m is a holographic superposition of A lp

2 light
modes determined by the hyperbolic structure of spacetime,
where =l G cp

3 denotes the Planck length.
This approach has two consequences. First, on macroscopic

scales, A lp
2 is astronomically large. The holographic modes

are extremely light, with an energy scale

( ) =
mc l

A
, 6

p
2 2

which introduces a sensitivity to any similarly low-energy scale
in the background vacuum. The latter is described by the
elliptic structure of spacetime, which governs gravitational
attraction. (In general relativity, the elliptic part embeds
Newton’s law of gravity in a conformal factor.) Second,
holographic imaging is a function of WA , where A is the area of
the bounding surface and Ω is the projection opening angle of
its surface elements. Factorization of WA is hereby an internal
symmetry of holography (cf. ’t Hooft 2015). Scaling of A and
Ω respectively corresponds to curvature lensing. These may be
realized by a conformal factor or a deficit angle, which are
essentially different manifestations of the same phenomena.
In encoding I in = -fA A AE or equivalently,

pW = - Wf 4 E, p=A ms8E and pW = m s8E are the Ein-
stein area and opening angles, respectively, i.e.,

( ) ( )p p p pW = - = - W =fA A A A s f4 4 4 16 .E E
2 2 Here, the

factor of four in =A Il4E p
2 derives from a counting argument

on the minimal number of four bits required to encode matter
and fields (van Putten 2015b). A holographic screen hereby
attains minimal size with =A AE or pW = 4E at the
Schwarzschild radius =s RS, p= =R m S2S , with

p= =S I mmin 4 2 in ( )p= - +I m s R S2 S equal to the
Bekenstein–Hawking entropy. Accordingly, we have

( )= -f
m

s
1

2
. 7

In general relativity, the gravitational field about a point
mass can be described by a conformal factor Φ in an isotropic
line-element

( ) ( )= - + F + +ds N dt dx dy dz , 82 2 2 4 2 2 2

Figure 1. Galaxy rotation curves (blue dots) reveal a transition to a r1 force
law at weak accelerations asymptotically in a aH away from Newtonian
forces in a aH based on the observed baryonic matter. Shown is a
theoretical curve (red) in unitary holography with a good match in a
cosmological background with a deceleration parameter q in the range
- < < -q1 0.5. Data are from galaxy curves with essentially zero redshifts
from Famae & McGaugh (2012).

2
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where ( )= FN N denotes the gravitational redshift, i.e., the ratio
of energy-at-infinity to locally measured energy. According
to the above, p=R S4S expresses the mass energy of a
particle by its linear size, locally measured by the minimal
surface area S4 of an enveloping holographic screen. We are at
liberty to choose a gauge

( )FN const., 92

defined by a constant total mass energy-at-infinity in the
approximation of small perturbations to the spherically
symmetric line-element (8). For a detailed consideration of
such time-symmetric data, see van Putten (2012), where it
serves as a condition in the application of Gibbs’ principle
in entropic forces in black hole binaries. According to
the equations of geodesic motion, Newton’s law then
derives from N ≃ 1−m/ρ in the large distance limit. With

r r q r q f+ + = + +dx dy dz d d dsin2 2 2 2 2 2 2 2 2 expressed in
spherical coordinates ( )r q f, , , ρ reduces to the ordinary radial
distance r at large separations, and (8)–(9) embed Newton’s
law in

( ) ( )  F +-f
m

r
r m1

2
2 . 10

1
4

3. THE NEWTONIAN LIMIT IN AN ORDINARY
VACUUM

In what follows, unless otherwise specified, A shall refer to
surface area, as well as the number of Planck-sized surface
elements A lp

2.
In holography, the wavefunction of a particle m results from

A Planck-sized harmonic oscillators of low energy (6).
Ordinarily, one mode in the image appears for each mode in
the screen. (The dimension of the phase space in the image
equals the number of degrees of freedom in the screen.)
Quantum-mechanically, m is the time rate-of-change of the
total phase as measured at infinity,

( )w=m A
1

2
, 11

of the ground state energies ( )w1 2 of each harmonic oscillator
in the screen. Distance encoding derives from the aforemen-
tioned jD = kr , with the total wavenumber k given by the
superposition of these massless modes,

( )k=k A
1

2
. 12

The trivial dispersion relation k w= of an ordinary vacuum
recovers the Compton wavenumber =k kC, =k mC , with low-
energy frequencies

( )w
p

= =
m

A

a2

2
13N

N

defined by the Newtonian acceleration =a m r .N
2

The Compton relation k = m recovered by the trivial
dispersion k w=N N associates kN with the Unruh temperature
of Newtonian acceleration (13).

In entropic gravity (Verlinde 2011), the above implies
entropic forces on a test particle of mass ¢m at screen
temperature p=T m r2 2 by p= - = - ¢dS dI m dr2 , giving

= - = = - ¢F dU dr TdS dr mm r2. In keeping with
(9)–(10), however, we shall not pursue these arguments here.

4. SENSITIVITY TO L IN A DE SITTER BACKGROUND

From (6), (13) is susceptible to the low-energy de Sitter
temperatures of the cosmological horizon. Screen modes satisfy
the dispersion relation

( )w k w= + , 14H
2 2

representing an incoherent sum of a momenta κ and a
background de Sitter temperature, w = TH dS (Narnhofer et al.
1996; Deser & Levin 1997; Jacobson 1998). A spherical screen
imaging a mass m at its center hereby assumes

( )w w k k w w w= - = +: 2 , 15N H N N H
2

giving k wN ( r rt) and k a aN0 ( )r rt , with
=a a2 H0 as proposed in Klinkhamer & Kopp (2011).

However, ( )k wN from (15) overestimates the Milgrom
parameter a0 (Milgrom 1983) by about one order of magnitude
according to the data shown in (Figure 1). Here, Milgrom’s
parameter is equivalent to the coefficient A in the Tully–Fisher
relation =V AMc b

4 , where Vc denotes the rotation velocity in a
galaxy of baryonic mass Mb (McGaugh 2011a, 2011b). The
wavenumber kN in (15) is not representative for the κ of the
image within.
On a cosmological background (1) with L > 0, the image

modes satisfy the dispersion relation

( )w k¢ = + L , 162

defined by the waveequation of a vector field in curved
spacetime by coupling to the Ricci tensor = LR gab ab. This
applies to the electromagnetic vector potential (e.g.,
Wald 1984), as well as the Riemann–Cartan connections in
SO(3,1) in a Lorenz gauge (van Putten & Eardley 1996). It
implies an effective rest mass energy L of the photon and
graviton and photon. Effective mass is not the same as true
mass. Even so, we mention in passing that the problem of
consistent general relativity with massive gravitons has recently
received considerable attention (de Rham et al. 2011; Bernard
et al. 2014). With ˙= +q H H H0

2 2 , the generalized Higuchi
constraint ( ˙ ) +m H H22 2 (Higuchi 1987; Deser & Wal-
dron 2001; Grisa & Sorbo 2010) reduces to WL q2 0. Based
on observations, < <q1 0.50 (Riess et al. 2004; Wu &
Yu 2008; Giostri et al. 2012), whereby > -q 10 appears to be
secure at any rate.
From (14) and (16), distinct effective masses appear in the

kinetic energies w w= -E H and w¢ = ¢ - LE of low-
energy modes in the screen and image, namely

( ) k
k

k¢
L

E E
2

,
2

17
H

2 2

( k k L,H ). Therefore, in weak gravitation in de Sitter
space, a direct correspondence between screen and image
modes is lost, a striking departure from the above Newtonian
limit in r rt in the previous section.
Specifically, (17) shows a discrepancy by a factor of p2 2

in effective mass L over that in kH . A given ( )k k w= N of

3
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screen modes has an associated reduced energy in the relatively
more heavy image modes, satisfying

( )w w k¢ = ¢ - L = + L - L , 18N
2

with corresponding reduced screen momenta

k w w w¢ = ¢ + ¢2 .N N H
2 Figure 1 shows the graph ( )k w¢ N to

be in agreement with the data. Specifically, we arrive at
Milgrom’s constant on a de Sitter background

( )k
p

=
L

= ´ - -
⎛
⎝⎜

⎞
⎠⎟a cH

cH
2

2
1.5 10 cm s , 19H

0 0
0 8 2

where we restored dimensions in cgs units.

5. SENSITIVITY TO q(z) IN A FRIEDMANN–
ROBERTSON–WALKER (FRW) BACKGROUND

The above generalizes to general FRW universes with a
modified de Sitter temperature (Cai & Kim 2005; van
Putten 2015a)

( )
p

=
-

T
q H1

2 2
. 20dS

A key feature of (20) is that =T 0dS in the radiation-
dominated era q = 1, whereby it pertains only to relatively late
time cosmologies, satisfying

( ) ( ) ( )W = - W = +L q q
1

3
1 ,

1

3
2 . 21M

As a consequence of (20), Milgrom’s constant attains the
explicit expression

( )
p

=
-

a
q

cH
1

4
, 220

allowing the measurement of q from a0 as a function of
redshift:

( ) ( )
( )

( )p
= -

⎛
⎝⎜

⎞
⎠⎟q z

a z

cH z
1

4
. 230

2

The existing low-redshift sample of galaxies of Famae &
McGaugh (2012) recovers the value - < < -q1 0.80 for the
Planck estimate of H0 (Figure 2) and is broadly consistent with
SN Ia surveys (Riess et al. 2004; Wu & Yu 2008; Giostri
et al. 2012).
More detailed future observations of ( )a z0 about  z0 1

will offer a new venue for determining

( ) ( ) ( ) ( )= - - - -

=
Q q q a

da z

dz
2 1 2 1 24

z
0
2

0 0
1 0

0

from a sample of galaxy rotation curves covering a finite range
of low-redshift  z0 1.
In van Putten (2015a) we considered the problem of

discriminating between a dynamical and static Λ parameter
( )- q H1 2 versus ΛCDM. It shows the disjoint ranges

( )( )
( )( ) ( )

= + - <
= + - >

Q q q

Q q q

1 1 2 1

2 1 2 2.5 25
stat 0 0

dyn 0 0

associated with ΛCDM satisfying (2) with ( )W = + q
2

3
1M 0

and, respectively, ( )L = - q H1 2 satisfying (21). Figure 3
shows the correlation of (24) with ( )-a da z dz0

1
0 at z = 0 in

these two cases.

6. CONCLUSIONS

In a unitary holography of matter, conformal factors
encoding positions and gravitational attraction have a hidden
low-energy scale, (6), that introduces a finite sensitivity to low-
energy scales in the cosmological background, (1),

Figure 2. Estimation of q0 by a least-squares fit to the Famae & McGaugh (2012) sample of low-redshift galaxies shown in Figure 1 following a rescaling to various
H0 in units of km s−1 Mpc−1. The resulting correlation ( )q H,0 0 agrees with Planck data on a relatively low Hubble parameter of about 67 km s−1 Mpc−1.

4
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parameterized by (H,q). This sensitivity is manifest in a
transition to non-Newtonian gravitational attraction, which
scales with inverse distance beyond a critical radius rt at
accelerations on the scale of the surface gravity of the
cosmological horizon. It produces Milgrom’s law with a
specific expression for the a0 as a function of (H, q). This result
is due to anomalous behavior in unitary holography on an FRW
background in the limit of weak gravity. This a0 sensitivity to
(H, q) may be probed observationally in low-redshift galaxy
rotation curves.

From agreement with data shown in Figure 1, we see that
there is no apparent need for the clustering of dark matter on
the scale of galactic disks. Even so, there exists a
cosmological distribution of dark matter (van
Putten 2015a). A major conclusion of the present work,
therefore, is that dark matter must be extremely light,
producing clustering on the scale of galaxy clusters (Vikram
et al. 2015) but not down to a much smaller scale of galaxies.
Conceivably, the putative dark matter particle is the lightest
element in the universe and may not be readily detectable in a
laboratory experiment based on interactions with ordinary
matter.

We propose probing the static or dynamic nature of dark
energy by ( )dq z dz. Values at z= 0 less than 1 or greater than
2.5 support ΛCDM, or ( )L = - q H1 2, respectively. Here, we
formulate this in terms of ( )-a da z dz0

1
0 being greater or less

than 0, respectively. These data may be obtained from an
extended sample of low-redshift galaxy rotation curves.

Finally, scaling the transition radius, (4), to laboratory test

masses, r M1 cmt 0

1
2 , with =M M0 g, suggests a possible

laboratory test, probing the proposed sensitivity to the
cosmological background by a space-based freefall Cavendish
experiment.
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