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ABSTRACT

Recent observations of galaxies at z 7, along with the low value of the electron scattering optical depth
measured by the Planck mission, make galaxies plausible as dominant sources of ionizing photons during the
epoch of reionization. However, scenarios of galaxy-driven reionization hinge on the assumption that the average
escape fraction of ionizing photons is significantly higher for galaxies in the reionization epoch than in the local
universe. The NIRSpec instrument on the James Webb Space Telescope ( JWST) will enable spectroscopic
observations of large samples of reionization-epoch galaxies. While the leakage of ionizing photons will not be
directly measurable from these spectra, the leakage is predicted to have an indirect effect on the spectral slope and
the strength of nebular emission lines in the rest-frame ultraviolet and optical. Here, we apply a machine learning
technique known as lasso regression on mock JWST/NIRSpec observations of simulated z=7 galaxies in order to
obtain a model that can predict the escape fraction from JWST/NIRSpec data. Barring systematic biases in the
simulated spectra, our method is able to retrieve the escape fraction with a mean absolute error ofD »f 0.12esc for
spectra with signal-to-noise ratio≈5 at a rest-frame wavelength of 1500Åfor our fiducial simulation. This
prediction accuracy represents a significant improvement over previous similar approaches.
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1. INTRODUCTION

Current constraints on the reionization of the universe are
consistent with scenarios in which star-forming galaxies at
z 6 provide the majority of hydrogen-ionizing (Lyman

continuum, LyC) photons to bring about this phase transition
(e.g., Mitra et al. 2015; Robertson et al. 2015). However, the
notion of galaxy-dominated reionization relies on the assump-
tion that a non-negligible fraction of the LyC photons produced
by hot, young stars within these objects can avoid absorption
by gas and dust in the interstellar medium and make it into the
intergalactic medium (IGM). At the current time, it remains
unclear if LyC leakage from z 6 galaxies is really taking
place at the level required to make this work, or whether
alternative sources such as quasars may be required (e.g.,
Madau & Haardt 2015).

The production rate of LyC photons entering the IGM from
the galaxy population at redshift z can be written as

x r=N z f z z z , 1ion esc ion UV
˙ ( ) ( ) ( ) ( ) ( )

where Nion˙ is the comoving LyC photon production rate density
(also known as the ionizing emissivity; photons s−1 Mpc−3),
fesc is the LyC escape fraction and xion is the production
efficiency of Lyman continuum photons (photons erg−1 Hz; the
rate of LyC photon production relative to the luminosity in the
rest-frame, non-ionizing ultraviolet continuum, usually at
1500Å) and rUV is the luminosity density (erg Hz−1 Mpc−3)
of the galaxy population in the rest-frame ultraviolet (UV)
continuum. The UV luminosity density rUV can be constrained
from observations of galaxy luminosity functions at high
redshifts (e.g., Bouwens et al. 2015a; Finkelstein et al. 2015) or
from cosmic infrared background radiation (Mitchell-Wynne
et al. 2015), whereas xion can be estimated from a combination

of models (e.g., Duncan & Conselice 2015; Stanway
et al. 2015; Wilkins et al. 2016) and observations (e.g.,
Bouwens et al. 2015b; Stark et al. 2015).
Independently assessing fesc at z 6 remains an outstanding

problem, since any escaping LyC photons (rest-frame wave-
length l < 912 Å) at these redshifts will be absorbed by the
neutral IGM and hence cannot be directly detected (Inoue
et al. 2014). The latest studies indicate that galaxies can explain
the reionization of the universe if the galaxy population at
z 6 exhibits LyC leakage at a typical level of ~f 0.1esc

(e.g., Atek et al. 2015; Mitra et al. 2015; Robertson et al. 2015;
Stanway et al. 2015). The galaxy population at »z 0–3, where
the direct detection of LyC photons is possible, does not appear
to meet this requirement (e.g., Bergvall et al. 2013; Grazian
et al. 2015; Rutkowski et al. 2015; Siana et al. 2015; Izotov
et al. 2016; Leitherer et al. 2016), which means that substantial
evolution in the typical LyC escape properties needs to take
place at redshifts closer to the reionization epoch.
Can we somehow determine if ionizing photons are really

getting out of galaxies at z 6? Are there individual galaxies
with very high levels of LyC leakage, as predicted by e.g.,
Kimm & Cen (2014), Paardekooper et al. (2015) at these
redshifts? If such objects exist, how do they differ from the
extreme LyC leakage candidates detected at low redshifts (e.g.,
Vanzella et al. 2016)?
Zackrisson et al. (2013) argue that, since fesc regulates the

relative contributions of stars and nebular emission to the
spectral energy distribution (SED) at non-ionizing energies,
spectroscopy with the NIRSpec spectrograph on the upcoming
James Webb Space Telescope ( JWST) should at least be able to
constrain fesc for the brightest reionization-epoch galaxies at
»z 6–9. Assessing fesc is important also outside the context of

cosmic reionization since this parameter, in shaping the SEDs
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of high-redshift galaxies, will also affect attempts to constrain
the age, dust attenuation and stellar mass of these objects.

The SED method proposed by Zackrisson et al. (2013) is
complementary to the absorption line method proposed by
Jones et al. (2013) but has the advantage of not requiring very
high signal-to-noise ratio (S/N) or high spectral resolution, and
should therefore be applicable to a very large number of the
galaxies observed with NIRSpec during the lifetime of JWST.
Moreover, a recent attempt to validate the absorption line
method at »z 3 indicates unforeseen problems with this
approach (Vasei et al. 2016). While Zackrisson et al. (2013)
only discuss very simple spectral diagnostics (primarily the
slope β of the UV continuum; and the equivalent width of the
Hβ emission line), information on fesc will be imprinted in
many spectral features throughout the rest-frame UV and
optical SEDs of star-forming galaxies (see Figure 2 in
Zackrisson et al. 2013). Here, we will investigate the prospects
of using a more extended set of spectral data for the retrieval of
fesc information from JWST/NIRSpec spectra of reionization-
epoch galaxies.

The commonly used approach of deriving constraints on
galaxy parameters (e.g., age, metallicity, stellar mass) from
observed spectra, using a fit to model spectra weighted by the
inverse of the observational error of each data point, is unlikely
to be the optimal approach in this case, since this assumes that
information on the parameters of interest is intrinsically equally
distributed across the spectral bins. As shown by Zackrisson
et al. (2013), this does not hold for fesc, which only affects
selected spectral features across the rest-frame UV and optical
wavelength range covered by JWST/NIRSpec for galaxies at
»z 6–9. Instead we use the lasso regression algorithm to

identify the key spectral features relevant for the problem. The
lasso model is trained on mock spectra of »z 7 galaxies with
various levels of LyC leakage provided by the LYman
Continuum ANalysis (LYCAN) simulation project (E. Zack-
risson et al. 2016, in preparation), after degrading these SEDs
to the spectral resolution of JWST/NIRSpec and adding
observational noise relevant for realistic JWST observations.

The structure of this paper is as follows. In Section 2, we
describe the simulations used, and in Section 3 the lasso
algorithm. We then present our results in Section 4. We begin
by discussing the results for a single simulation suite, and then
go on to discuss the robustness of our model in light of various
simulation uncertainties. Finally, we summarize and discuss the
results in Section 5.

2. SIMULATIONS

In this section, we describe our simulations. The first step is
to simulate the spectra of samples of galaxies during the epoch
of reionization under various assumptions. The second step is
to use these spectra to create mock observations for JWST/
NIRSpec.

2.1. Galaxy Simulations

In this paper, we make use of a subset of the simulated spectra
of reionization-epoch galaxies described in Zackrisson et al.
(2016, in preparation). In short, we use the detailed star formation
histories and internal metallicity distributions of »1400 galaxies
at z=7 drawn from three different numerical simulations: 106
objects with stellar population masses   M M107 (Finlator
et al. 2013), 874 objects with   M M107 from CROC

(Gnedin 2014; Gnedin & Kaurov 2014) and 406 objects with
  ´ M M5 108 from Shimizu et al. (2014).
Grids of synthetic spectra at metallicities ranging from
= -Z 10 7 to Z=0.050 generated with the Yggdrasil spectral

evolutionary model (Zackrisson et al. 2011) were then used to
compute realistic spectra with both stellar and nebular
contributions for these objects. These grids were based on
stellar population spectra from either Starburst99 (Leitherer
et al. 1999) with Padova-AGB or Geneva stellar evolutionary
models for non-rotating stars at metallicities Z 0.0004, or on
spectra for binary stellar populations from BPASS2 (Eldridge
& Stanway 2009) at Z 0.001. For extremely metal-poor stars
( = -Z 10 7–10−5), spectra from Raiter et al. (2010) were used.
The associated nebular emission was computed using the
photoionization code Cloudy (Ferland et al. 2013), and the
effect of Lyman continuum leakage was modeled under the
assumption of an ionization-bounded nebula with holes free of
gas and dust (for details, see Zackrisson et al. 2013).
Dust was added to the Shimizu galaxies using the dust recipe

described in Shimizu et al. (2014) while the dust recipe by
Finlator et al. (2006) was used for the CROC and Finlator
galaxies. These recipes—which assign a different dust red-
dening -E B V( ) to each simulated galaxy—were finally
combined with LMC or SMC dust attenuation laws (Pei 1992)
or with the Calzetti et al. (2000) attenuation law (with nebular
emission being more highly affected by dust than the stellar
component) to produced the final simulated galaxy spectra. In
all cases, we assume that the channels through which LyC is
escaping are directed away from the observer, since the model
spectra would otherwise effectively return to the dust-free case
at high fesc.
We have compared the luminosity weighed average LyC

photon production efficiency (according to the definition in
Wilkins et al. 2016) for our simulations with measured values
by Stark et al. (2015) and Bouwens et al. (2015b) as well as
estimates from authors including Madau et al. (1999), Bouwens
et al. (2012), Finkelstein et al. (2012), Duncan & Conselice
(2015) and Wilkins et al. (2016). We find a good agreement
with these values. While the Bouwens et al. (2015b) Hα
measurements were done on galaxies between redshifts 3.8 and
5.4, simulations by Wilkins et al. (2016) imply that the LyC
production efficiency has only a weak evolution with redshift.
These tests will be described in more detail in C. Binggeli et al.
(2016, in preparation).
Using the simulations described above, we can create mock

samples of galaxies using different combinations of cosmolo-
gical simulations, assumptions concerning stellar evolution and
dust attenuation. We will use the galaxies from the Shimizu
simulation with the Starburst99-Geneva stellar population
model and LMC dust (ShGeLMC) as our fiducial model when
illustrating general properties of our method for inferring fesc
from galaxy spectra. Later on, in Section 4.3, we will
investigate the effects of different model assumptions. Here,
we will use the combinations listed in Table 1.

2.2. Simulated Observations

Our simulations give us high-resolution spectra for each of
the galaxies. We wish to generate mock observations for the
NIRSpec spectrograph on the JWST, and so we need to re-bin
the simulated spectra to the resolution of NIRSpec, and
simulate observational noise.
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The NIRSpec spectrograph can be operated in three different
modes with different resolutions. These resolutions are
nominally R=100, R=1000 and R=2700, but in reality
the resolution varies across the spectrum. Focusing on R=100
and R=1000, we use the tables on the official NIRSpec
website3 to calculate the exact bin widths for the different
resolutions. The wavelength range is 0.6–5.0μm for R=100
and 1.0–5.0μm for R=1000. At z=7, these intervals
correspond to 750/1250–6250Å. Here, we truncate our
simulated spectra to the narrower wavelength interval of the
R=1000 mode. Figure 1 shows a few sample simulated
spectra at the R=1000 and R=100 resolutions. In order to
compare the shapes of the spectra rather than the intrinsic
fluxes, we normalize all our spectra to have a mean flux of 1
(see Section 4).

The NIRSpec website also lists the minimum continuum flux
observable at a S/N of 10 for an exposure time of 104 s, as a
function of wavelength. We make the assumption that this
curve scales with the square root of the exposure time in order
to calculate the expected signal-to-noise at each wavelength bin
for a given flux and exposure time. This assumption ignores
some noise sources, such as readout noise, but should give
decent approximations. This way, we can calculate the S/N in
each NIRSpec spectral bin for each of our simulated galaxies.
We can then generate random noise realizations, making the
assumption that the noise in each spectral bin is Gaussian. The
sensitivity is fairly flat between 1 and 3 μm, and becomes
worse for l 4 μm. However, since the flux is high in the
emission lines (if fesc is low), the S/N is typically highest in the
wavelength bins with emission lines.

Since our galaxy samples contain objects with a wide range
of magnitudes, the noise for a fixed exposure time will vary
greatly from object to object. In many cases, it makes more
sense to show results for a fixed S/N rather than a fixed
exposure time. When doing so, we define the signal-to-noise of
a spectrum as the signal-to-noise at the spectral bin centered at
a restframe wavelength ofl = 1500 Å. Note that the noise will
vary across the spectrum, both because of the change in
detector sensitivity and because of the change in flux. Figure 2
shows the S/N obtained for galaxies with different AB
magnitudes for different exposure times.

All the simulated spectra with and without detector noise are
available for download on the LYCAN website.4

3. THE LASSO ALGORITHM

The aim of the lasso (least absolute shrinkage and selection
operator) algorithm (Tibshirani 1996) is to fit a linear model to
a set of training data. It is similar to standard least-squares
regression, but performs well even with high-dimensional data
where classical approaches are prone to overfitting.
Given m training examples x y,1 1( ), ¼x y, ,2 2( ) x y,m m( ) with

N features (input variables), so that Îx N and Îy , our aim
is to find a function xŷ ( ) of the form

åb b= +
=

y x 2
i

N

i i0
1

ˆ ( )

that best describes our data. That is, we want to obtain a set of
model parameters b̂ that best predict y given some value of x.
Traditional statistical methods tend to break down and

overfit the data if the number of features, N, is large. The lasso
algorithm solves the problem of finding b̂ in the following
way:

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭å åb l b= - +

b = =

xy yargmin , 3
i
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j

N

j
1

2

1

ˆ [ ˆ ( ) ] ∣ ∣ ( )

where ŷ is given by Equation (2). This minimization problem
has no analytical solution, but can be solved numerically as a
convex quadratic programming problem. The process of fitting
the model on a data set is often called training, and the data set
used is called the training set.
In Equation (3), λ is a tunable parameter called the

“penalty,” or “regularization parameter.” It can be thought of
as a budget for the sum of the model parameters bi. Setting
l = 0 makes Equation (3) equivalent to standard least-squares
regression. A small value of λ gives a model that fits the test
data closely, but may generalize poorly to new data points (a
high variance model). Increasing λ decreases the “budget,” and
gives a model with the less-important coefficients set to zero. A
high value of λ gives a sparser model, but a too high λ will
result in a lower predictive power (high bias).
The fact that some coefficients become exactly zero is a

distinctive property of the lasso, and a consequence of the use
of the L1-norm in the second term in Equation (3). Other
related algorithms, such as ridge regression, do not have this
property. In general, the lasso is well suited for situations in
which we expect a large fraction of the input features to be
irrelevant for predicting the output variable. In our application,
the input features are the fluxes in each spectral bin. Since we
expect most spectral bins to have little or no correlation with
fesc, the lasso would seem like a suitable choice of algorithm.
When applying the lasso to a problem, an important task is to

determine the best value of λ. By “best,” we typically mean the
value that gives the smallest error (defined by some error measure
such as the mean of the squared errors, MSE) on new data, i.e.,
data outside the training set. This value will be different
depending on the problem at hand. In some situations, a large
fraction of the features will be relevant in predicting y, and λ
should be kept small. In other cases, we may have several
features that add little but noise. In this latter situation, a high λ
will ensure that the coefficients of these features are zero.
A common method for estimating the best value of λ is

cross-validation, where the full data set is split into two: a
training set and a (smaller) validation set. A series of models
are then fit to the training set using Equation (3) with different

Table 1
Summary of the Galaxy Simulations Used in the Paper

Name Simulation Stellar Evolution Dust Attenuation

ShGeLMC Shimizu Geneva LMC
FiGeLMC Finlator Geneva LMC
CRGeLMC CROC Geneva LMC
ShPaLMC Shimizu Padova LMC
ShBPLMC Shimizu BPASS LMC
ShGeCal Shimizu Geneva Calzetti
ShGeSMC Shimizu Geneva SMC

Note. See the text for references.

3 http://www.stsci.edu/jwst/instruments/nirspec
4 http://www.astro.uu.se/~ez/lycan/lycan.html
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values of λ and the MSE is calculated on the validation set for
each model. Typically, one finds that the cross-validation MSE
is high at very large values of λ, where the model under-fits the
data. It will then decrease as λ decreases, and finally increase
again at low values of λ, due to over-fitting. Normally, the λ
that gives the smallest cross-validation MSE will be the one to
use, but sometimes one may opt for a slightly larger value in
order to obtain a model that is easier to interpret (with fewer
non-zero coefficients).

A downside of the cross-validation approach described above is
that part of the data must be excluded from the training set.
Therefore, it is common to perform so-called k-fold cross-
validation. Here, the training set is is split into k subsets (a
common value for k is 10). Then, k different models are fit using
the same λ, each one using -k 1 of the subsets for training and
the remaining subset for cross-validation. The cross validation error
is then taken to be the mean of the errors for the k different subsets.

4. RESULTS

In this section, we first investigate which parts of the spectra
contain the most information about the escape fraction. We
then go on to demonstrate the results of fitting a lasso model to
the simulated spectra. Finally, we look at the effects of detector
noise and galactic dust on our results.

4.1. The Effects of the Escape Fraction on Galaxy Spectra

Before we start applying the methods described above to our
simulated spectra, we take a closer look at how galaxy spectra
are affected by changes in the escape fraction. The top-left
panel of Figure 3 shows the spectra for 40 different galaxies
from the ShGeLMC simulation. For each galaxy we show the
spectrum for a range of fesc. The galaxy spectra differ in two
major ways. First, there is a spread in flux on the blue side (low
wavelength) due to the varying amount of dust attenuation.
Second, the strengths of the nebular emission lines differ due to
the differences in the escape fraction.
To better illustrate where the information is located in the

spectra, we show the results of a Principal Components Analysis
(PCA) in the right panel of Figure 3. The PCA procedure finds a
set of orthogonal basis vectors such that the first vector is the
direction of highest variance, i.e., the vector that will give the
highest variance among the data points after projection to this
vector. The subsequent vectors maximize the variance after
subtracting the projections of the data along the previous vectors.
The first few vectors found from PCA will thus explain most of
the variance in the data, and can be thought of as a measure of
which features in the data set carry the most information.
From the PCA vectors, we see that most of the variance is

indeed contained in the wavelength bins with strong emission
lines. However, it also becomes clear that some information can
be obtained from the blue side of the spectra. The eigenvalues
corresponding to the eigenvectors in Figure 3 give an indication of
how much “information” can be explained by the eigenvectors. In
the absence of detector noise, the three eigenvectors shown in
Figure 3 are enough to explain99 % of the variance in the data.

4.2. Regression Results

In this section, we present the results of using lasso regression
to predict the values of the escape fraction. We begin with the
simplest case, where the galaxy model is assumed to be known.
For illustration purposes, we will adopt ShGeLMC as the fiducial
simulation (see Section 2 for details). We use the glmnet5

package with 10-fold cross-validation to perform the minimiza-
tion in Equation (3) and fit the model in Equation (2).
The data set for the ShGeLMC simulation consists of

406 simulated galaxies, each with spectra calculated for

Figure 1. Examples of simulated, noise-free spectra at different fesc, for NIRSpec R=1000 (left) and R=100 (right) modes.

Figure 2. Signal-to-noise ratio as a function of AB magnitude achievable with
NIRSpec at R=100 for a bin located at 1500 Å. The noise levels were
calculated for simulated galaxy spectra using the procedure described in
the text.

5 https://cran.r-project.org/web/packages/glmnet/
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= ¼f 0, 0.1, 0.2 1.0esc for a total of 4466 objects. The
features in the model (i.e., x in Equation (2)) are simply the
fluxes at each NIRSpec wavelength bin, after normalizing each
galaxy spectrum to have mean 1 (since we normalize the
spectra, the luminosities of the galaxies have no effects on the
results). The coefficients bi in Equation (2) given by
Equation (3) are thus the weights given to each wavelength
bin, and the estimate of the escape fraction is given as the sum
of the fluxes multiplied by their respective coefficients.

The results when fitting the lasso model are shown in
Figure 4. The top-left panel shows the cross-validation error as
a function of the regularization parameter λ, or, equivalently,
the number of non-zero coefficients in the model. We see that
the best model is given by using approximately 85 of the
wavelength bins. If the regularization parameter is decreased
further, more coefficients are included in the model, and we
start to overfit the data. The optimal value of λ will depend on
several factors, including the noise level. A higher noise level
will be more sensitive to overfitting, and the best model will
include a lower number of non-zero coefficients.

The top-right panel shows the values of the coefficients, i.e.,
bi for the regularization parameter value that gives the lowest
cross-validation error. The coefficients with the highest
absolute values are all located at wavelength bins containing
prominent emission lines (a few of the strongest lines are
marked with vertical lines). These coefficients are all negative,
indicating that strong emission lines are a sign of a low fesc.

In the bottom row we show the results when applying the
method to a test set, which was constructed by randomly
selecting 20% of the objects in the simulation and removing
them from the training set. Thus, the algorithm had never
“seen” these objects before. The bottom left panel shows the
predicted versus true fesc on the test set. The bottom-right panel
shows a box-and-whiskers plot of the residuals, Dfesc, for each
value of the true fesc. In general, the model performs better for
high escape fractions than for low ones. In particular, it appears
that objects with f 0.2esc are somewhat problematic.

The mean absolute error for the predicted fesc is 0.12. As a
comparison, Zackrisson et al. (2013) proposed that the escape
fraction of a galaxy could be inferred using two parameters
derived from its spectrum: the UV slope β and the equivalent
width of the Hβ line. Fitting a regression model using only
these two parameters to the same training set as used for

Figure 4 gives a mean absolute error of 0.16 on the same test
set. For simulations with a lower dust content, the increase in
performance from using the entire spectrum is even greater.
From the bottom panels in Figure 4 it is clear that there is a

considerable scatter in fesc
pred, especially for low values of fesc

true.
This implies that a very accurate determination of fesc will be
impossible for a single object. However, the mean fesc of a
sample of galaxies may still be possible to measure to a much
greater accuracy, as we discuss in more detail in Section 4.4.
It is interesting to investigate in some more detail how the

model can be interpreted. From the top-left panel of Figure 4
we see that the cross-validation error drops very sharply when
the first few coefficients are added, indicating that most of the
information about the escape fraction is contained in a small
number of wavelength bins. Adding more coefficients to the
model only results in a modest increase in performance. Which
wavelength bins are the most important? From Figure 3, we
would suspect that the first coefficients to be added are
associated with the most prominent emission lines. Varying the
regularization parameter reveals that this is indeed the case—a
high value of λ in Equation (3) results in a model containing
only the emission lines.
If λ is decreased, coefficients on the blue end of the spectrum

are added, followed by wavelength bins in-between the major
emission lines. Some of these latter bins actually contain very
weak lines—sometimes more than one line per bin—that are
buried in noise and invisible in the noisy spectra. However,
seen over the average of the entire data set, they do contain
small amounts of information. The interstellar dust changes the
slope of each spectrum. Since we normalize all our spectra to
have the same mean value, a spectrum with a shallow slope will
get a higher relative flux in the red part of the spectrum, where
the emission lines are. The lasso model automatically corrects
for this by adding positive coefficients in-between the emission
lines. These coefficients ensure that the emission line strengths
are measured relative to the continuum level, thus correcting
for the effects of the dust.
In Appendix, we show the results from a bootstrap analysis

of the robustness of the model coefficients.

4.2.1. Noise Level and Spectral Resolution

In the results shown above, the model was trained on spectra
with a noise level of =S N 5. In a real-world survey, the

Figure 3. Left panel: spectra for 40 different sample galaxies with different assumed escape fraction from the and ShGeLMC data set. The escape fraction affects the
strength of the emission lines, while the dust content gives rise to a scatter in the flux on the blue side. Right panel: results from a Principal Components Analysis of
the ShGeLMC data set. The figure shows the first three eigenvectors. Any spectrum in the data set can be approximated as a linear combination of these vectors.
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signal-to-noise will depend on the brightness of each individual
galaxy, and thus each object will have a different S/N. We may
ask which noise level should be used when training the model.
To answer this question, we created data sets with simulated
NIRSpec noise at various levels and fit lasso models to each
noise level. We then evaluated the performance of each of these
models on a series of test sets with different noise levels.

The results of this test are shown in Figure 5. Each of the
lines in this figure show the results when holding the S/N in
the test set constant while varying the noise level in the training
set. We see that the lines all have minima approximately where
the training set noise level equals the test set noise level,
suggesting that the best performance is obtained when the
model is trained on data with a similar noise level to the data it
will be applied to. The reason for this is that a model that is
trained on noise-free or low-noise data will tend to rely on
features such as weak emission lines that may be strongly
correlated with fesc, but will be easily obscured by noise.
Training on high-noise data, on the other hand, tends to
produce a simpler model that only accounts for the strongest
emission lines. If we apply a model trained on one noise level
to data with a different noise level, the model will either omit
information that is in fact measurable, or try to make use of
information that is buried in noise.

A related question is what spectral resolution is most
effective for predicting the escape fraction. The NIRSpec
instrument can be operated in several different resolution

Figure 4. Results when fitting a lasso regression model to the ShGeLMC simulation set at =S N 5. Top left: the cross-validation (CV) error as a function of the
number of non-zero coefficients in the model. The red dot indicates the number that gives the smallest cross-validation error. Top right: the values of the model
coefficients (bi in Equation (2)) for the model with the smallest cross-validation error. The locations of some prominent nebular emission lines are shown as colored
lines. Bottom left: predicted vs. true escape fractions for the data in the test set (i.e., data not used to when training the model). The dotted red line shows =f fesc

pred
esc
true,

while the solid black line shows the mean of the predicted escape fractions. For visual clarity, we have added some random jitter to the values of f ;esc
true in reality these

are all located exactly at 0, 0.1, 0.2, etc. Bottom right: box-and-whiskers plot of the residuals at each fesc
true. The boxes are located at the first and third quartiles, and the

whiskers extend to the highest and lowest values within 1.5 times the inter-quartile range.

Figure 5. Mean absolute error when varying both the test set and training set
noise level. In general, the best performance is obtained when the training set
has a noise level similar to that of the test set. All results in this figure are for
the ShGeLMC simulation.
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modes. With a higher resolution, one can discern finer details in
the spectra, but the noise in each wavelength bin will also be
higher.

In Figure 6 we show the mean absolute error on the test set
when training a model on the ShGeLMC simulation at
NIRSpec resolutions R=100 and R=1000 as a function of
exposure time. Fixing the exposure time will result in a
different S/N for each object, since the data set contains
galaxies with a range of different brightnesses. Since the
objects come from a large simulation volume, this range of
brightnesses does not correspond to what would be observed in
a real NIRSpec survey, but we can nevertheless compare the
results for the two different resolutions.

The R=100 results are consistently better than the
R=1000 results for a given exposure time. While the
R=1000 spectra will contain more information, it would
seem that the additional noise in the high-resolution spectra
degrades the results to such a degree that the additional
information is not useful. We conclude that R=100 is the
better resolution to use for our method. For the remainder of the
paper, we will show only results for R=100.

4.3. Dependence on Simulation Parameters

In the previous section, we showed that lasso regression can
be used to construct a model that will predict fesc from a
NIRSpec spectrum with decent precision, especially for higher
values of fesc. However, all our results are based completely on
simulations, and thus they are dependent on the various
assumptions that go into the simulations. This will remain true
even after real observations are obtained, since there is no way
to directly measure the escape fraction of galaxies during the
epoch of reionization.

In this section, we explore the sensitivity of our results to
simulations and model assumptions. As discussed in Section 2,
we can roughly divide the process for generating our mock
spectra into three parts: galaxy simulation, stellar evolution
model and dust attenuation model. We consider galaxies
extracted from simulations by Shimizu, CROC, and Finlator,
using Geneva, Padova, and BPASS2 stellar evolution models.

For the dust modeling, we take the dust content from the galaxy
simulations and assume Calzetti, Large Magellanic Cloud
(LMC) or Small Magellanic Cloud (SMC) attenuation models.
In total, this leaves us with ´ ´ =3 3 3 27 possible
combinations.
We can now ask ourselves what will happen if we train our

model on data produced using one set of assumptions, and use
it to predict the escape fractions of galaxies produced using a
different set of assumptions. Rather than showing the results of
all ´ =27 26 702 training/testing model combinations, we
limit ourselves to varying one component (galaxy simulation,
stellar evolution model, dust attenuation model) at a time.
Figure 7 shows the results of varying the galaxy simulation,

while using the Geneva stellar evolution model and LMC dust
attenuation. For example, the middle panel in the top row
shows the results of training a lasso regression model on
galaxies from the Shimizu simulation and applying it to
galaxies from the CROC simulation. Perhaps what’s most
striking in this figure is the large errors when applying models
trained on the Shimizu or CROC simulations on galaxies from
the Finlator simulations (right column). The reason for the large
scatter at low escape fractions is the much greater range of star
formation histories in the Finlator galaxies, which causes a
greater spread in the shapes of the spectra. This is problematic
when attempting to apply a model trained on a more
homogeneous data set, such as Shimizu or CROC. Further-
more, the Finlator data set contains only one-fourth the number
of objects of the Shimizu data set, which further reduces the
performance of the algorithm.
In Figure 8, we show the results when assuming the wrong

stellar evolution model. Here, we use only galaxies from the
Shimizu simulations, assuming LMC dust, calculating the
results for the Geneva, Padova, and BPASS2 stellar evolution
models. The worst issues occur with models using BPASS2.
Models that are trained on BPASS2 overestimate fesc when
applied to Geneva or Padova models, whereas models trained
on Geneva or Padova underestimate fesc when applied to
BPASS2 data. The reason for this bias is that BPASS2 predicts
stronger emission lines for a given escape fraction than Geneva
or Padova. Therefore, a model trained on BPASS2 will expect
low- fesc galaxies to have stronger emission lines than what is
possible according to Geneva or Padova.
Finally, we show the results of varying the dust model in

Figure 9. We see that the difference between the LMC and
SMC attenuation models produce negligible differences in the
models, which is to be expected, since these two models are
very similar. However, models trained on data using the
Calzetti attenuation law—which differs significantly from SMC
and LMC—are heavily biased when applied to the other
models.

4.4. How Useful are the Results?

As we have seen above, even when the galaxy simulation is
assumed to be accurate, our model gives large errors when fesc

true

is low. This is potentially problematic, since the typical fesc is
expected to be only around 0.1–0.2 at z=7, as discussed in the
introduction. Judging by, for instance, Figure 4, it may appear
that =f 0.2esc is indistinguishable from =f 0esc . However,
that does not necessarily mean that no useful information can
be obtained using our method.
First, while the typical escape fraction may only be around

0.1–0.2, high-z galaxies will likely have a distribution of escape

Figure 6.Mean absolute error as a function of exposure time for galaxy spectra
observed with NIRSpec resolution modes R=100 and R=1000, respec-
tively. All results are for the ShGeLMC simulation. The actual values on the y
axis depend on the brightnesses of the galaxies in the simulated sample, which
do not correspond to what would be observed in a realistic survey. Only the
difference between the two curves is meaningful.
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fractions, with some objects having significantly higher values.
Our method could be used to identify these outliers, which
would be of great interest to the study of reionization.

Second, while it may be impossible to reliably separate an
individual =f 0.2esc galaxy from an =f 0esc galaxy, the
situation will be quite different if we consider instead the mean
escape fraction for a population of galaxies. To test how
accurately we can determine the population mean of fesc, we
applied the same model as in Figure 4 to one test set with only
objects with =f 0esc

true and one with =f 0.2esc
true . From these

test sets, we used the bootstrap method (Efron 1979) to draw
500 subsamples of a fixed size ngal. We then used our model to
predict fesc for each object, and calculated the mean fesc

pred for
each subsample.

Figure 10 shows the distribution of mean predicted fesc, for
samples of size =n 10gal (solid lines), and =n 50gal (dotted
lines). The red lines are for the case where =f 0esc

true , and the
cyan lines are for =f 0.2esc

true . The curves in Figure 10 thus
essentially indicate the probability of measuring a given mean
fesc in the case where the entire population has =f 0esc or

=f 0.2esc . While the bias in the model, discussed above, is
evident, the results still look promising when it comes to
distinguishing between populations with different escape

fractions. The =n 50gal curves (dotted) are very well
separated, indicating that for a sample size of 50, we can tell

=f 0.2esc apart from =f 0esc with high confidence. For
=n 10gal , there is more overlap between the curves, but it may

still be possible to tell the two cases apart. For a situation where
=f 0.1esc

true everywhere (not shown in the figure), we require a
sample size of »n 100gal to reliably measure a mean escape
fraction that is distinct from zero.
The discussion above is simplified in a number of ways.

First, we assume that the individual members of the galaxy
population all have the same escape fraction, i.e., the
distribution of fesc is a delta function. As we noted previously,
this is not likely to be true. Second, we assumed that all
galaxies in our mock samples could be observed at the same
signal-to-noise. A realistic sample would contain galaxies with
a range of luminosities, and would therefore have a different
noise level for each object. Nevertheless, this simple test shows
that measuring the mean escape fraction of a large sample is
possible even if the errors are large for individual objects.

5. SUMMARY AND DISCUSSION

In this paper, we have shown how machine learning
algorithms such as lasso regression can be applied to simulated

Figure 7. Results when applying a regression model trained on a particular simulation to a different simulation. Here, we show the results for the Shimizu, CROC, and
Finlator simulations, all using Geneva stellar evolution models, and LMC dust attenuation. For the panels along the diagonal, where the test simulation is the same as
the training simulation, the test set was constructed by randomly drawing 20% of the objects from the training set (these objects were not used for training).
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galaxies to obtain a function that maps a spectrum to a Lyman
continuum escape fraction. Our method uses the entire
observable spectrum, which leads to an increase in performance
over, for instance, using only the UV slope and the Hβ line
(Zackrisson et al. 2013).

We find that using the lowest NIRSpec resolution, R=100,
gives the best results for a given exposure time. Interstellar dust
presents a challenge for our method, but it can be dealt with
unless the dust attenuation law is very poorly known. Training
a model on data with low noise results in a more complicated
model that uses a larger number of spectral bins compared to a
model trained on data with high noise. The performance of the
model is always better when the training and testing data have
the same noise level. Therefore, in a real-world situation, a
suitable approach might be to train several models using
different noise levels, and apply them depending on the noise
level for each specific observed galaxy.

In a sense, this method represents the reverse of the more
traditional approach used when fitting SEDs, which has also
been used to constrain fesc (Ono et al. 2010). In SED-fitting,
one usually generates a large grid of model galaxies, and looks
for a model galaxy that looks similar to a given observation. It
is then assumed that the properties of the observed galaxy will
be similar to that of its closest match in the model grid.

The problem with this approach lies in defining “similar.”
Typically, the similarity of two SEDs is measured simply as

mean of the squared difference between the fluxes in all filters.
However, when constraining a single property, such as fesc, not
all wavelength regions are equally important. In fact, our
results show that most of the information about fesc comes from
only a few wavelength bins. The method presented here
automatically finds the optimal way of comparing observations
to simulations, when the goal is specifically to infer the escape
fraction.
We emphasize, however, that this is not a model-independent

method. Like all other indirect approaches to determining fesc,
our method can only be as reliable as the simulations it is based
on. In Section 4.3 we demonstrated this by applying the
algorithm to a set of simulations different from those which it was
trained on (a situation similar to analyzing real galaxies that have
properties that are systematically different from those in the
training set).
These tests reveal a few different complications. For

instance, assumptions about stellar binarity can significantly
alter the prediction. Since the BPASS2 model (which assumes
binary stellar evolution) produces significantly stronger nebular
emission lines than the Geneva or Padova models (which are
based on single-star evolution), this leads to a bias on the
inferred fesc in cases where the algorithm has been trained on
models with binary star properties very different from those
prevalent at >z 6. It is likely that similar biases can be
produced by incorrect assumptions concerning stellar rotation

Figure 8. Same as Figure 7, but varying the stellar evolution model. All data sets are from the Shimizu simulation, assuming LMC dust attenuation.
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(e.g., Topping & Shull 2015) or the inclusion of stars
significantly more massive than M100 (e.g., Stanway
et al. 2015). Methods aiming to test or calibrate spectral
synthesis models at both high and low redshift (e.g., Bouwens
et al. 2015b; Steidel et al. 2016; Wofford et al. 2016) will
therefore be crucial for the success of our proposed method.

Assumptions about the dust attenuation law has similar effects
but for somewhat different reasons. The attenuation law affects the
UV slope, and our model automatically compensates for this when
measuring the relative strengths of the emission lines. However,
this compensation will not work if the assumed attenuation law is
a poor representation of that actually prevalent in z=7 galaxies.
Furthermore, the simulations used in this paper all predict a

fairly narrow distribution of star formation histories in the
galaxies sufficiently massive to be within range of JWST/
NIRSpec. If actual galaxies in the reionization epoch display
greater variety, this could also bias the inferred fesc. Extreme
quenching, in which a period of intense star formation is
followed by no star formation at all, is not seen in the
simulation suites used here but would be particularly trouble-
some for our method. In the post-starburst phase, such galaxies
could briefly exhibit blue β slopes while having very low LyC
production and therefore no emission lines, thereby mimicking
star-forming galaxies with high fesc.
The method should ideally be trained on mock spectra based

on both LyC leakage mechanisms discussed by Zackrisson
et al. (2013)—ionization-bounded nebulae with holes and
matter/density-bounded nebulae—but since the latter case
involves more free parameters, this is saved for future work.
For the entire paper, we have presented our results in terms

of fixed S/Ns. How many galaxies can we expect to observe
with a given S/N in a future JWST/NIRSpec survey? From

Figure 9. Same as Figure 7, but varying the dust attenuation. All data sets are from the Shimizu simulation, using the Geneva stellar evolution model.

Figure 10. Results from measurements of the mean escape fraction for a
sample of 10 (solid lines) and 50 (dotted lines) galaxies. The curves show the
distributions of the mean measured escape fraction for 500 bootstrap samples,
given an underlying population with =f 0esc

true (red lines) and =f 0.2esc
true

(cyan lines). All results are for the ShGeLMC simulation, with =S N 5.
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Figure 2, we see that a magnitude brighter than »m 29AB is
needed to get S N 5 within approximately 10 hr of exposure
time. Taking the UV luminosity function at z=7 from
Bouwens et al. (2015a) we find that there should be around 100
such objects (which is close to the number of microshutters
available) in a single NIRSpec pointing ( ´3.4 3.4 arcmin),
for D =z 1.

This number depends on the faint end of the luminosity
function which is still somewhat uncertain at these redshifts.
However, it seems reasonable to expect that it will be possible to
obtain decently sized spectroscopic samples at »z 7, for which
our method can be applied, especially if multiple NIRSpec
pointings are used. Furthermore, even a sample with a lower S/N
may be useful if the number of objects is large enough. Even if
fesc can only be determined with a significant uncertainty for a
single object, it may still be possible to infer the mean value of the
population, which is the most important quantity for reionization
studies. A possible caveat here is that fesc may be highly
dependent on galaxy mass (or luminosity), with the majority of
ionizing photons coming from faint sources, below the detection
limit of even JWST (e.g., Atek et al. 2015).

The most important factor for improving the reliability of our
method is to obtain more reliable simulations. There are still
significant uncertainties regarding the properties of high-
redshift galaxies, and we have seen that different assumptions
regarding, for example, dust attenuation and stellar evolution
can lead to different predictions for the escape fraction.
Hopefully, as new observational data becomes available over
the next few years, simulations can be better calibrated to the
physical processes at high redshifts.

There is also some room for improvement in the method
itself. We have seen that there is some bias in our predictions,
especially for the Finlator simulations which contain a wider
range of galaxy properties. It is possible that this bias may be
reduced by extending the linear model used here with a suitable
link function, for example a logistic function. A logistic link

function would have the additional benefit of automatically
bounding fesc to be between 0 and 1.
In principle, it may be possible to validate the method at

redshifts »z 0–4, where leaking LyC flux can be directly
measured (albeit with non-negligible IGM corrections at
»z 3–4) and the set of emission lines we consider remain

within reach of existing instruments. The prospects of carrying
out such a test would however first need to be explored using
simulations of »z 0–4 galaxies, since objects at these redshifts
exhibit a number of properties (old underlying stellar
populations, more dust attenuation and higher metallicities)
that make them more complicated to analyze using the set of
spectral fesc diagnostics we have so far considered.

E.Z. acknowledges research funding from the Swedish
Research Council (project 2011-5349). K.P.’s research is
supported in part by Swedish Research Council under contract
621-2007-6364.

APPENDIX
MODEL ROBUSTNESS

The models presented in Section 4 are only estimates in a
statistical sense, since they have been derived from a finite
number of samples. It is therefore desirable to investigate the
statistical “robustness” of these estimates. If we were to train a
lasso model on data outside of the original training set, would
we end up with the same model, or at least a similar one? The
adaptive nature of the lasso procedure makes traditional
approaches in statistical inference unsuitable for answering
this question, since these often rely on idealized assumptions
about the distribution of the estimated variable. The bootstrap
method (Efron 1979; Efron & Tibshirani 1993; Hastie
et al. 2015) is a popular non-parametric tool for assessing the
statistical properties of complex estimators (such as the lasso),
when parametric inference is impossible or a closed-form
estimate of the standard errors is unavailable.

Figure 11. Results of fitting lasso regression models to 1000 bootstrap samples the ShGeLMC simulation at two different noise levels. For each of the 1000 bootstrap
samples, the best-fit model was found using cross-validation. The boxplots show the distribution of each individual coefficient across the samples. For clarity, the
wavelength bins are placed at equal distances from each other, resulting in a nonlinear x-axis.
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Each bootstrap iteration is performed by randomly drawing
m (same size as the original data set) samples with replacement
from the original data set, and selecting a model from the
resampled data according to the same procedure that was used
in Section 4. Figure 11 shows box-and-whiskers plots of
coefficients calculated for 1000 bootstrap iterations, for
different S/Ns, using two different simulations. Similar to the
coefficients derived from the original data sets (see Figure 4),
the coefficients with the highest absolute values are located at
wavelength bins containing prominent emission lines.

We see from Figure 11 that the majority of the coefficients
that had the highest absolute values in the models derived from
the original data, consistently have the highest absolute values
also in the bootstrapped models. In fact, the models trained at

=S N 5 all look very similar to the ones shown in Figure 4.
The models change a little as the S/N is increased. With less
noise, fewer emission lines get selected in general. This is
because the emission lines—especially those originating from
the same element—are highly correlated and thus contain the
same information. In noisy data, it is still advantageous to
include several highly correlated lines since having multiple
data points brings down the effective noise level. When the
noise is lowered, this advantage is less pronounced, and the
model selects only one or two lines from each element.

Based on the behavior of the cross-validated estimate of the
mean-square prediction error calculated on the original data set
(see Figure 4), we expect to see some instability concerning the
smaller coefficients in-between the strong emission lines, and at
the bluer part of the spectra. That is, even if the variance of the
estimated error is small, we expect that the location of the
minimum error might change slightly for each bootstrap
iteration, which will produce a relatively large change in the
model complexity. However, as was argued in Section 4, the
error curve indicates that adding or removing these small
coefficients is not likely to have a major effect on the prediction
error. Note that the cross-validation plot does not show the
variance in error, and we should expect the variance to go up as
the noise level on the spectra is increased. Bootstrapping is also
likely to increase the variance in the error estimate.
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