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ABSTRACT

All molecular clouds are observed to be turbulent, but the origin, means of sustenance, and evolution of the
turbulence remain debated. One possibility is that stellar feedback injects enough energy into the cloud to drive
observed motions on parsec scales. Recent numerical studies of molecular clouds have found that feedback from
stars, such as protostellar outflows and winds, injects energy and impacts turbulence. We expand upon these
studies by analyzing magnetohydrodynamic simulations of molecular clouds, including stellar winds, with a range
of stellar mass-loss rates and magnetic field strengths. We generate synthetic 12CO(1–0) maps assuming that the
simulations are at the distance of the nearby Perseus molecular cloud. By comparing the outputs from different
initial conditions and evolutionary times, we identify differences in the synthetic observations and characterize
these using common astrostatistics. We quantify the different statistical responses using a variety of metrics
proposed in the literature. We find that multiple astrostatistics, including theprincipal component analysis, the
spectral correlation function,and the velocity coordinate spectrum (VCS), are sensitive to changes in stellar mass-
loss rates and/or time evolution. A few statistics, including the Cramer statistic and VCS, are sensitive to the
magnetic field strength. These findings demonstrate that stellar feedback influences molecular cloud turbulence and
can be identified and quantified observationally using such statistics.
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1. INTRODUCTION

Turbulence in the interstellar medium is ubiquitous and self-
similar across many orders of magnitude (Brandenburg &
Lazarian 2013). Within molecular clouds, turbulence appears to
play an essential role in the star formation process, regulating
the efficiency at which stars form, seeding filaments and over-
densities, and even potentially setting the stellar initial mass
function (Hennebelle & Chabrier 2008; Federrath & Kles-
sen 2012; Hopkins 2012; Padoan et al. 2012, 2014; Offner
et al. 2014b). While the presence of supersonic motions is
readily verified and has been studied using molecular spectral
lines for several decades (Larson 1981), the origin, energy
injection scale, means of sustenance, and rate of dissipation
remain debated. Moreover, molecular clouds display significant
variation in bulk properties, ongoing star formation, and
morphology. Consequently, it seems highly likely that these
differences impact the turbulent properties of the gas and
leave signatures—but if so they are difficult to identify
observationally.

Detailed study of the turbulence within molecular clouds is
confounded by a variety of factors including observational
resolution, projection effects, complex gas chemistry, and
variable local conditions (e.g., Beaumont et al. 2013, and
references therein). Any one molecular tracer only samples a
limited set of gas densities and scales, so that reconstructing
cloud kinematics reliably involves assembling a variety of tracers
across different densities and scales (e.g., Gaches et al. 2015).
Many studies of cloud structure instead rely on a single gas
tracerlike CO, which is bright and exhibits widespread emission
that reflects the underlying H2 distribution (Bolatto et al. 2013;
Heyer & Dame 2015). Connecting such emission data to
underlying turbulence and bulk cloud properties, however, is
non-trivial. A variety of statistics have been proposed throughout
the literature to characterize spectral data cubes and distill the
complex emission information into more manageable one-

dimensional (1D) or two-dimensional (2D) forms (e.g., Heyer
& Schloerb 1997; Rosolowsky et al. 1999, 2008; Burkhart
et al. 2009). However, in most cases, the utility of the statistic and
its interpretation are not well constrained.
Numerical simulations, which supply full six-dimensional

(6D) information x y z v v v, , , , ,x y z( ), provide a means to study
turbulence and constrain cloud properties. Prior studies have
investigated how the turbulent power spectrum, inertial driving
range, and fraction of compressive motions have influenced
star formation (Klessen 2001; Bate 2009; Federrath
et al. 2010). Other studies have connected simulated turbulent
properties to observables such as CO emission by performing
radiative post-processing (e.g., Padoan et al. 2001; Beaumont
et al. 2013; Bertram et al. 2014). In some cases, this procedure
is able to identify theoretical models that have good agreement
with a given observation. Consequently, the most effective way
to study turbulence in molecular clouds is by comparing
observations with “synthetic observations”, in which the
emission from the simulated gas is calculated via radiative
transfer post-processing (e.g., Offner et al. 2008, 2012;
Goodman 2011; Bertram et al. 2015c). Recently, Yeremi
et al. (2014) and Koch et al. (2016) performed parameter
studies of magnetohydrodynamic (MHD) simulations in order
to assess the sensitivity of common astrostatistics to changes in
cloud velocity dispersion, virial parameter, driving scale, and
magnetic field strength. They found that some statistics were
responsive to changes in the temperature, virial parameter,
Mach number, and inertial driving range. These encouraging
results raise the possibility that certain statistics may also be
sensitive to energy input and environmental variation due to
ongoing star formation and star formation feedback.

1.1. Overview of Prior Statistical Studies and Feedback

One fundamental puzzle in star formation is why the
efficiency at which dense gas forms stars is only a few percent
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per free-fall time (Krumholz 2014). Early three-dimensional
hydrodynamic simulations demonstrated that supersonic turbu-
lence decays rapidly and predicted that without additional
energy input turbulence should decay significantly within a
dynamical time (Stone et al. 1998; Mac Low 1999). This
implies that gravity should be able to efficiently form stars after
a dynamical time. However, turbulence observed within
molecular clouds does not appear to weaken and star formation
efficiencies are small after several dynamical times (Krumholz
& Tan 2007). One explanation for the longevity of observed
turbulence is that motions are driven internally via feedback
from forming or evolved stars (Krumholz et al. 2014, and
references therein). In principle, this should introduce a
characteristic energy input scale (Carroll et al. 2009; Hansen
et al. 2012; Offner & Arce 2015), which should impact
turbulent statistics. However, from an observational prospec-
tive, stellar feedback is messy and identifying clear feedback
signatures is complex for the reasons mentioned above.
Disentangling feedback signatures from the turbulent back-
ground and assessing their impact is challenging since any low-
velocity motions excited by feedback are often lost in the
general cloud turbulence (Swift & Welch 2008; Arce
et al. 2010, 2011).

Few prior numerical or observational studies have examined
the response of turbulent statistics to stellar feedback. Several
studies of the most commonly computed turbulent statistic, the
velocity power spectrum, find that it may be sensitive to
feedback. In numerical simulations, turbulence shaped by both
isolated and clustered outflows exhibits a steepened velocity
power spectrum (Nakamura & Li 2007; Carroll et al. 2009;
Cunningham et al. 2009). In observations of NGC 1333, Swift
& Welch (2008) identified a break in the power spectrum of the
13CO intensity moment map, which they attributed to a
characteristic scale associated with the embedded protostellar
outflows (the break is absent in the 12CO data). Brunt et al.
(2009) and Padoan et al. (2009) reexamined the NGC1333
spectral cubes using principal component analysis (PCA) and
the velocity coordinate spectrum (VCS) method, respectively,
but found no evidence of outflow driving and concluded that
the turbulence is instead predominantly driven on large scales.
Numerical simulations of point-source (supernovae) driving
also discovered changes in the spectral slope, but found no
obvious critical injection scale (Joung & Mac Low 2006).

Probability distribution functions (PDFs) of densities,
intensities, or velocities are also commonly computed (e.g.,
Nordlund & Padoan 1999; Lombardi et al. 2006; Federrath
et al. 2008). Both observations and simulations suggest that
gravity shapes the distribution at high densities (Kainulainen
et al. 2009; Collins et al. 2012; Girichidis et al. 2014), but the
impact of feedback on PDFs is less clear. Beaumont et al.
(2013) showed that observed CO velocity distributions extend
to higher velocities than synthetic observations of simulations
containing pure large-scale turbulence and gravity; they
attribute this difference to expanding shells associated with
stellar winds. Offner & Arce (2015) confirmed that when winds
are included in simulations a high-velocity tail appears. In
contrast, the column density probability distribution does not
appear sensitive to the inclusion of stellar feedback (Beaumont
et al. 2013).

The impact of feedback on higher order statistics, such as
PCA, the spectral correlation function (SCF), dendrograms,
the bispectrum and many others, is even less well explored

(Heyer & Schloerb 1997; Rosolowsky et al. 1999, 2008;
Burkhart et al. 2009). Burkhart et al. (2010), in analyzing HI
maps of the Small Magellenic Cloud (SMC), noted the possible
signature of supernovae on the bispectrum, which appears as
break around∼160 pc. If true, it seems likely that other forms
of stellar feedback influence statistics and impact other higher
order statistics as well.
In this paper, we aim to extend the study by Koch

et al. (2016, henceforth K16) by applying a suite of turbulent
statistics to simulations with feedback from stellar winds. The
simulated stellar winds produce parsec-scale features and excite
motions of several -km s 1 as a result of their expansion (Offner
& Arce 2015). While protostellar outflows may also leave
imprints in the turbulent distribution, winds appear to inject
more energy on larger scales, which leaves a more distinct
imprint on the gas velocity distribution (Arce et al. 2011). By
performing the analysis on synthetic CO spectral cubes, we aim
to identify discriminating statistical diagnostics to apply to
observed clouds that can pinpoint and constrain feedback: a
“smoking gun”.
InSection 2, we describe the numerical simulations,

production of synthetic CO data cubes, and astrostatistical
toolkit we apply. We examine the response of each statistic to
the presence of stellar winds in Section 3. In Section 4, we
compare changes in the statistics between all pairs of outputs
and assess the sensitivity to mass-loss rate, evolutionary time,
and magnetic field strength. We discuss the results in Section 5
and summarize our conclusions in Section 6.

2. METHODS

2.1. Numerical Simulations

In this paper, we analyze the MHD simulations performed
by Offner & Arce (2015, henceforth OA15) of a small group
of wind-launching stars embedded in a turbulent molecular
cloud. We refer the reader to that paper for full numerical
details. In brief, the calculations are performed using the ORION
adaptive mesh refinement code (e.g., Li et al. 2012). They
include supersonic turbulence, magnetic fields, and five star-
particles endowed with a prescription for launching isotropic
stellar winds. The domain size for all runs is 5 pc and the
molecular gas is initially 10 K with a three-dimensional (3D)
velocity dispersion of 2.0 -km s 1. The turbulent realization,
magnetic field strength and wind properties vary between runs
as stated in Table 1. We choose snapshots at different times
from the various runs, including outputs at t=0, which contain
turbulence unaffected by winds. Table 1 summarizes the
simulation properties for the specific evolutionary times we
analyze here. The simulation initial conditions correspond to a
3D Mach number of s= =c3 10.6v s , avirial parameter
of a s= =L GM5 2 1.0v

2 ( ) , and a plasma beta parameter
ranging from b p= =Mc L B8 0.02 0.6s

2 3 2( ) – , where sv is the
1D velocity dispersion, M is the cloud mass, L is the cloud size,
cs is the sound speed, and B is the magnetic field strength.

2.2. CO Emission Modeling

Following OA15, we post-process each output with the
radiative transfer code RADMC-3D3 in order to compute the
12CO (1–0) emission. We solve the equations of radiative
statistical equilibrium using the Large Velocity Gradient (LVG)

3 http://www.ita.uni-heidelberg.de/~dullemond/software/radmc-3d/
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approach (Shetty et al. 2011). We perform the radiative transfer
using the densities, temperatures, and velocities of the
simulations on a uniform 2563 grid. This is the simulation
basegrid resolution, which is conservatively updated using
information from the finer AMR levels (Li et al. 2012). OA15
compare several different quantities and statistics for a
simulation evolved with and without additional AMR levels
and for different flattened grid sizes. They find little difference,
so we expect our conclusions from the CO modeling to be
similar for larger grids.

We convert to CO number density by defining =nH2

r m2.8 p( ) and adopting a CO abundance of [12CO/H2]=10−4

(Frerking et al. 1982). Gas above 800 K or with <n 10H2 cm−3 is
set to a CO abundance of zero. This effectively means that gas
inside the wind bubbles is CO-dark. The CO abundance in regions
with densities > ´n 2 10H

4
2

cm−3 is also set to zero, since CO
freezes-out onto dust grains at higher densities (Tafalla et al. 2004).
Some CO may remain above this threshold (Hocuk &
Cazaux 2015). However, in the strongest wind case (W1T2t0.2),
which has the most gas compression, only 0.035% of the volume
contains densities in excess of this value, so we expect the choice
of freeze-out cutoff to have minimal impact on the statistics. In the
radiative transfer calculation, we include sub-grid turbulent line
broadening by setting a constant micro-turbulence of 0.25 -km s 1.
The data cubes have a velocity range of±20 -km s 1 and a spectral
resolution of Δv=0.156 -km s 1.

To mimic the effects of observational noise, we add
Gaussian noise with a standard deviation of s = 0.1rms K. This
is comparable to the noise in the FCRAO 12CO COMPLETE
survey of local star-forming regions (Ridge et al. 2006).

We produce synthetic observations of the nearby Perseus
molecular cloud by setting the spectral cubes at a distance of
250 pc. The emission units are converted to temperature (K)
using the Rayeigh–Jeans approximation.

In order to assess the impact of the radiative transfer on the
statistics, we also construct position–position–velocity (PPV)
cubes using the raw simulation density and velocity. Instead of
CO emission, each PPV cube voxel contains the total mass along
the line of sight with velocities contained in a given velocity
channel range. These cubes are constructed using the same spatial
(2563) and velocity resolution (Δv=0.156 -km s 1) as the CO
spectral cubes. These simpler cubes eliminate the effects of

excitation variations and optical depth. We present the analysis of
these cubes in the Appendix and discuss the implications in
Section 5.

2.3. Statistical Toolkit

We perform the statistical analysis using TURBUSTAT,4 a
Python package developed by K16 that contains 16 turbulent
statistics culled from the literature. Table 2 summarizes the
statistics contained in this astrostatistical toolkit that we
consider here. K16 provide a detailed description of each
turbulent statistic, so we give only a brief overview here. After
calculating the statistic for each cube, TURBUSTAT measures
differences between spectral cubes by computing a pseudo-
distance metric as first proposed in Yeremi et al. (2014). We
briefly describe the distance definitions in each subsection of
Section 3 and refer the reader to K16 for the corresponding
mathematical formulae.
Below, we group the statistics into three categories based on

their method of analysis: intensity statistics quantify emission
distributions, Fourier statistics analyze N-dimensional power
spectra obtained through spatial integration techniques, and
morphology statistics characterize the structure of the emission.
One essential property of a “good” statistic is that it is
insensitive to turbulent seed or viewing angle. K16 run the
fiducial case for five different random seeds. They evaluate
each statistic and find that all but the modified velocity centroid
analysis (MVC) is insensitive to the initial seed. Thus, we focus
on the statistical formulations that exhibit meaningful responses
to changes in underlying physical parameters, and we exclude
MVC from our analysis.
This paper extends the analysis of the K16 study by

examining simulations including feedback from stellar winds
and considering larger grid resolutions. However, our simula-
tion suite does not utilize experimental design to set the
parameter values. Yeremi et al. (2014) cautioned that
comparisons between outputs in one-factor-at-a-time
approaches may give a misleading signal since the statistical
effects are not fully calibrated.

3. STATISTICAL COMPARISONS

In Section 4, we calculate the distance between each pair of
spectral cubes for each statistic. However, since few prior
statistical studies have studied the impact of feedback, we first
investigate and present the statistical response to feedback for
two fiducial outputs: W1T2t0.2 and T2t0. T2t0 is a simulated
turbulent molecular cloud (turbulent realization T2) prior to
wind launching. W1T2t0.2 begins with the same turbulence as
T2t0 (T2), but it has evolved for 0.2Myr (t0.2) with thewind
launching model W1. Thus, the two runs begin with the same
turbulent seed, but the turbulence in one run is shaped by
feedback, while in the other the turbulence is “pristine”. For
each statistic in Table 2, we compare the results produced with
runs W1T2t0.2 and T2t0 and identify qualitative differences.
We restrict the comparison to views along the z-direction.

However, we expect statistically similar distributions for other
views since we confine our study to those statistics K16
demonstrated to be insensitive to the turbulent seed. Conse-
quently, large distances reflect real changes between T2t0 and
W1T2t0.2 and are not produced by random variations in the

Table 1
Model Propertiesa

Model B(mG) - -
M M10 yrtot

6 1˙ ( )b trun (Myr)

W1T1t0.1 13.5 41.7 0.1
W1T2t0.1 13.5 41.7 0.1
W1T2t0.2 13.5 41.7 0.2
T2t0 13.5 ... 0
W2T2t0.1 13.5 4.5 0.1
W2T2t0.2 13.5 4.5 0.2
T3t0 5.6 ... 0
W2T3t0.1 5.6 4.5 0.1
T4t0 30.1 ... 0
W2T4t0.1 30.1 4.5 0.1

Notes.
a Model name, initial mean magnetic field, the total stellar mass-loss rate, and
the evolutionary time. All models have L=5 pc, = M M3762 ,
=T 10 Ki ,and * =N 5.

b The estimated mass-loss rate from all stellar winds in Perseus is
´ -

M9.49 10 6 yr−1 (A11).

4 http://turbustat.readthedocs.org/en/latest/
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underlying turbulence, i.e., outputs T2t0 and T2t0.2 (identical
physical parameters at a different time without winds) would be
statistically indistinguishable.

3.1. Intensity Statistics

In this section, we discuss statistics that quantify the
emission distribution: the PDF, skewness, kurtosis, PCA, and
the SCF. We also compute the Cramer statistic, but as a one-
point statistic, it directly defines a distance, so we defer its
discussion until Section 4.

3.1.1. Probability Distribution Function

We calculate the PDF of the normalized integrated intensity
maps. The intensity in each pixel is weighted by the respective
error, s1 2, where s2 is proportional to the number of
channels. The PDF is simply a measure of the relative number
and range of integrated intensities. Figure 1 shows the two
fiduical PDFs. Both runs exhibit Gaussian behavior;though,
the output with winds, W1T2t0.2, is more peaked around the
mean and has a longer tail toward higher integrated intensities.
These differences arise because the winds create shells with
CO-brightened rims that produce higher intensities than the
compressions created by the strongest shocks in the case of
pure turbulence.

The PDF distance metric is defined as the sum of the bin
differences (according to the Hellinger distance formula)
between the normalized PDFs. Under this definition, the large
differences in the PDF breadth, which are visually apparent,
create a large distance between the two distributions.

Prior studies have shown that the widths of the density and
column density PDFs increase with Mach number (e.g.,
Nordlund & Padoan 1999; Ostriker et al. 2001). In the strong
wind case, the effective Mach number is about 10% higher
(OA15);however, this is not sufficient to explain the difference
in Figure 1. The intensity distribution of the case with winds is
broadened by a combination of higher densities and

temperatures (the shells are warmer than the ambient turbulent
gas), which enhances the CO excitation.

3.1.2. Skewness and Kurtosis

The skewness and kurtosis provide a means of classifying the
shape of the intensity distribution. They are the third- and fourth-
order statistical moments of the PDF, respectively. Skewness is a
measure of the symmetry of the data distribution. PDFs that are
symmetric around the center point have low skewness. If there is
an excess of high values, the skewness will be positive, while an
excess of low values produces negative skewness. Kurtosis
quantifies the extent and “peakiness” of the distribution.
Normally distributed data has a kurtosis of zero, data more
concentrated than a Gaussian will have negative kurtosis, and
flatter data and data with an extended tail will exhibit positive
kurtosis. Following Burkhart et al. (2009), we compute each

Table 2
Statisticsa

Family Name Comparison Metricb Citationsc

Probability Distribution Function (PDF) Histogramd Nordlund & Padoan (1999)
PDF Skewness Histogramd Kowal et al. (2007), Burkhart et al. (2009)

Intensity PDF Kurtosis Histogramd Kowal et al. (2007), Burkhart et al. (2009)
Statistics Principal Component Analysis (PCA) Eigenvalues Heyer & Schloerb (1997), Brunt & Heyer (2002a, 2002b)

Spectral Correlation Function (SCF) Surface Rosolowsky et al. (1999), Padoan et al. (1999)
Cramer Distance Yeremi et al. (2014)

Spatial Power Spectrum (SPS) Power-law Sloped Lazarian & Pogosyan (2004)
Velocity Channel Analysis (VCA) Power-law Slope Lazarian & Pogosyan (2000, 2004)

Fourier Velocity Coordinate Spectrum (VCS) Power-law Slope Kowal et al. (2007), Chepurnov & Lazarian (2009)
Statistics Bispectrum Bicoherence Matrixd Burkhart et al. (2009, 2010)

Δ-Variance Spline Fitd Stutzki et al. (1998), Ossenkopf et al. (2008a, 2008b)
Wavelet Transform Power-law Sloped Gill & Henriksen (1990)

Genus Spline Fitd Gott et al. (1986), Kowal et al. (2007)
Morphology Dendrogram Leaves Power-law Slope Rosolowsky et al. (2008), Goodman et al. (2009)
Statistics Dendrogram Feature Number Histogram Burkhart et al. (2013a)

Notes.
a List of all statistics we calculate.
b The form of the pseudo-distance metric used to assess the degree of difference between two data cubes. The mathematical definition for each is given in K16.
c A list of seminal papers that have either developed or explored this statistic in detail in the context of molecular clouds.
d Statistics that are performed using the 2D integrated emission rather than the full 3D spectral cube.

Figure 1. PDFs of the integrated intensity moment maps for runs W1T2t0.2
(blue) and T2t0 (green). The integrated intensities are normalized to have a
mean of 0 and standard deviation of 1.
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higher-order moment within a small, circular region with a
radius of five pixels in the integrated intensity map. Figure 2
shows histograms of these moments as calculated from all
circular patches.

The kurtosis PDFs exhibit similar behavior: both are
centered at zero and sharply decrease with increasing kurtosis
magnitude. However, the T2t0 distribution falls off more
quickly than that of W1T2t0.2. This likely occurs because the
winds generate a more extreme range of high-intensity values;
the intensity distribution deviates further from a normal
distribution and exhibits a tail of high intensities.

The skewness PDFs have similar shapes, and both have a
small tail at negative skewness. However, the W1T2t0.2
distribution center is shifted to positive skewness, while the
T2t0 distribution is centered at zero. This makes sense since the
winds in W1T2t0.2 create an excess of high-intensity values.

The distance metrics for the skewness and kurtosis, like that
of the PDF, are defined as the sum of the bin-wise differences
computed using the Hellinger distance formula. Consequently,
the disparate shapes of the normalized PDFs in Figure 2
produce significant distance between the outputs.

Simulations of pure turbulence find that as the Mach number
increases, the skewness and kurtosis of the column density PDF
also increase (Kowal et al. 2007; Burkhart et al. 2009). Higher
Mach number flows have stronger shocks, which increase the
fraction of high-density, and hence high-column density,
material. This is consistent with our results, since the winds
create density enhancements and the CO intensity serves as a
proxy for the gas column density.

3.1.3. Principal Component Analysis

PCA determines a set of orthogonal axes that maximize the
variance of the data. As applied to spectral data cubes, it
identifies differences between the line profiles, and thus, is a
useful tool for distinguishing between kinematic changes and
noise (Heyer & Schloerb 1997). Subsequent work established
an empirical and analytic formalism connecting PCA to the
underlying turbulent velocity fluctuations, including the
spectral slope (Brunt & Heyer 2002a, 2002b, 2013). In PCA
analysis, the first step involves constructing a 2D covariance
matrix between the velocity channels of the data cube. Next,

the eigenvalues and eigenvectors of this matrix are determined.
Here, we use the magnitude of the eigenvalues to assess the
degree of difference between two data sets. The relative
magnitudes of the eigenvalues are a simple description of how
the power in the data cube projects onto the linear PCA basis.
Figure 3 shows the velocity channel covariance matrices of

outputs W1T2t0.2 and T2t0. Both show a signal for velocities
 -v 2 km s 1∣ ∣ , which roughly encompasses the range of

turbulent gas velocities. However, W1T2t0.2 exhibits multiple
strong covariance peaks at velocities of a few -km s 1. These
features exist to a lesser degree for T2t0, but feedback
augments and further separates the peaks. The strongest
covariance corresponds to the typical expansion rate of the
wind shells, which is∼1–3 -km s 1.
Because the eigenvalues provide a measure of the strength of

different eigenvectors, they also serve as an indirect measure of
the amount of power on different scales (Brunt &
Heyer 2002a, 2002b). Figure 4 shows the relative sizes of the
largest eigenvalues. Our algorithm calculates the first 50 and
uses the normalized sum of their differences to define the
distance between two data cubes. However, as the figure
shows, only the first 10 are significant, and these dominate the
distance metric. For observations, the number of significant
eigenvalues depends on the scale of the image, and usually

Figure 2. Kurtosis (left) and skewness (right) PDFs for output W1T2t0.2
(Blue) and output T2t0 (green).

Figure 3. Covariance matrices of the velocity channels for runs W1T2t0.2
(left) and T2t0 (right). The axes indicate the two velocity channels in which we
calculate the total covariance summed over all positions. The colorbar denotes
the covariance magnitude.

Figure 4. First 50 covariance matrix eigenvalues for runs W1T2t0.2 (left) and
T2t0 (right). For each plot, the eigenvalues are normalized with respect to the
maximum eigenvalue. Their magnitudes denote the relative variance described
by that principal component.
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those beyond the first 8–10 are dominated by noise and thus
contain little information. We find a clear difference in the
dominant eigenvalues for the cases with and without feedback.
The case with feedback has more significant second, third, and
fourth eigenvalues, which increase the distance. This variation
is likely due to the additional emission structure created by the
winds.

3.1.4. Spectral Correlation Function

The SCF is the normalized root-mean-square difference
between two spectra as a function of their projected separation
(Rosolowsky et al. 1999). The SCF manifests as a powerlaw,
where flatter slopes indicate more kinematic correlation across
spatial scales (large hierarchical emission structures), while
steeper slopes indicate less correlation between large and small
scales (smaller discrete emission structures). The SCF serves as
a useful comparison metric for both simulations and observa-
tions (Padoan et al. 1999; Yeremi et al. 2014; Gaches
et al. 2015); however, no direct link between the SCF and
turbulent properties has been formulated.

We calculate the SCFs of outputs W1T2t0.2 and T2t0 using
an array of projected separations ranging from 0″ to 113″.
Figure 5 depicts the SCF surfaces of our two fiducial outputs.
The SCF surface of W1T2t0.2 is peakier than that of T2t0,
which corresponds to a steeper SCF spectrum slope as shown
in Figure 6. The SCF spectrum is defined as an azimuthal
average of the SCF surface over annuli of different radii
or “lag”.

The SCF distance between two outputs is proportional to the
sum of the differences between corresponding points in the
SCF surface, weighted by the distance from the center. Thus,
the variation in shape illustrated in Figure 6 enhances the
distance. This shape variation is also encapsulated by the SCF
spectrum, which presents an alternative means of comparison
(Padoan et al. 1999; Gaches et al. 2015).

Both spectrum slopes are comparable to the SCF slope of
−0.29 found by Gaches et al. (2015) for simulations of non-
magnetized turbulence without feedback. However, Gaches
et al. (2015) also employ chemical networks to model the
abundance distribution of CO, which may account for the better
agreement with the W1T2t0.2 slope. Since the SCF spectrum
exhibits no characteristic feature associated with feedback and
the SCF slope also depends on resolution, we expect this
statistic to be most effective when comparing different
subregions within a cloud.

3.2. Fourier Statistics

In this section, we present statistics based on a Fourier
analysis of the spectral cube: velocity channel analysis (VCA),
VCS, spatial power spectrum (SPS), bicoherence, Δ-variance,
and wavelet transform. Since K16 was unable to identify a
formulation of the MVC method that reliably discriminated
between models, we do not include it here.

3.2.1. Spatial Power Spectrum

The Fourier power spectrum is one of the most widely
computed turbulent statistics. Numerical simulations over the
last decade have confirmed that the velocity power spectral
slope in one dimension is µ -P k kv

2( ) for supersonically
turbulent gas (Mac Low & Klessen 2004; McKee &
Ostriker 2007, and references therein). The slope is similar or
slightly flatter for a magnetized gas, where the gas and field are
well-coupled. The power spectrum of the 3D density distribu-
tion of turbulent gas is µr

-P k k 1.5( ) and -k 2.3 for solenoidal
and compressive driving, respectively (Federrath et al. 2010).
Observationally, the situation is more complex since the
intensity distribution in a spectral line cube is a product of
both density and velocity fluctuations, which are inextricably
entangled. For lower density tracers, like 12CO, the gas
becomes optically thick and emission saturates along high-
density sightlines through the cloud. Lazarian & Pogosyan
(2004) predicted that the intensity power spectrum intensity
field follows µ -P k k 11 3( ) and saturates at µ -P k k 3( ) in the
optically thick limit. This was confirmed in numerical
simulations by Burkhart et al. (2013b), who post-processed
MHD simulations to produce synthetic CO maps in different
optical depth regimes. Because the emission behaves differ-
ently in different optical depth limits, it is possible to probe the
underlying density and velocity slopes by analyzing the
spectrum of different slices within the spectral cube (Lazarian
& Pogosyan 2000), a technique that we discuss further in
Section 3.2.2.
To obtain the SPS, we compute the Fourier transform of the

integrated intensity map and calculate the 2D power spectra of
the two-point autocorrelation function. We then radially

Figure 5. SCF surface for outputs W1T2t0.2 and W2T2t0. The x and y axes
denote the amount of horizontal and vertical offset, respectively, used in the
SCF computation, and the colorbar denotes the SCF value. A value of
oneindicates acomplete correlation while a value of zerodenotes acomplete
lack of correlation.

Figure 6. SCF spectrum (azimuthal average of the SCF surface in Figure 5) for
outputs W1T2t0.2 and W2T2t0. The slopes are −0.294±0.008 and
−0.258±0.005 for the wind and non-wind runs, respectively. The shaded
region indicates the standard deviation of the data in each bin.
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average the power spectra over bins in spatial frequency. Fitted
power laws for each 1D power spectrum are shown in Figure 7.
We find a constant horizontal offset with the wind output
exhibiting more power overall and a slightly flatter slope. The
SPS distance metric is defined according to a linear function of
the difference between the two fitted slopes, weighed by the
uncertainty of each slope added in quadrature. Formally, this is
the t-statistic of the difference in the slopes. The similar slopes
shown in Figure 7 thus produce a relatively small distance.

The slope of the pure turbulence run, −2.77±0.04, is close
to -k 3, which is predicted as the limiting slope for a turbulent
optically thick gas (Lazarian & Pogosyan 2004; Burkhart
et al. 2013b). We do not see any break representative of a
characteristic driving scale. It is possible that the high gas
optical depth may hide any underlying break in the spectrum. A
different result could be expected for a more optically thin
tracer such as 13CO (e.g., Swift & Welch 2008), but OA15 do
not find a quantitatively different result for 13CO for these
simulations. Since the two outputs have the same average gas
density, we might expect them to have the same SPS slope.
However, the slightly flatter slope of W1T2t0.2 suggests that
feedback and optical depth are somewhat degenerate in their
impact of the SPS.

3.2.2. VCA and VCS

VCA and VCS are techniques that isolate how fluctuations in
velocity contribute to differences between spectral cubes (e.g.,
Lazarian & Pogosyan 2000, 2004). VCA produces a 1D power
spectrum as a function of spatial frequency, while VCS yields a
1D power spectrum as a function of velocity-channel frequency
(velocity wavenumber). For outputs W1T2t0.2 and T2t0, we
first compute the three-dimensional power spectrum. To obtain
the VCA, we calculate a one-dimensional power spectrum by
integrating the 3D power spectrum over the velocity channels
and then radially averaging over the two-dimensional spatial
frequencies. A portion of the resultant 1D power spectrum is
then fit with a power law. For VCS, we reduce each 3D power
spectrum to one dimension by averaging over the spatial
frequencies. This yields two distinct power laws, which we fit
individually using the segmented linear model described in

K16. The fit at larger scales describes bulk gas velocity-
dominated motion; the fit at smaller scales describes gas
density-dominated motions (Chepurnov & Lazarian 2009).
Kowal et al. (2007) find that the density-dominated regime is
sensitive to the magnetic field strength, where stronger fields
correspond to steeper slopes.
Figures 8 and 9 show the VCA and VCS results,

respectively, for outputs W1T2t0.2 and T2t0. VCA produces
similarly sloped power laws for both outputs, but there is a
constant horizontal offset, which is similar to that for the SPS.
This implies that at all spatial scales output W1T2t0.2, the case
with feedback, has more energy than output T2t0. Both VCA
curves exhibit some curvature, which suggests thatthey could
be better fit by a broken powerlaw. However, VCA theory
predicts a single power-law slope (Lazarian & Pogosyan 2004),

Figure 7. SPS for outputs W1T2t0.2 (blue, top) and T2t0 (green, bottom),
where the x-axis scale in wavenumber is normalized to units of deg−1 to make
it dimensionless. The solid lines indicate the power-law fits. The line fits have
slopes of −2.64±0.04 for W1T2t0.2 and −2.77±0.04 for T2t0. The shaded
region indicates the standard deviation of the data in each bin.

Figure 8. VCA as a function of spatial frequency k for outputs W1T2t0.2 (top,
blue) and T2t0 (bottom, green), each fitted by a single power law. The
wavenumber is normalized to units of deg−1 to make the x-axis dimensionless.
We report a slope of −2.55±0.03 for W1T2t0 and −2.77±0.03 for T2t0.
The shaded region indicates the standard deviation of the data in each bin.

Figure 9. VCS as a function of velocity-frequency for outputs W1T2t0.2 (top,
blue) and T2t0 (bottom, red). The wavenumber is normalized to units of
(km s−1)−1 to make the x-axis dimensionless. The segmented power-law fits
are overlaid. For W2T2t0.2, we report slopes of −1.59±0.03 and
−4.16±0.04 for the density-dominated region and velocity-dominated
regions, respectively. Similarly, we report slopes of −1.78±0.02 and
−3.98±0.04 for T2t0. The break points between power-law fits are

= - klog 0.20 0.02v for W1T1t0.2, and −0.01±0.01 for T2t0. The
shaded region indicates the standard deviation of the data in each bin.
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so by convention we fit the curves with a single powerlaw.
The winds produce a slightly flatter VCA slope.

Like SPS, the VCA distance is the t-statistic between the
slopes. The similar slopes and curve shapes produce a
relatively small distance, and we conclude thatVCA is not
useful for characterizing feedback properties.

In Figure 9, VCS also shows a horizontal offset between the
two curves. However, we also note a difference in both VCS
power-law fits, and, more importantly, the break point between
the two fits. Physically, this transition point indicates the scale
at which the dispersion of the density fluctuations is equal to
the mean density, which is also influenced by the optical depth
of the gas (Lazarian & Pogosyan 2004). The location of the
break thus depends both on the density distribution and the
power spectrum of the underlying turbulence (Lazarian &
Pogosyan 2008). For W2T2t0.2, kcr/(km s−1);0.63, while
for T2t0 kcr/(km s−1);0.98, which is statistically significant.
However, the VCS distance metric is proportional to the sum of
the t-statistics between the two sets of slopes weighted by the
fit error, and it does not depend on the break-point location.
Thus, the distance metric as currently defined may miss a
significant difference between the outputs.

The output without feedback appears to have a larger range
over which it is dominated by density fluctuations (kv/
(km s−1)0.98). The density-dominated regime is smaller
for the run with feedback, such that changes in gas density
affect a smaller portion of the structure apparent in the cloud
emission. Since the winds inject energy and create additional
expansion of∼1–3 km s−1, it makes sense that the velocity-
dominated regime extends to smaller kv, which corresponds to a
larger effective Vro.

Irrespective of the break point, the velocity-dominated
regime should follow a powerlaw set by the underlying
velocity structure function. For supersonic shocks, we expect

µ -P k kv v
4( ) with the slope steepening for > D -k Vv r

1
0

depending upon the shape of the line profile (Lazarian &
Pogosyan 2008). The fits for both outputs in the velocity
dominated regime are consistent with this prediction. Indeed,
we find that the slopes are relatively similar above and below
the break. Thus, variation in the break-point location could
provide insight into the underlying turbulent driving scale.

3.2.3. Bispectrum/Bicoherence

The bispectrum measures both the magnitude and phase
correlation between Fourier signals. This gives it a distinct
advantage over two-point correlation methods such as VCA
and VCS, which do not preserve phase information. Conse-
quently, the bispectrum is useful to quantify nonlinear wave–
wave interactions, which may be prevalent in turbulent
magnetized gas (Burkhart et al. 2009).

The bispectrum is obtained by computing the Fourier
transform of the three-point correlation function. In our
analysis, we use the bispectrum to calculate the bicoherence,
a real-valued, normalized summary. The bicoherence also
encapsulates the amount of phase coupling on different scales.
Thus, it is a more straightforward metric than the bispectrum
for comparing two data sets. Following the analysis of K16, we
generate sets of randomly sampled spatial frequencies that are
sampled on scales up to half of the image size (i.e., 127 pixels).
For each output, we compute the bicoherence of the integrated
intensity maps using the random sets.

Figure 10 depicts the bicoherence matrices for outputs
W1T2t0.2 and T2t0. The bicoherence matrix of W1T2t0.2
exhibits a clear signal on the diagonal; this is the trivial case of

=k k1 2. However, it exhibits little correlation elsewhere. In
contrast, the bicoherence maxtrix of T2t0 shows enhanced
correlation for large wavenumbers (small scales). In general, it
contains a significant fraction of pixels above 0.5, which
suggests afairly widespread correlation. If magnetic waves
enhance correlation across scales, the wind shells may break up
the volume and, thus, reduce correlation. Although shell
expansion may perturb the magnetic field and excite magne-
tosonic waves, it is difficult to see any direct evidence of this
against the background of the initial turbulence (OA15). The
comparison of the two bicoherence matrices in fact seems to
suggest that the shells reduce correlation perhaps by disrupting
the propagation of MHD waves.
The bicoherence distance metric is defined to be a function

of the point-by-point differences between the two bicoherence
matrices (specifically the L2 norm). Thus, varying structure or
degree of correlation in the bicoherence as illustrated in
Figure 10 increases the distance.
In past work, there has been some suggestion that the

bispectrum is sensitive to feedback. Burkhart et al. (2010)
computed the bispectrum of HI maps of the SMC. They found
that HI column density maps exhibit higher bispectrum
amplitudes, which may imply stronger correlations, compared
to a turbulent Gaussian random field. They also discovered a
break around ∼160 parsecs, where the correlation decreases, a
signature thatthey attributed to expanding supernovae shells.
Burkhart et al. (2010) also demonstrated that the correlation is
higher for super-Alfvénic turbulence ( prs= >B12 1A ).
The Alfvén Mach numbers of our outputs range from∼1–5.5.
Since the velocity dispersion, and hence the Alfvénic Mach
number, increases for the strong feedback case, we would a priori
expect more correlation. However, we see the opposite. This
supports the conclusion that the shells suppress the free
propagation of MHD waves and reduce scale coupling.

3.2.4. Δ-Variance

The Δ-variance is a filtered average over the Fourier power
spectrum (Stutzki et al. 1998). It has been used to characterize
the structure distribution and turbulent power spectra of
molecular cloud maps. The revised method presented by
Ossenkopf et al. (2008a, 2008b) takes into account noise

Figure 10. Bicoherence matrices for outputs W1T2t0.2 and T2t0. We calculate
the bicoherence over 100 randomly sampled spatial frequencies, denoted by k1
and k2. The colorscale denotes the bicoherence magnitude and the degree of
correlation between wavenumbers k1 and k2: a value of zeroindicates random
phases, i.e., no correlation, while a value of oneindicates strong phase
coupling.
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variation and provides a means to discriminate between small-
scale map structure and noise, so K16 adopt this approach in
TURBUSTAT. To compute the Δ-variance, we generate a series
of Mexican hat wavelets that vary in width. We approximate
each wavelet as the difference between two Gaussians with a
diameter ratio of 1.5 as recommended by Ossenkopf et al.
(2008a). For each output, we weight the integrated intensity
map by its inverse variance, convolve it with a Mexican hat
wavelet, and calculate the Δ-variance in Fourier space.

Figure 11 shows the Δ-variance as a function of wavelet
width, which is termed the “lag” by convention (Stutzki
et al. 1998). The Δ-variance curve of T2t0 declines more for
lags below 0.1° than the curve for output W1T2t0.2, such that
the curve shapes are noticeably different. The Δ-variance
distance metric is defined as a function of the total differences
between the two curves (the L2 norm). Thus, any offset or
change in slope as shown in Figure 11 increases the distance.

In noisy observations, the Δ-variance increases toward small
lags, indicating enhanced structure. Here, the difference
between the curves indicates that the wind output has slightly
more structure on smaller scales, a result probably caused by
the wind shells, which have a thickness of a few pixels (0.1 pc).
However, the Δ-variance of W1T20.2 does not exhibit any
break, which would indicate a preferred structure scale. In fact,
it more directly resembles a pure power law than the non-wind
Δ-variance curve. Ossenkopf et al. (2008b) also found a
smooth power-law Δ-variance for rho Ophiuchus, even though
clump-finding on the same map produced a mass distribution
with a break (Motte et al. 1998). These results suggest that the
Δ-variance statistic as applied to integrated intensity maps is
only relatively sensitive to feedback signatures.

3.2.5. Wavelet Transform

Wavelet transforms offer an alternative data decomposition
to Fourier transforms for studying intermittency and nonlinear
scale coupling. Wavelet transforms have been utilized to study
MHD and plasma turbulence for more than two decades (Farge
& Schneider 2015). They are less frequently applied in studies
of astrophysical turbulence; though, the first application of the
wavelet transform was presented for 13CO molecular emission

of L1551 by Gill & Henriksen (1990). Here, we define the
wavelet transform as the average value of the positive regions
of a convolved image (K16); it is essentially an intensity
average computed over a range of size scales. We convolve the
integrated intensity maps of the outputs with a Mexican hat
kernel, a process similar to that of the Δ-variance technique
described in Section 3.2.4.
Figure 12 shows the wavelet transform for the fiducial

outputs. Following K16, we fit a portion of the transform to a
powerlaw, where the range is informed by the results of Gill &
Henriksen (1990). Although the resultant slopes are similar,
output T2t0, the purely turbulent model, diverges more from
power-law behavior than output W1T2t0.2. We also note that
the wavelet transforms are higher for output W1T2t0.2 than
than T2t0, which is consistent with stronger molecular
excitation resulting from the higher density and temperature
in the wind shells.
The wavelet distance metric definition is identical to that of

the SPS, VCA,and VCS statistics; the distance is the t-statistic
of the difference in the slopes. The variations in curvature
shown in Figure 12 increase the distance provided they impact
the overall fit, while the offsets will be ignored.
While the shape of the wavelet transform may provide

insight into underlying turbulent properties, neither the offset
nor the slope appear to exhibit sufficiently different behavior to
serve as a diagnostic for embedded feedback. Indeed, the first
astrophysical application of the wavelet transform by Gill &
Henriksen (1990) compared the wavelet transform both “on”
and “off” the outflow region of L1551; however, they found
thatthe slope of the gas associated with the outflow was
slightly flatter than the non-outflow gas. We find a similar
trend, though, our slopes are very different—possibly because
we analyze 12CO rather than 13CO. Their data exhibited a
turnover around log(a)∼−0.6, which they postulated was a
transition between two competing physical processes. The
turnover here is more subtle, but it occurs at a similar point for
both outputs, so it more likely represents edge effects. Given
the similarity between the two curves, we tentatively conclude

Figure 11. Δ-variance spectra for outputs W1T2t0.2 (blue, top) and T2t0
(green, bottom), where the “Lag” denotes the width of the Mexican hat wavelet
used in the convolution. The shaded region indicates the standard deviation of
the data in each bin.

Figure 12. Wavelet transform for outputs W1T2t0.2 (blue) and T2t0 (green) as
a function of the Mexican hat wavelet width a. The lines indicate the best-fit
power law for the range - < < -a2.03 log 0.43( ) . We report slopes of
0.267±0.008 for W1T2t0.2 and 0.400±0.008 for T2t0. The shaded region
indicates the standard deviation of the data in each bin.
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that this formulation of wavelet analysis is not a strong
indicator of feedback.

3.3. Morphology Statistics

In this section, we present statistics quantifying the
morphology of the emission distribution, namely, the Genus
statistic and dendrograms.

3.3.1. Genus Statistic

Genus statistics characterize spatial information in a data
map by identifying and counting local minima and maxima.
They essentially compute the difference between the number of
isolated features (peaks) and holes (voids) above and below a
given threshold, respectively. Beginning with the work of Gott
et al. (1986), Genus statistics have been frequently used in
cosmological studies to characterize the distribution of mass in
the universe. Kowal et al. (2007) were the first to apply them to
interstellar turbulence. They analyzed density and column
density maps produced by MHD simulations and found that the
shape of the distribution correlates with the sonic Mach
number. This analysis was extended to observational data of
the SMC by Chepurnov et al. (2008), who noted the statistic
could be sensitive to the presence of shells.

To compute the Genus statistic for each output, we
normalize the integrated intensity map and convolve it with a
2D Gaussian kernel with awidth of 1 pixel. This smooths the
map so that small-scale variations and noise do not contribute
to the number of features. We then divide the intensity range
I I,min max[ ] into 100 evenly spaced threshold values and
compute the Genus for those values above 20 percent of the
minimum intensity. We fit the distribution with cubic splines of
equal bin size for intensities <4 K -km s 1, which is the
maximum threshold for the purely turbulent case.

Figure 13 shows the Genus as a function of intensity
threshold for the two fiducial outputs. Positive values indicate a
relative excess of peaks (a “clump-dominated” topology), while
a negative Genus indicates an excess of voids. We find
thatboth curves exhibit similar behavior for normalized
intensities below four. As expected, output W1T2t0.2 has a
broader range of intensity values due to the higher velocities

and excitation in the wind shells, and thus, exhibits some
structure for higher integrated intensities. Between thresholds
of −1 and 1, the Genus is smaller for the purely turbulent
model, which indicates that there are more voids in the
emission compared to the case with feedback. The Genus for
W1T2t0.2 is higher at low-intensities, but this may be because
the voids created by winds are larger than those created by pure
turbulence, such that the total number of minima is reduced.
This effect would likely be enhanced for real clouds, where
winds can break out and create sight-lines nearly empty of
molecular emission (A11).
K16 define the Genus distance metric as the average of the

absolute value of the differences between the Genus curves.
The larger the disparity in the number of peaks and voids
between two data sets, the larger the distance. Thus, the
discrepancy between the two curves at low intensities shown in
Figure 13 increases the distance between the outputs.
Our analysis highlights one advantage of the Genus statistic:

it is sensitive to both over-densities and voids. Chepurnov et al.
(2008) analyzed HI data of the SMC, which visually displays a
large number of expanding shells with sizes of ∼100 pc. The
shells were not apparent at small scales (>100 pc), but at
intermediate scales (120–200 pc) the Genus had a neutral or
slightly positive value, which they attributed to shells. In
practice, however, the thickness and morphology of clouds
varies significantly between different star-forming regions. In
our comparison, the difference between the two curves is
relatively subtle. Thus, it may be most informative when
employed to compare sub-regions within clouds.

3.3.2. Dendrograms

Dendrograms are hierarchical structure trees, which may be
created for both 2D and 3D data (Rosolowsky et al. 2008).
Here, we compute dendrograms of the 3D spectral cubes. The
number of peaks (“leaves”) and the number of hierarchical
levels (“branches”) are useful metrics that prior studies have
shown to be sensitive to underlying physics, including gravity
and magnetic field strength, as well as emission properties
(Goodman et al. 2009; Beaumont et al. 2013; Burkhart et al.
2013a). Here, we use dendrograms to characterize the
hierarchical structure of the emission. To create the dendro-
gram, we first identify the peak intensity value in the data and
then proceed to smaller intensities and successively catalog
local maxima. The leaves on the same level of hierarchy are
connected by a branch. To account for simulated noise in our
data maps, we set a minimum distance between two local
maxima, dmin . Increasing dmin decreases the total number of
features, i.e., it “prunes” the tree (e.g., Burkhart et al. 2013a).
K16 consider two dendrogram statistics: the number of

features or leaves and the histogram of leaf intensities. To
compute the first statistic, we generate multiple dendrograms
per output by varying dmin from -10 2.5 K−102 K in 150
logarithmic steps. We then count the total number of leaves
associated with each dmin . To compute the second statistic, we
create a series of dendrograms for the outputs using the same
range of δ, but instead of counting features we produce
histograms of the leaf intensities for each value. We
renormalize the intensities so that the mean of the histogram
occurs at zero.
Figure 14 displays the number of leaves as a function of δ for

the two fiducial outputs. Output W2T1t0.2 follows a powerlaw
up to d ~ 10, while output T2t0 deviates from a powerlaw at

Figure 13. Genus score for outputs W1T2t0.2 (blue diamonds) and T2t0 (green
circles). The data are normalized such that the x-axis indicates the number of
standard deviations from the mean and the score is normalized by the number
of pixels in the integrated intensity map.

10

The Astrophysical Journal, 833:233 (21pp), 2016 December 20 Boyden et al.



d ~ 1min K. The latter trend agrees with the results of Burkhart
et al. (2013a), who analyzed MHD turbulence simulations and
found that the number of leaves significantly declines as δ

increases. They also demonstrated that the power-law index for
larger δ values steepens from −1.1 to −3.9 as the sonic Mach
number declines from 7 to 0.7. The shape of the curve for
output W2T1t0.2 suggests an interesting signature of winds;
feedback increases the number of leaves significantly for large
δ. As a result, we also find that the output with feedback
contains more structure than the purely turbulent output at all
scales.

The distance metric for the number of features is defined
following the convention of the SPS and other power-law
statistics, where the distance is the t-statistic of the difference in
the slopes. This means the disparate slopes illustrated by
Figure 14 produce a large distance. However, the distance is
not directly sensitive to the details of the curve shape, which is
codified by the power-law fit. Consequently, dissimilarities in
the intensity range, which reflect the amount of compression,
do not contribute to the distance.

The distribution of peak intensities provides additional
insight into the emission structure. Figure 15 shows super-
imposed histograms of the two fiducial outputs for all δ. The
two outputs yield significantly different distributions. The
histograms of T2t0 contain a wider range of leaf values than
those of W1T2t0.2, whose histograms are all strongly peaked
on the mean value. Output W1T2t0.2 also produces a long tail
of high intensity values.

The distance metric depends on all bin-wise differences and
is defined as the Hellinger distance for each pair of histograms
with a given δ averaged over all values of δ. Thus, large
differences between two histograms with a particular δ will
influence the distance. However, the largest distances will be
produced by systematic differences between histogram sets,
such as those illustrated in Figure 15. Like the previous
dendrogram statistic, the distribution indicates that feedback
systematically increases the amount of hierarchy in the
emission, which may serve as a signpost of feedback.

4. STATISTICAL ANALYSIS

We use pseudo-distance metrics, which were briefly
described in the previous section, to efficiently study
differences between all synthetic observations. As stated in
Section 2.3, a pseudo-distance is essentially a single value that
encapsulates the degree of difference between two metrics, and
it can be used to quantitatively compare the outputs of various
spectral cubes. In Section 3, we identified qualitative
differences between a simulation with strong feedback and
one with no feedback and discussed how the distance metric
may reflect these changes. We now expand upon this to
quantify all simulation differences and determine the sensitivity
of the statistics to stellar mass-loss rate, magnetic field strength
and evolutionary time. This allows us to check if the previously
identified features actually pinpoint signatures of feedback or
instead correspond to other combinations of simulation
parameters.
For each statistic, we produce a color plot showing the

distances between all simulation pairs (see Figures 16–18). The
color plots can be interpreted as follows. Each colored square
represents the distance between one simulation pair, denoted by
the horizontal and vertical indices. The colorbar indicates the
distance values, whose range depends on the statistic as defined
in K16. We arrange the simulations in order to easily compare
strong wind models (W1) with weaker wind models (W2) or
purelyturbulent models (TXt0).
Since our limited parameter sampling does not allow a

rigorous analysis of effects (as in Yeremi et al. 2014), we
perform a qualitative assessment of the tools. We find the
importance and detectability of feedback produces a clear
signature that would persist in a full parameter space study.
Time evolution and magnetic field strength produce weaker
signals in the pseudo-distance results, and, consequently, their
impact is less clear. Table 3 provides a summary of our
findings, which we discuss in Sections 4.1–4.3.

4.1. Intensity Statistics

We show the color plots for all intensity statistics in
Figure 16. With the exception of the Cramer statistic, we find
that these statistics exhibit strong responses to changes in
stellar mass-loss rate. The color plots show that the largest

Figure 14. Number of dendrogram features as a function of intensity spacing,
δ, for output W1T2t0.2 (top, blue) and T2t0 (bottom, green). The lines indicate
power-law fits to each curve, having slopes −0.99±0.02 and −1.9±0.1 for
runs W1T2t0.2 and T2t0, respectively.

Figure 15. Histograms of the renormalized dendrogram peak leaf intensities.
The distributions for all dmin values are stacked.
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Figure 16. Intensity statistic color plots. Each statistic utilizes a different distance metric to quantify the difference between two simulations. The colored squares
represent the distance between the simulations indicated by the horizontal and vertical indices.
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Figure 17. Fourier statistic color plots.
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distances appear between any strong wind model (W1) and any
weak wind model (W2) or purely turbulent model (TXt0). The
kurtosis, skewness, and SCF are the clearest examples of this,

as they display a trend among pairs. These statistics yield the
largest distances between pairs W1 and TXt0, followed by
pairs W1 and W2. Furthermore, they capture a similar, weaker
trend for pairs W2 and TXt0.
A distance trend with wind strength is less clear for the PDF

and PCA statistics. We find that time evolution randomly
impacts the magnitude of these statistics’ strong wind
distances. Weaker wind PDF pairs appear to correlate slightly
with magnetic field strength. This does not occur for the PCA
and SCF statistics, since their distances between W2 pairs are
quite small. Insensitivity to magnetic field strength is consistent
with the conclusions of Yeremi et al. (2014).
The Cramer statistic is by definition a distance metric, so we

include its discussion and analysis here rather than in
Section 3.1. As described in Yeremi et al. (2014), the Cramer
statistic compares the inter-point differences between two data
sets with the differences between points within each individual
data set. Following K16, we compute the Cramer statistic using
only the top 20% of the integrated-intensity values. We find
that the statistic exhibits a behavior different from that of the
other intensity statistics. As Figure 16 shows, the Cramer
statistic displays very large distances between purely turbulent
outputs and outputs with any degree of feedback. The wind
strength appears less important to the statistic than wind
presence does, which indicates a binary sensitivity to stellar
mass-loss rate. The Cramer statistic is also slightly sensitive to
magnetic field strength, as illustrated by the varying distances
between the purely turbulent models.
Considering the various degrees of response, we find PCA to

be a strong candidate for constraining feedback signatures. As
Figure 3 shows, this statistic displays sharp, distinct features for
a strong wind model, and its colorplot predominantly shows
sensitivity to changes in stellar mass-loss rate. The other
intensity statistics either exhibit less-distinct features or react to
multiple physical changes. Because of this, we recommend
using these statistics in concert with PCA. Of the remaining
intensity statistics, the SCF is the second most promising
candidate because its color plot behaves similarly to that
of PCA.

4.2. Fourier Statistics

Figure 17 shows all Fourier statistic colorplots. Unlike the
intensity statistics, the Fourier statistics do not share a common
behavior, and their colorplots appear more heterogeneous. As
a whole, we note a variety of sensitivities to changes in stellar
mass-loss rate, magnetic field strength, and evolutionary time.
The wavelet transform color plot closely resembles those of the
intensity statistics because their greatest responses correspond
to changes in stellarmass-loss rates. The Δ-variance shows
some discriminating power to the presence of winds, but it is
only weakly sensitive to changes in other underlying
properties.
The VCS statistic demonstrates roughly equal, weak

sensitivity to both stellar mass-loss rate and magnetic field
strength. However, as noted in Section 3.2.2, the VCS distance
is independent of the fit breakpoint, which may respond to the
presence of feedback. Thus, the colorplot reflects the
minimum degree of distance between the outputs. As its color
plot slows, distances solely quantifying changes in stellar mass-
loss rate tend to resemble those explicitly comparing changes in
magnetic field. In fact, some of the largest distances involve
T4, the run with the strongest magnetic field. We also note

Figure 18. Morphology statistic color plots.
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large distances between the turbulent clouds T1 and T2 in the
presence of strong winds. These clouds have the same magnetic
field strength, indicating that the VCS distance, which is driven
by changes in the brokenpower-law slopes, is generically
sensitive to the turbulent conditions.

We find the SPS to be sensitive to all simulation parameters,
but, unlike the VCS, its responses are not monotonic. Thus, it
does not serve as a good diagnostic of feedback.

We find the bicoherence statistic to exhibit a strong response
to changes in stellar mass-loss rate, magnetic field strength, and
evolutionary time. As time evolves, the wind models do
become more alike, and they remain distinct from outputs
without feedback. The turbulent models also appear relatively
similar to each other.

Of all of the Fourier statistics, the VCA statistic demon-
strates the weakest sensitivity to magnetic field strength. Its
colorplot appears insensitive to turbulent structure, as
distances only change with wind model and evolution time.
The color plot shows the distances for strong wind models to be
different from those of all other models. However, as time
evolves, the weak wind distances more closely resemble the
strong wind distances. This trend is clear because of the
magnetic field’s weak impact on the distances.

In summary, despite various degrees of response, many of
the Fourier statistics fail to produce distinct signatures
corresponding to feedback. As discussed in Section 3.2, the
most common difference manifests as a horizontal offset,
which is a relatively minor change and may naturally occur
between two observed clouds. The exception is VCS, where
variation in the pseudo-distance metric correlates with changes
in the location of a power-law break.

4.3. Morphology Statistics

Figure 18 shows the color plots for the morphology statistics.
Although the Genus statistic produces a wide range of
distances, we find that it fails to display any clear trends. Both
dendrogram statistics show clear responses to changes in stellar
mass-loss rate. The histogram statistic yields the largest

distances for strong wind and purely turbulent pairings,
followed by strong wind and weak wind pairings. This
behavior is similar to that of many other statistics, but the
histogram statistic’s trend continues within weak wind model
pairings, indicating a very clear sensitivity toward wind
activity.
The number of features static is also sensitive to winds, but

it shows opposite correlations between strong wind model
pairings. By a significant amount, the largest distances occur
for strong wind and weak wind pairings, as opposed to pairings
of strong wind and purely turbulent models. A trend does not
occur for weaker wind model comparisons, as distances for
weak winds and purely turbulent pairs are larger than for
pairings between weaker wind models.
Although the histogram statistic produces cleaner trends,

we conclude both dendrogram statistics effectively highlight
feedback signatures. Both are most sensitive to changes in wind
strength, meaning their distances exhibit distinct signatures
corresponding to feedback. By comparison, the Genus statistic
performs poorly in our formulation.

5. DISCUSSION

While this work, together with K16 and Yeremi et al. (2014),
has made significant strides in consolidating a wide variety of
statistics from the literature and systematically testing these
statistics across a broad range of physical conditions, several
other major dimensions remain unexplored. We discuss
these here.

5.1. Astrochemistry

In this study, we focus only on the statistics of global cloud
structure as reflected by 12CO. Other common tracers,
including HI, [CI], HCN, N2H

+, and other line transitions will
produce different statistical trends (e.g., Burkhart et al. 2010;
Gaches et al. 2015), possibly with unique signatures of stellar
feedback. More broadly, the information contained in alter-
native tracers may help to bridge the gap between atomic and

Table 3
Statistic Sensitivitya

Family Statistic Wind Activity Magnetic Field Time Evolution

Probability Distribution Function (PDF) ✓ L L
PDF Skewness ✓ L ∼

Intensity PDF Kurtosis ✓ L ∼
Statistics Principal Component Analysis (PCA) ✓ L ∼

Spectral Correlation Function (SCF) ✓ L ∼
Cramer ✓ ✓ L

Spatial Power Spectrum (SPS) ∼ L ✓

Velocity Channel Analysis (VCA) ∼ L ∼
Fourier Velocity Coordinate Spectrum (VCS) ∼ ∼ L
Statistics Bicoherence ✓ L ∼

Δ-Variance ∼ L ∼
Wavelet-Transfrom ✓ ∼ ∼

Genus L ∼ ∼
Morphology Dendrogram Leaves ✓ L ∼
Statistics Dendrogram Feature Number ∼ L ∼

Note.
a A summary of the statistic responses to the three primary physical effects. We characterize the response as strong (✓), weak (∼), or unclear (L). A statistic is strong
if it shows a clear monotonic trend, a statistic is weak if it shows a slight response, a statistic is unclear if it appears to show no sensitivity or if the trend is non-
monotonic.
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dense molecular gas, and, thus, constrain the influence of
various types of feedback from kiloparsec to sub-parsec scales.
The statistical results for other tracers should be explored in
future work.

Our study is also simplified by assuming an extremely basic
CO abundance model. The statistics may change with full
chemical modeling, which affects the abundance and temper-
ature distributions (Glover & Clark 2012; Beaumont
et al. 2013; Offner et al. 2014a). The consideration of
astrochemical networks also introduces an additional set of
parameters, including the strength of the UV radiation field and
metallicity, which drive changes in the emission (Glover &
Clark 2012; Bertram et al. 2015a; Clark & Glover 2015). These
parameters are likely to impact the statistics and may create
degeneracies, for example, in the comparison between high-
mass and low-mass star-forming regions. However, as in the
case of feedback, only a few statistics have been explored in
combination with astrochemical networks. These include PCA
(Bertram et al. 2014), SCF (Gaches et al. 2015), the centroid
velocity structure function (Bertram et al. 2015c), and Δ-
variance (Bertram et al. 2015b). Future work is necessary to
systematically determine the impact of astrochemical effects on
each of the TURBUSTAT statistics.

5.2. Optical Depth

The mean density of the simulation and, hence, the
corresponding optical depth also influences the shape of the
statistics. Optical depth effects have previously been explored
and discussed for VCA (Lazarian & Pogosyan 2004; Burkhart
et al. 2013b), velocity centroids (Bertram et al. 2015c), Δ-
variance (Bertram et al. 2015b), PDFs (Burkhart et al. 2013c),
and SPS (Burkhart et al. 2013b). In general, tracers with lower
optical depth, such as 13CO, reduce projection effects and
confusion of cloud structures (Beaumont et al. 2013). For PDF
statistics, high optical depths limit the range of integrated
intensities and, thus, lower the distribution width (Burkhart
et al. 2013c). For Fourier statistics, high opacity flattens the
spectrum until some saturation point (Lazarian & Pogos-
yan 2004; Burkhart et al. 2013b; Bertram et al. 2015c).
Consequently, we expect significant optical depths to obscure
feedback signatures and increase the difficulty of identifying
their imprint on the emission. However, the optical depth can
be estimated using multiple line transitions or tracers in
combination. In instances of high-optical depth, optically
thinner, bulk cloud tracers such as 13CO and [CI] will help to
disambiguate feedback and optical depth degeneracies.

To isolate the impact of optical depth and excitation
conditions on the statistics, we also perform the analysis in
Section 3 on raw PPV cubes. These results are presented in the
Appendix. We find that radiative transfer provides an overall
“stretch” to the data that enhances emission arising from shells
created by the winds. In contrast, without the radiative transfer,
the distance metrics are relatively similar and features
associated with winds from Section 3 (e.g., in the PCA
covariance) are absent.

From an observational perspective these results are unsur-
prising, as CO has historically been used to study and identify
feedback signatures. CO is excited at intermediate (10 102 4–
cm−3) densities and becomes optically thick or freezes out at
high densities (104 cm−3), coincidentally selecting the subset
of molecular gas most impacted by feedback. However,
different cloud conditions or density weightings might show

some statistical differences without radiative transfer. Future
studies are necessary to systematically study the impact of
optical depth on the TURBUSTAT statistics.

5.3. Resolution

A number of the statistics, especially those sensitive to
small-scale velocity and density structure, will be sensitive to
the simulation resolution. The inertial range of the underlying
velocity power spectrum will be larger for higher resolution
basegrids (e.g., Kritsuk et al. 2007). K16 compare the
TURBUSTAT metrics for basegrids of 1283 and 2563 and find
that Cramer, kurtosis, skewness, SCF, SPS, VCA, and VCS are
sensitive to the change in resolution, differences largely driven
by themodification to the inertial range. Statistically, the
degree of sensitivity is set by the range of k included in the
fitting. Metrics described by power-law functions are fit from
several pixels up to half the box size, which reduces the impact
of shot noise on small scales and edge-effects on large scales.
Within this range, changes in the power-law slope due to either
resolution or physics produce a difference. While the simula-
tions are not solely described by the turbulent power spectrum,
those statistics expected to be most sensitive to small-scale
turbulent structure do register a difference for different
resolutions.
Our study analyzes data from the 2563 simulation basegrid,

which produces a similar power spectrum to 5123 data
including the level 1 AMR information (OA15; Appendix).
While the extent of the inertial range is important for modeling
pure turbulence, our aim here is to identify statistics that can
distinguish feedback-related changes between simulations. In
the case with winds, OA15 show the dissipation region of the
power spectrum is swamped by energy input from the winds on
small scales, such that the slope and behavior out to ~k 100
are radically different. This is a sharp signal that accordingly
impacts kurtosis, skewness, SCF, SPS, VCA, and VCS: those
statistics that are demonstrably sensitive to small-scale
turbulent fluctuations. While we expect simulations with larger
basegrids to better model the underlying turbulence, we do not
expect our conclusions on sensitivity to feedback to be altered.

6. CONCLUSIONS

We investigated the sensitivity of 15 commonly applied
turbulent statistics to the presence of stellar feedback. The goal
of our analysis was to identify whether any of the statistics
provide a robust indication of feedback: a smoking gun. Our
parameter study was based on magnetohydrodynamic simula-
tions performed by OA15 with varying magnetic field strengths
and degrees of feedback from stellar winds. We first post-
processed the simulations with a radiative transfer code to
produce synthetic 12CO(1–0) emission cubes. We then
computed 15 statistical metrics using the python package
TURBUSTAT (K16) and assessed the relative response of each
statistic to changes in evolutionary time, magnetic field
strength, and stellar mass-loss rate. We focused on those
statistical formulations identified by K16 to respond to physical
changes in parameters but were insensitive to noise fluctuations
and viewing angle: intensity PDF, skewness, kurtosis, power
spectrum, PCA, SCF, bispectrum, VCA, VCS, Δ-variance,
wavelet transform, Genus, Cramer, number of dendrogram
features, and histogram of dendrogram feature intensities. We
illustrated each statistic via a comparison between a purely
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turbulent output and an output with identical turbulence but
with embedded stellar sources launching winds (Section 3).

We then computed the distance metric, as defined for each
statistic by K16, for each pair of outputs (Section 4). This
allowed us to both quantify changes and simplify the
comparison by reducing each pair of data cubes to one
characteristic number. We discovered that a variety of statistics
exhibit sensitivity to feedback, and we present the following
conclusions.

1. The intensity PDF, skewness and kurtosis statistics are
each sensitive to the degree of feedback, with strong wind
models exhibiting very different distances than weak
wind models. Skewness and kurtosis show sensitivity to
evolutionary time to a lesser degree, while none are
sensitive to magnetic field strength.

2. PCA shows strong sensitivity to wind strength and weak
sensitivity to time evolution. In particular, the covariance
matrix exhibits strong peaks at the characteristic wind
shell expansion velocity ( ~ -v 1 2 km s 1– ), which we
predict will be visible in observational data and could be
a good diagnostic for wind-driven shell characterization.

3. The SCF exhibits a strong response to feedback, which
manifests as a statistically steeper SCF spectrum slope
when wind feedback is present.

4. Both the Cramer statistic, which measures the spread of
the variance, and bicoherence are strongly sensitive to
feedback but mainly in a binary way. The Cramer
distance is insensitive to the overall mass-loss rate and
evolutionary time; however, of all the statistics, it was the
more purely sensitive to the magnetic field strength.

5. The SPS displays little sensitivity to feedback aside from
an overall offset. No characteristic break appears to mark
the energy injection scale. The SPS did show sensitivity
to time evolution.

6. The VCA exhibits a weak response to both feedback and
time evolution.

7. The VCS function shows a distinct signature of feedback.
The transition between the density and velocity-domi-
nated parts of the VCS curve occurred at higher velocities
and larger scales in the case with winds. This suggests
that the break point may encapsulate information about
the characteristic scale of feedback. However, the
location of this point depends upon other cloud proper-
ties, such as optical depth and the velocity dispersion.
Thus, VCS may be best applied to compare cloud sub-
regions. The VCS also displays a weak response to
magnetic field strength.

8. The bicoherence exhibits less correlation between scales
in the case with feedback, which may be the result of the
shells reducing magnetic wave propagation and scale-
coupling. However, past work has demonstrated that the
bicoherence is also sensitive to local conditions, includ-
ing the sonic and Alfvénic Mach number, which may
make absolute identification of feedback challenging.

9. The wavelet transform and Δ-variance display some
response to the presence of feedback;though, the degree
of difference might not be remarkable in comparisons
between observational data sets. The wavelet transform
also shows some sensitivity to time evolution and
magnetic field strength.

10. The Genus statistic, which reflects the relative number of
peaks and voids, shows sensitivity to feedback at small

scales: the number of voids declined when feedback was
included. However, the effect was subtle and the color
plots comparing all pairs did not show strong trends.

11. Both dendrogram statistics show sensitivity to feedback.
In the presence of feedback, the number of features
follows a power law for a much larger range of scales
when feedback is present, rather than falling off steeply
as in the purely turbulent case. Prior studies have found
that power-law behavior does not occur for any cloud
Mach number or magnetic field strength for purely driven
turbulence. This suggests the number of features statistic
may be a true scale-free metric, which could be used to
identify and characterize feedback. The histogram of leaf
intensities was broader in the case with feedback, which
reflects the larger range of intensities associated with the
increased temperatures and densities found in shells.

In conclusion, our search for a smoking gun has yielded
promising leads. Several statistics show clear features and
variations associated with feedback that do not occur in purely
turbulent simulations or in self-gravitating, turbulent simula-
tions (as in K16) across a broad range of physical conditions.
On the basis of these results, we recommend follow-up
observational studies focusing on active star-forming regions
utilizing the PDF, PCA, SCF, VCS, and dendrograms. In
particular, PCA is promising since it displays the characteristic
velocity scale of the feedback.
Although these results provide motivation for optimism, we

note several caveats. We caution that many of the statistics
have two or more distinct definitions in the literature. Our
conclusions hold only for the definitions specified in K16;
additional studies are needed to check alternative statistical
conventions. Our simulations neglect gravity, which should be
considered in future work. Finally, we note that many of the
statistics are sensitive to the line opacity, and tracers with
different optical depths and chemistry may yield different
results.
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APPENDIX

In this appendix, we briefly assess the impact of the CO-
radiative transfer (RT) step on our statistics. To do this, we
compare the results from the CO spectral cubes to the results of
raw PPV cubes. The PPV cubes contain mass values instead of
CO intensity values, and to analyze them, we perform the same
statistical measurements that were done on the CO cubes in
Section 3. The specific methodologies for each statistic are also
identical.
We present the results for the PCA eigenvalues and the

Δ-variance in Figures 19 and 20, respectively. Here, we find
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that RT provides an overall “stretch,” which actually highlights
wind activity. Without RT, the statistical outputs for W1T2t0.2
and T2t0 appear nearly identical.

The Δ-variance statistic yields distinct outputs for W1T2t0.2
and T2t0 with RT, which are shown in Figure 20. The distance
metric yields 0.79 for the case with RT and 0.30 for the same
two outputs without RT, less than half the RT value. Visually
the shapes of the Δ-variance for the non-RT outputs are also
more similar. Comparing to the distances in Figure 17, we
conclude that feedback does not leave a significant figure in the
raw PPV data.

RT also alters the shape of the PCA eigenvalue distribution,
which easily distinguishes W1T2t0.2 from T2t0. Figure 19
shows thatthe first five eigenvalues of W1T2t0.2 become
noticeably greater than those of T2t0; without RT, they appear
to be the same. In terms of our distance metrics, the normalized
PCA distance metric is 0.255 for the two outputs with RT and
0.051 for those without. Because of the metric normalization,
PCA shows that without RT the outputs are nearly identical to
one another, while the RT outputs with and without feedback
are distinct (see also the color plot shown in the Figure 16
middle right panel).

The impact of RT is prominent in the most significant results
in Section 3. In Sections 3 and 4, we identified, quantified, and
discussed the importance of the signatures that we identified
from these statistics. In Figures 21–23, we show the PCA
covariance matrices, bicoherence matrices, PDFs, SCF spectra,
and dendrogram statatistics for the two outputs without RT.
These are the statistics that previously exhibited large
differences in their shapes and behavior in the presence of
winds and appeared most promising as diagnostics. Similar to
the comparisons is Figures 19 and 20, the impact of winds
disappears without radiative transfer.
These combined results underscore that CO is an excellent

observational tracer of stellar winds and outflows (e.g., Arce
et al. 2010; Nakamura et al. 2011). Although stellar feedback is
the key varying parameter between W1T2t0.2 and T2t0, without
radiative transfer the statistics fail to respond to its influence. This
is likely because CO emission saturates due to high optical-depth
in high-density regions. The RT also boosts wind-related
emission, which is warmer, and cuts out low-density gas, which
contains little CO or is not strongly collisionally excited.
Consequently, the dynamic range of the CO emission is small
and favors emission arising from CO within shells. In contrast,

Figure 19. First 50 covariance matrix eigenvalues for runs W1T2t0.2 and T2t0 with and without the CO radiative transfer step. Output W1T2t0.2 is denoted by the
color blue, while output T2t0 is denoted by the color green. The subplot labels indicate which plots include the radiative transfer step in the corresponding statistical
measurement: “No RT” shows the output for a position–position–velocity cube, and “With RT” shows the output for a CO Spectral Cube. The normalized PCA
distance metric yields 0.255 for our fiducial comparison with RT and 0.051 for that without RT.
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Figure 20. Δ-variance spectra for outputs W1T2t0.2 (blue) and T2t0 (green) with (left) and without (right) the radiative transfer step. The Δ-variance distance metric
yields 0.79 for our fiducial comparison with RT and 0.30 for that without RT.

Figure 21. Left: the PCA covariance matrix for runs W1T2t0.2 (left) and T2t0 (right) without the CO radiative transfer step. The normalized PCA distance metric
yields a distance of 0.051 for this pairing. Right: the bicoherence matrices for W1T2t0.2 (left) and T2t0 (right) without the radiative transfer step. The bicoherence
distance metric produces a distance of 0.012 for this pairing.

Figure 22. Left: the SCF spectrum for W2T2t0.2 (blue) and T2t0 (green) without radiative transfer. For this simulation pair, the SCF distance metric yields 0.005.
Right: the PDFs for runs W2T2t0.2 (blue) and T2t0 (green) without radiative transfer. The PDF (Hellinger) distance yields 0.038.
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without RT all the gas is weighted equally. Since the dynamic
range of the gas density in the simulations spans 10 orders of
magnitude, the same statistics without RT are biased toward high-
density material, while, at the same time, the shell material is not
enhanced by its temperature.
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