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Abstract

This paper examines the properties of flows around objects embedded within common envelopes in the simplified
context of a “wind tunnel.” We establish characteristic relationships between key common envelope flow
parameters like the Mach number and density scale height. Our wind tunnel is a three-dimensional, Cartesian
geometry hydrodynamic simulation setup that includes the gravity of the primary and secondary stars and allows us
to study the coefficients of drag and accretion experienced by the embedded object. Accretion and drag lead to a
transformation of an embedded object and its orbit during a common envelope phase. We present two suites of
simulations spanning a range of density gradients and Mach numbers—relevant for flow near the limb of a stellar
envelope to the deep interior. In one suite, we adopt an ideal gas adiabatic exponent of g = 5 3, in the other,
g = 4 3. We find that coefficients of drag rise in flows with steeper density gradients and that coefficients of drag
and accretion are consistently higher in the more compressible, g = 4 3 flow. We illustrate the impact of these
newly derived coefficients by integrating the inspiral of a secondary object through the envelopes of M3
(g » 5 3) and M80 (g » 4 3) giants. In these examples, we find a relatively rapid initial inspiral because, near
the stellar limb, dynamical friction drag is generated mainly from dense gas focused from deeper within the
primary-star’s envelope. This rapid initial inspiral timescale carries potential implications for the timescale of
transients from early common envelope interaction.
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1. Introduction

Common envelope episodes occur in binary star systems
when one star engulfs its companion (Paczynski 1976). These
episodes, during which drag on the surrounding gas transforms
and tightens the binary orbit, are thought to be critical in the
formation of compact binaries. In particular, binaries that are
able to merge under the influence of gravitational radiation
(like the recently discovered merging pairs in the LIGO
experiment) must be brought to separations smaller than the
size of the stars that created them (e.g., Kalogera et al. 2007;
Abbott et al. 2016). This can only occur through a phase of
orbital transformation like a common envelope episode. The
details of this common envelope interaction phase therefore
determine the exact nature of the resultant binary (Iben &
Livio 1993; Taam & Sandquist 2000; Taam & Ricker 2010;
Ivanova et al. 2013b; Postnov & Yungelson 2014).

A typical common envelope event is thought to pass through
several phases (Podsiadlowski 2001; Taam & Ricker 2010).
Over stellar evolution (105 year) timescales, a star in a pair
evolves from its main-sequence size onto the giant branch,
growing in radius significantly. Along the way it may become
so large that it starts to impinge on the orbit of its companion
star, when the orbital separation is similar to the stellar radius,

*~a R . This growth initiates interaction between the pair,
which exponentiates through exchange or loss of mass (and
angular momentum) from the system (Pejcha et al. 2016a,
2016b), or by tidal instability (the Darwin instability, which is
relevant mainly in pairs of unequal mass; e.g., MacLeod
et al. 2017). Thus the onset of the interaction occurs over a
timescale regulated either by mass loss or by tidal dissipation,

perhaps lasting hundreds to thousands of orbital periods in
either case (e.g., Tylenda et al. 2011; Nandez et al. 2014;
MacLeod et al. 2017). Both of these processes desynchronize
the orbit of the secondary star from that of the primary’s
envelope.
Eventually, one object is engulfed within the envelope of the

other and the common envelope phase begins. Supersonic
relative motion between the engulfed object and the envelope
gas leads to gravitational focussing and the buildup of a dense
wake behind the embedded object, which exerts a gravitational
drag on the orbital motion (Ivanova et al. 2013b). The result of
this “dynamical friction” drag is a rapid inspiral through the
increasingly dense stellar envelope. This phase, sometimes
called the dynamical plunge, has two possible conclusions. In
some cases, the pair of stars merge. In others, the two stellar
cores both heat a fraction of envelope material, resulting in
subsonic relative motion between the embedded objects and the
gas. With this transition to subsonic relative velocity, drag
forces drop off dramatically (e.g., Ostriker 1999) and the new
binary’s orbit stabilizes (e.g., Passy et al. 2012; Ricker & Taam
2012; Ohlmann et al. 2016a; Iaconi et al. 2017).
Despite significant recent effort and progress (e.g., Ricker &

Taam 2008, 2012; Passy et al. 2012; Nandez et al. 2014, 2015;
Ivanova & Nandez 2016; Nandez & Ivanova 2016; Ohlmann
et al. 2016a, 2016b, 2017; Staff et al. 2016a, 2016b; Iaconi
et al. 2017), global simulations of common envelope remain
challenging to perform with many potentially important
processes and timescales at play. A particular concern is the
resolution requirement of simulating the full spatial extent of
the binary for many orbital timescales implies that the
simulations are either very computationally expensive, allow-
ing a small number of calculations to be performed (e.g., Iaconi
et al. 2017), or they are performed with extremely low
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numerical resolution but can span some parameter space (e.g.,
Ivanova & Nandez 2016). As a result of these numerical
limitations and physical complexity, fully interpreting and
learning from the results of these simulations has proven to be
challenging.

In this paper, we adopt the complementary approach of
studying a well-defined, but idealized scenario related to
common envelope encounters in detail. We model flow past a
gravitating object like one embedded in a common envelope
phase in the context of a “wind tunnel” numerical setup. By
restricting the scope of the problem from the global scenario,
this idealized approach allows us to examine the importance of
individual physical processes separately from the full, complex
system. These results, in turn, can prove valuable in
interpreting the findings of global calculations. Our work
builds on a long history of study of supersonic flows past
gravitating objects, starting with Hoyle & Lyttleton (1939),
Bondi & Hoyle (1944), andBondi (1952). The analytic
scalings of these flows have also informed a large portion of
our understanding of the hydrodynamics of common envelope
interactions (see, for example, Livio & Soker 1988; Iben &
Livio 1993; Ivanova et al. 2013b).

Numerical studies have augmented this analytic under-
standing beginning with pioneering simulations by Hunt
(1971). Later, work by Shima et al. (1985) was the first to
solve for the properties of this flow with a finite volume
computational method. This work also took the important step
of calculating coefficients of dynamical friction drag due to the
gravitational interaction of the object with its wake. Subsequent
work studied flows in inhomogeneous media, making the
results more directly applicable to understanding flow around
objects embedded in thecommon envelope (Livio et al. 1986a,
1986b; Soker et al. 1986; Fryxell et al. 1987; Fryxell &
Taam 1988; Taam & Fryxell 1989; Armitage & Livio 2000).

Numerical advances facilitated what remains a benchmark
series of simulations of Hoyle–Lyttleton flow by Ruffert
(Ruffert 1994a, 1994b, 1995, 1996, 1997, 1999; Ruffert &
Arnett 1994). This work is notable for its relatively high
numerical resolution, and for being the first broadly successful
attempt to span a wide parameter space of flow mach numbers,
adiabatic exponents, and object sizes. Blondin & Pope (2009)
and Blondin & Raymer (2012) show that with high resolution
and modern numerics, three-dimensional flows in homogenous
media are stableand reach a steady state with accretion rates on
the order of the Hoyle & Lyttleton (1939) estimate.4 While
accretion and flow morphology are the focus of much of the
above work, dynamical friction drag forces have also been a
focus of recent numerical studies, some of which have
conditions that are particularly relevant to common envelope
flow (in particular, Sánchez-Salcedo & Brandenburg 1999;
Kim & Kim 2009; Sánchez-Salcedo 2012; Thun et al. 2016).

This paper adds to this history of numerical study of Hoyle–
Lyttleton and related flows and their application to the common
envelope phase of binary interaction. To do so, we expand on
an idealized formalism for studying the dynamical inspiral
phase of common envelope introduced in MacLeod &
Ramirez-Ruiz (2015a) and model flow past an object
embedded in a numerical “wind tunnel.” To determine the
conditions of the wind, we consider stellar structures (and gas
adiabatic exponents) relevant to two key regimes of common

envelope encounters. In the convective envelopes of low-mass
stars, gas pressure dominates and a g = 5 3 equation of state
describes the gas well. In higher mass stars, radiation pressure
is quite important and the gas response to compression is closer
to g = 4 3. This paper examines both regimes (for encounters
with a 1:10 mass ratio) and compares flow properties in each.
The remaining sections of this paper are organized as

follows. In Section 2, we introduce key descriptive parameters
for common envelope flows and derive relationships between
them. These flow properties inform the setup of our numerical
experiments—which we call the Common Envelope Wind
Tunnel. Section 3 describes our numerical method. Section 4
examines the results of a set of numerical experiments
comparing flows with g = 5 3 to those with g = 4 3.
Section 5 illustrates the implications that these idealized results
have for our understanding of the nature of typical common
envelope inspirals. In Section 6,we conclude.

2. Flow Conditions during Common Envelope Inspiral

2.1. Characteristic Scales

Let us imagine the interaction between a giant-star primary
with total mass M1 and radius R1 with a secondary object of
mass M2 and radius R2, which will become embedded within
the primary. The separation between these two objects is a, and
during the interaction, <a R1. We define the mass ratio of the
system as =q M M2 1. The characteristic orbital velocity is

= ⎜ ⎟⎛
⎝

⎞
⎠ ( )v

GM

a
, 1k

1 2

where = +M M M1 2. In general, the orbital motion of M2 is
desynchronized from the primary’s gaseous envelope and the
relative velocity will be written as =¥v f vk k, where fk is the
fraction of keplerian velocity that describes the relative motion
between the secondary object and the gas.
A long-standing conceptual framework for understanding

flows during the dynamical plunge phase of the common
envelope inspiral has been that of Hoyle & Lyttleton (1939)
accretion flows (e.g., Taam et al. 1978; Meyer & Meyer-
Hofmeister 1979; Fryxell & Taam 1988; Livio & Soker 1988;
Kato & Hachisu 1991; Chevalier 1993; Iben & Livio 1993;
Brown 1995; Ivanova et al. 2013b). In these cases, gas moves
supersonically past a gravitating object. The Mach number is

 = ¥

¥
( )v

c
. 2

s,

Gravitational focussing leads gas within an impact parameter,

=
¥

( )R
GM

v

2
, 3a

2
2

to be energetically bound to the accreting object of mass M2.
Note that the simple expression above of Hoyle & Lyttleton
(1939), and later Bondi & Hoyle (1944), ignores the gas
internal energy, which is added in the Bondi (1952) formalism
(see Edgar 2004for a review).
The relationship between Ra and a is dictated by the relative

masses in the system and fraction of Keplerian rotation,

= =
+ -

( )R

a f

M

M f q

2 2 1

1
. 4a

k
2

2

k
2 1

4 See Section 3.1 of MacLeod & Ramirez-Ruiz (2015a) for amore detailed
discussion of the numerical assumptions and results of this recent work.
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This ratio describes the relative size of an accretion structure to
the size of the binary orbit. Note that in the simplifying case of

=f 1k and M M1 2, then »R a q2a .
A final length scale that plays a role in defining the common

envelope interaction is the density scale height,

r
r

= -r

-
⎜ ⎟⎛
⎝

⎞
⎠ ( )H

d

dr
, 5

1

where rd dr describes the density profile within the primary
star’s envelope (e.g., MacLeod & Ramirez-Ruiz 2015a).
Another important ratio describes the density gradient across
the accretion radius. We define the ratio

 =r
r

( )R

H
6a

to describe the number of density scale heights subtended by
the accretion radius ( r 0 describes a homogeneous density
structure, where   ¥r describes a very steep density
gradient).

Taken together, the accretion radius, Mach number, and
density gradient describe the hydrodynamic properties of
common envelope flows,which we will focus on in this paper.

2.2. Polytropic Stellar Envelopes

To obtain approximate profiles of the stellar envelope
structure into which the secondary star plunges in the common
envelope event, we will consider polytropic envelope profiles
in hydrostatic equilibrium. Here we will also make the
approximation of a mass-less envelope (which implies that
the bulk of the mass is concentrated in the giant-star core). This
is a crude approximation of stellar structure, but one that still
yields useful results (as we will show in the following
sections).

In this case, coupled differential equations of pressure and
density profile describe the envelope structure,

r

r r

=- = -

=- = -

r r
G G

( )

d

dr
g

dP

dr
g , 7

GM

r P P

GM

r

1
2

2

s

2

s

1
2

where =g GM r1
2. The parameter G = + n1 1s is the

polytropic index of the stellar profile such that

r
= G

⎛
⎝⎜

⎞
⎠⎟ ( )d P

d

ln

ln
, 8

envelope

s

where the subscript denotes that this expression is evaluated
along the envelope profile—a change in density in the stellar
profile implies a change in pressure, rµ GP1 1

s.

2.3. Gas Equation of State

The envelope gas may have a different response to
compression than its arrangement in the hydrostatic profile.
General equations of state have four adiabatic indices, which
describe their thermodynamic behavior (see, for example,
chapter 3 of Hansen et al. 2004), in these cases there may be

departures between g1, defined by

r
g=

⎛
⎝⎜

⎞
⎠⎟ ( )d P

d

ln

ln
, 9

ad

1

and g3, which is defined by

r
g= -

⎛
⎝⎜

⎞
⎠⎟ ( )d T

d

ln

ln
1, 10

ad

3

where the subscript indicates partial derivatives along an
adiabat (at constant entropy). The gas’s adiabatic behavior is
particularly relevant because any compression induced by a
companion will happen on a timescale much shorter than the
stellar envelope thermal timescale. The first exponent, g1, is

relevant in computing the gas sound speed, g r=c Ps
2

1 ,
and the third, g3, enters into the equation of state relation-
ship between pressure, density, and internal energy as

g r= -( )P e13 . Constant entropy stellar envelope structures
(for example, a convective envelope) have gG »s 1, while other
structures (like a radiative envelope) may have gG <s 1.
For an ideal gas, all of the adiabatic exponents are identical.

In this case, there is a single adiabatic exponent, γ, which is

g g g= = ( ). 111 3

This implies that when ideal gas is compressed (or allowed to
expand) adiabatically, the pressure follows rµ gP .

2.4. Relationships between Flow Parameters

In a common envelope encounter, the secondary star plunges
into the envelope of the primary. We use the (simplified)
polytropic description above to show that there are relation-
ships between the characteristic flow parameters described in
Section 2.1.
These relationships directly result from the fact that the

envelope is in hydrostatic equilibrium in opposition to the same
gravitational forces that determine the secondary object’s orbit.
Therefore, these relationships will hold for any hydrostatic
envelope structure, which needs not be the pre-encounter stellar
envelope structure.
To derive the relationships between the characteristic scales

of common envelope flows, we start with the pressure gradient
of the envelope,

r= - ( )dP

dr
g . 12

We re-write the left-hand side as r r= ´( ) ( )dP dr dP d d dr .
We can then use the derivative of pressure with respect to
density within the envelope to find,

r r
g

g r g
= G =

G
=

G⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ ( )dP

d

P P
c , 13ss 1

s

1

s

1

2

because g r=c Ps
2

1 . Substituting this in, our expression
becomes,

r
r

g
= -

G -⎛
⎝⎜

⎞
⎠⎟ ( )c d

dr
g . 14s

2
s

1

1

We substitute in the definition of the density scale height
(Equation (5)), the definition of g, and set r=a (the separation
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of the pair) to find

g
=

G

r

-⎛
⎝⎜

⎞
⎠⎟ ( )c

H

GM

a
. 15s

2
1

2
s

1

1

Further substitutions into this expression are useful. We use the
definition of vk, Equation (1), and total system mass

= +M M M1 2 to write

g
=

G
r
-

-⎛
⎝⎜

⎞
⎠⎟ ( )c H

v

a

M

M
. 16s

2 1 k
2

1 s

1

1

Then, rearranging and introducing the Mach number,
Equation (2), based on a flow relative velocity =¥v f vk k,


g g

=
G

=
G

r

- -⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ ( )a

H

v

c

M

M f

M

M
. 17

s

k
2

2
1 s

1

1 2

k
2

1 s

1

1

We can then substitute in for the accretion radius Ra and r,
Equations (3) and (6), to express the relationships between the
flow parameters,


g

=
+ G

r
⎛
⎝⎜

⎞
⎠⎟

( ) ( )q

q
f

1

2
182

2

k
4 s

1

or

 
g

=
+

G
r

-
-⎛

⎝⎜
⎞
⎠⎟( )

( )q

q
f

2

1
. 19

2
2

k
4 s

1

1

We note that where the enclosed primary-star mass, ( )m a1 , is
substantially less than M1, the enclosed mass may be replaced
into the above equations by using = ( )q M m aenc 2 1 in place of
q. These expressions are extremely useful because they reduce
the multi-parameter space of common envelope flows down to
a plane of allowed combinations on the basis of the hydrostatic
equilibrium nature of the stellar envelopes.

2.5. Example Profiles for Two Primary Stars

We illustrate these relationships between flow parameters
using a secondary object (q=0.1) embedded within the
unperturbed envelopes of two giant stars in Figure 1.
To compute these envelope profiles, we use the MESA

stellar evolution code, version 8845 (Paxton
et al. 2011, 2013, 2015). We show a M3 red giant with
Z=0.01 that has evolved to have a R31 radius and an

M0.43 helium core. The input list for this model is based on
the 7M_prems_to_AGB test suite input list, with a change to

M3 . This input includes a mixing length α of 1.73, and a
Reimer’s red giant branch wind prescription with coefficient

Figure 1. Profiles of primary-star stellar structure relevant to common envelope inspiral. A secondary star is embedded within the envelope of the primary at the
separation marked with the vertical line. The x-axis shows radial distance in units of the accretion radius, Ra. The top panel compares profiles of gas adiabatic
exponents, g1 and g3, along with the local structural parameter Gs. Note that g1 and g3 are relatively similar to each other, and additionally, that in convective regions of
the stellar envelopes g » G1 s. The center panel shows profiles of density and pressure, with local polytropic reconstructions extending Ra (pink dashed lines). The
lower panel shows that these properties can be matched to a flow Mach number,,and density gradient,r, at the position of the embedded object. The slope of the
polytropic profile of these secondary parameters is approximate but not perfectly fit, however, as can be seen in the lower panel.
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0.5. We also show a lower metallicity massive star, which is
M80 with Z=0.001 and has evolved to R720 , with a
M41.2 helium core. This model was run using the

150M_z1m4_pre_ms_to_collapse test suite example
inlist, modified to M80 initial mass and Z=0.001, and no
other modifications to the inlist_massive_defaults
parameters, which include a mixing length α of 1.5, and a
semiconvection α of 0.01.5

The panels of Figure 1 map out profiles of gas compressi-
bility, density, and pressure within the stellar envelope along
with profiles of Mach number and density gradient. The panels
are normalized to the location of a hypothetical secondary,
embedded within the stellar envelope, and the x-axes show
distance in units of the accretion radius of this object, Ra.
Within Ra, we also show a polytropic reconstruction of the
local profile. These panels adopt q=0.1 (which implies
secondary masses of M0.3 and M8 , respectively) and =f 1k .

The flow in these and other common envelope encounters is
described by these profiles of pressure and density across the
accretion radius—but this description can be compactly
represented in the parameters of the Mach number, density
gradient, gas compressibility (g1, g3), and structural gamma (Gs).
The panels of Figure 1 show that Equations (18) and (19)
reproduce the Mach number and density gradient at a given
position, and that a polytropic profile reproduces the approx-
imate slope of these parameters around the central value.

The two examples in Figure 1 show overall similarity despite
originating in relatively different stars: the highest Mach
numbers and density gradients are found near the stellar limb,
where radiative losses contribute to a reduction of the scale
height. Typical Mach numbers are  ~ –1 5 and density
gradients, r, are of the order ofunity. Gas adiabatic
exponents, g1 and g3, and the structural parameter, Gs, are both
»5 3 in the interior of the M3 star’s convective envelope, but
drop to lower values in zones of partial ionization nearer to the
surface. The values of g1 and g3 diverge from Gs in the radiative
interior of the M3 star. The more massive, M80 , star has an
extended convective envelope (so gG »s 1) and a more
compressible equation of state, with g ~ 1.41 and g ~ 1.353
due to a partial contribution to the pressure from radiation (see,
e.g., Sanyal et al. 2017, for more details).

3. Numerical Approach: Common Envelope Wind Tunnel

We study flows under typical common envelope conditions
using an idealized three-dimensional hydrodynamic setup,
which we call the Common Envelope Wind Tunnel. This
section outlines the details of our numerical method.

3.1. Hydrodynamic Implementation

We solve the equations of inviscid hydrodynamics using the
FLASH code (Fryxell et al. 2000). FLASH is a grid based code
with adaptive mesh refinement. We use the directionally split
Piecewise Parabolic Method Riemann solver in the calculations
presented here (Colella & Woodward 1984). We use an ideal
gas, gamma-law equation of state,

g r= -( ) ( )P e1 20

and take different values of the compressibility, g in diffe-
rent simulations. As noted in Equation (11), the ideal gas

approximation assumes that g g g= =1 3, which is generally a
reasonable (but inexact) approximation for thermodynamic
conditions of interest for stellar envelopes—see Figure 1 to
note the small departures between g1 and g3 in the MESA stellar
models due to their more sophisticated treatment of the
equation of state.
Like the simulations of MacLeod & Ramirez-Ruiz (2015a),

our Common Envelope Wind Tunnel calculations have a 3D
Cartesian computational domain with a point mass representing
the embedded object at the coordinate origin. The simulations
are performed in dimensionless units, in which = =¥R va
r =¥ 1, where r¥ is the density of the primary-star envelope at
r=a. These units imply a time unit of =¥R v 1a , or one flow
crossing time of the accretion radius. The mass of the
embedded object is = -( )M G22

1 in these simulation units,
and the primary has mass = -M q M1

1
2. Because

= =¥v f v 1k k , we can solve for the binary separation, a in
code units,

= = + -( ) ( )a f GM f q
1

2
1 . 21k

2
k
2 1

The orbital plane defined in the simulation is the x–y plane.
We locate the primary at = -y a1 . The gravitational force from
the primary therefore acts in the-y direction. As a concession
to the Cartesian geometry of our domain, the primary-star
gravity only depends on the y-coordinate,

= -
-( )

ˆ ( )a
GM

y y
y , 22grav,1

1

1
2

where agrav,1 is the gravitational acceleration from the primary
star’s gravity. The acceleration from the point mass at the
coordinate origin (representing M2) is

= -
∣ ∣

ˆ ( )a
r

GM
r , 23grav,2

2
2

where = ( )r x y z, , is the distance from the coordinate origin to
the cell, where we are calculating the force within the
computational domain.
The simulation -x boundary feeds a wind into the wind

tunnel and past the point mass. The wind has a gradient of
pressure and density in the y direction, and is uniform in the z
direction. The conditions of this wind are specified by an
upstream Mach number, , a density gradient, r, and the
pressure and density at y=0 (along the x axis). We begin by
specifying a corresponding pair of r and  given q, fk,
Gs,and γ using Equations (18) and (19). We then assign ¥P to
generate the sound speed that satisfies the selected flow Mach
number, based on r¥ and g r=c Ps

2 . We therefore have
 g r=¥

- -
¥ ¥P v2 1 2 (note that r = =¥ ¥v 1 in our code units).

Once the values at y=0 are set, we integrate to both
positive and negative y using the expressions of hydrostatic
equilibrium for a mass-less atmosphere, seeEquation (7). Here
the relevant differentials in our code units become dP/dy and
rd dy. We extend the hydrostatic profile to the ghost zones in
the -y boundary such that the hydrostatic pressure gradient is
preserved. The wind fed into the box is therefore in hydrostatic
equilibrium with the primary-star gravitational force, and since
it is supported on its lower boundary, it does not rise or fall
unless an additional force is applied. On the +x, +y, and z
boundaries, we apply “diode” boundary conditions, which
allow material to freely leave but not enter the grid.5 Input lists available upon request to the corresponding author.
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The initial condition is uniform in the x and z directions with
flow properties based on the integrated profile of pressure and
density in the y direction. The velocity everywhere is set to
= ¥ ˆv v x. We turn the central point mass on progressively over

the first code time unit, so agrav,2 is fully active for > ¥t R v1 a .
We create an absorbing central “sink” surrounding the point

mass, with radius Rs. The calculations in this paper use
=R R0.05s a. Each timestep, the average pressure and density

of a spherical shell, which extends from Rs to R2 s are
computed. The conditions inside the sink are reset to a fraction,
usually 10−3 of these values, creating an effective vacuum—

and deleting (accreting) mass and energy from the grid every
timestep. This prescription represents accretion without feed-
back on the surrounding flow (MacLeod & Ramirez-
Ruiz 2015a).

Our computational domain extends from  R4 a in the x
direction and  R3.5 a in the y and z directions. This domain is
covered by eight blocks in x and seven each in y and z of 83

cells in each direction. We employ the PARAMESH adaptive
mesh refinement package (v4), and base refinement choices on
the second derivative of gas internal energy (erg g−1)
(MacNeice et al. 2000). We set the minimum refinement level
to 2 (so all blocks are refined at least once) and the maximum
refinement to 6. The maximum cell size is therefore R 16a and
the minimum is R 256a . As in MacLeod & Ramirez-Ruiz
(2015b), to focus the highest resolution cells in the center of the
computational domain (near M2), we drop the maximum
refinement with distance. Blocks with size less than ar (we
adopt a = 0.3) are not allowed to refine further. The first drop
in refinement occurs at  R1.5 s and drops one level each time
the distance from the point mass doubles.

3.2. Diagnostics of Flow Properties

Several key diagnostics and integral quantities of the flow
are computed at runtime and recorded every timestep in our
setup.

3.2.1. Accreted Quantities

We record the properties of material that fallsinto the central
sink just prior to deleting it. These quantities represent the
accreted mass, angular momentum, and linear momentum.
Each timestep, we perform a volume integral over the sink cells
and sum the total accreted quantity. We convert this sum to an
accretion rate by dividing by the timestep. For example, the
accretion rate of mass is given by

ò r r=
D

-˙ ( ) ( )M
t

dV
1

, 24
sink

sink

where rsink is the density the sink cells were set to on the
previous timestep. Similarly,

ò r r=
D

-˙ ( ) ( )p
t

v dV
1

. 25x x
sink

sink

is the accretion rate of linear momentum along the direction of
motion. This accretion of momentum also represents a force
that we will call ˙Fpx

in what follows.

3.2.2. Gravitational (Dynamical Friction) Drag Forces

If the mass distribution around the embedded object is not
spherically symmetric, it experiences a net gravitational force.
The component of this force directed along the direction of

motion of the object constitutes a “gravitational drag” or gas
dynamical friction that modifies the motion of the gravitating
object (Chandrasekhar 1943; Ostriker 1999). In the case of
supersonic flows past a gravitating object, an overdense wake is
generated that exerts a stronger gravitational force than the
upstream gas (Ostriker 1999). The net force decelerates motion,
and is thus termed a drag.
The gravitational force on the secondary, M2 by a volume of

gas dV is

r
= ˆ ( )Fd

GM dV

r
r , 26grav

2
2

(note the inversion of thesign in this expression as compared
to Equation (23)). The component of this force along the
direction of motion is,

r
= ( )dF

GM dVx

r
. 27xgrav,

2
3

The net dynamical friction drag, Fdf , is the volume integral of
the contributions to the gravitational force along the direction
of motion dF xgrav, ,

ò= ( )F dF . 28xdf grav,

The sign of Fdf in our coordinate setup is such that a positive
value represents a drag force (deceleration).6

4. Numerical Results

In this section, we present and analyze two suites of
calculations, each spanning a range of density gradients and
corresponding Mach numbers. Each calculation adopts

=R R0.05s a. In one suite, we take g = G = 5 3s , relevant
for the convective envelopes of low-mass stars, as shown in
Figure 1. In a second suite, we take g = G = 4 3s , as
exemplifying the high-compressibility limit of massive star
envelopes in which radiation pressure becomes increasingly
important. Here we compare some key flow properties,
including rates of accretion and the generation of drag forces,
realized in these simulations.

4.1. Flow Morphology

The morphology of flows around objects embedded in the
common envelope is distorted and asymmetric in response to
the gradient of density in the upstream, stellar envelope
material (MacLeod & Ramirez-Ruiz 2015a). Our new calcula-
tions are consistent with this result, but the inclusion of the
primary-star properties—in the form of gravitational force,

6 Alternatively, one could also calculate the drag force by measuring the
momentum and pressure change of the gas (rather than the gravitational net
force on the particle). We note here that Ricker & Taam (2008, Equation (3))
and MacLeod & Ramirez-Ruiz (2015a, Equation (13)) used this approach and
measured the net momentum transport by gas passing through a spherical
surface to evaluate drag forces generated within the enclosed volume.
However, in their analysis of the momentum equation in steady state, Thun
et al. (2016) show that these expressions are incomplete because they do not
include the difference in pressure across the surface. In their Section 3.5, Thun
et al. (2016) show that the sum of a surface integral of momentum transport and
a surface integral of (net) pressure balance dynamical friction (see Thun et al.
2016, Section 3.5 for a complete derivation). For this application, that of
supersonic Hoyle–Lyttleton flow, the pressure term is opposite in sign and
smaller in magnitude than the momentum transport term (see, for example,
Figure 3 of Thun et al. 2016). This suggests that the drag forces derived from
Ricker & Taam (2008, Equation (3)) and MacLeod & Ramirez-Ruiz 2015a,
Equation (13)) are of the correct magnitude, but are likely moderate
overestimates of the drag force generated within a particular volume.
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Figure 2. Slices through the z=0 (orbital) plane surrounding an object embedded in the common envelope wind tunnel with g = G = 5 3s . The snapshots compare
flow at = ¥t R v20 a . The upper panels show density in units of r¥, while the lower panels show Mach number.
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Figure 3. Slices through the y=0 (perpendicular to orbital) plane surrounding an object embedded in the common envelope wind tunnel with g = G = 5 3s . The
snapshots compare flow at = ¥t R v20 a . The upper panels show density in units of r¥, while the lower panels show Mach number.
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Figure 4. Same as Figure 2 for g = G = 4 3s . Slice in the orbital plane.
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Figure 5. Same as Figure 3 for g = G = 4 3s . Slice perpendicular to the orbital plane.
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hydrostatic equilibrium pressure gradients, and the relationships
between flow parameters discussed in Section 2.4—impacts
the expected nature of common envelope flows.

In Figure 2through Figure 5, we show slices of density and
Mach number through the orbital (x–y) plane, and perpend-
icular to the orbital ( – )x z plane for the simulation suites with
g = G = 5 3s and g = G = 4 3s , respectively. In each case,
we run simulations for six log-spaced values of the
density gradient, r. For g = G = 5 3s , this corresponds to
 =r 0.2, 0.32, 0.5, 0.8, 1.26, 2.0. For g = G = 4 3s , we have
 =r 0.3, 0.48, 0.75, 1.19, 1.89, 3.0. The ranges of density
gradient parameters were chosen such that in the steepest
gradient cases, the object was embedded to a depth of
approximately one accretion radius within the envelope of
the primary.

The corresponding upstream Mach numbers also vary across
these simulations, following Equation (18) with =f 1k , from
 = 1.1 for  =r 0.2 to » 3.48 for  =r 2 and » 4.26
for  =r 3. By comparison to Figure 1 and the associated
discussion, we can see that the steepest density gradients and
the highest Mach numbers correspond to flow near the limb of
the primary-star envelope, while shallower gradients (and
lower Mach numbers) are found deep within the common
envelope. Therefore, in our panels of Figures 2 through 5, the
upper left panels correspond to flow around a deeply embedded
object, while the lower right panels correspond to flow around
an object nearer to the envelope limb.

The flow Mach number is plotted in the lower panel sets of
Figures 2 through 5. A dramatic transition occurs here with
upstream density gradient. In the case of shallow density
gradients, the symmetry of the bow shock is nearly preserved.
Upstream flow is supersonic, while downstream flow is
subsonic after crossing the shock and meeting a pressure
gradient imposed by the convergence of flow into the post-
shock region. As the density gradient steepens the portion of
material in the post-shock region that remains supersonic
increases dramatically. In flows with the steepest density
gradients, the material moves nearly ballistically with only a
small fraction having  1.

One implication of the changing Mach number can be seen
in the bow shock morphology. Bow shocks in homogenous
flow exhibit an opening angle, Θ, proportional to the Mach
number, where Q ~ =-

¥ ¥c vsin 1
s, , because the distur-

bance from the shock wave moves laterally at approximately
the sound speed while the stream motion is supersonic with ¥v .
As the Mach number (and density gradient) increasesin these
simulations, we see a narrowing of shock opening angles,
particularly along the well-defined edge facing the stellar center
(and the flux of the densest material). While the shock for
 =r 0.2 in Figures 2 and 3 is nearly planar, by the time
 =r 2.0, the trailing shock opens in a much narrower cone.
This consequence of choosing corresponding combinations of
density gradient and Mach number can be contrasted to the
simulations of MacLeod & Ramirez-Ruiz (2015a), which
adopted = 2 for all density gradients.

The shock morphology shows an interesting secondary
effect perpendicular to the orbital plane in cases of the steepest
density gradient, particularly for  =r 1.19, 1.89, 3.0 in
Figure 5. In these snapshots, we see that the shock opening
angle is not constant, but, in fact, widens with increasing
displacement into the wake. What we observe from the
streamlines in Figure 4 is that material focused onto the wake

at larger +x displacements comes from alarger impact
parameter in the-y-direction. Recalling the profiles of Figure 1,
this material, originating from deeper within the stellar
envelope, has higher sound speed. As a result, there is a
gradient of upstream Mach number in the y-direction (which
can be observed in the lower panels of Figures 2 and 4). The
shock opening angle, which depends inversely on this upstream
Mach number, thus broadens as the focused material is drawn
from deeper in the stellar envelope potential well. This effect is
observable primarily in cases of steep gradient (near the
envelope limb), where the derivatives of  and r become
large.
The equation of state of the stellar envelope gas also plays

a role in determining flow structure. The flow in the
g = G = 4 3s shown in Figures 4 and 5 is more compressible
than the flow in the g = G = 5 3s shown in Figures 2 and 3.
This results in higher densities in the immediate wake of the
embedded object because the pressure does not build up as
rapidly upon compression in the focused material. In the
steeper-gradient cases of g = G = 4 3s , we see a nested shock
outside of an accretion line, which differs from the much
broader fan of material in the  =r 2, g = G = 5 3s simulation.
In all cases, the secondary’s gravitational focus lifts some

dense material from the stellar interior against the primary
star’s gravity. This gravitational force leads some material
(with impact parameterRa) to rise and fall in a “tidal bulge”
trailing the embedded object. In material with impact parameter
Ra, as shown in the streamlines overplotted on the upper
panels of Figures 2 and 4, this gravitational force leads to a
slingshot around the embedded object. Some of this gas leaves
the simulation box after being deviated through a large angle
then expelled toward the lower-density of the primary star’s
limb (+y-direction in our simulation setup).

4.2. Rates of Accretion

Our numerical approach replaces the embedded object with a
sink on the grid, which absorbs convergent flow. The sink has
a radius of =R R0.05s a. We note that this sink could be on
a similar scale to that of a main-sequence star embedded in a
typical common envelope (see Table 1 of MacLeod &
Ramirez-Ruiz 2015a), but is certainly much larger than the
size of an embedded compact object like a white dwarf, neutron
star, or black hole. Here we study rates and properties of
material accreting through this inner boundary of our
computational domain, but note that the accretion rate is
dependent on the size of the sink boundary compared to the
accretion radius (for example, MacLeod & Ramirez-
Ruiz 2015afound lower accretion rates for =R R0.01s a than
for =R R0.05s a).
We begin by examining the mass accretion rate into the sink

boundary as a function of density gradient in our g = G = 4 3s
and g = G = 5 3s simulation suites, shown in Figure 6.
Accretion rates in Figure 6 are normalized to the Hoyle–
Lyttleton accretion rate,

p r= ¥ ¥˙ ( )M R v , 29HL a
2

which is the flux of material passing through a cross-section of
area pRa

2 assuming a uniform density background. One feature
of the accretion rate is that when density gradients are
introduced into the flow, the flow morphology becomes less
laminar and variability is introduced into the mass accretion
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rate. Therefore, we plot the median values (pink and blue lines)
along with the 5th and 95th percentile ranges (shaded regions)
for mass accretion rate, Ṁ , as a function of density gradient, r.

As density gradients steepen, the accretion rate into the sink
drops dramatically and becomes more variable. We see
accretion coefficients ( ˙ ˙M MHL) spanning more than an order
of magnitude as density gradient changes across typical values.
In all regions, the accretion efficiency is substantially lower
than accretion from a uniform medium. The imposition of a
density gradient breaks the symmetry of the inflowing material
(as seen in Figures 2 and 4). As opposed to the uniform
medium case, where momenta of opposing streamlines cancel,
there is net angular momentum in the flow, which forms a
barrier to efficient accretion when the circularization radius is
significantly outside the sink radius (MacLeod & Ramirez-
Ruiz 2015a). The increased variability in cases of steep density
gradient can be attributed to the increased turbulence of the
post-shock regions, as seen in Figures 2 through 5. The more
compressible g = 4 3 flow accretes at higher rates, particularly
in case of mild density gradient,  r 1, where radial pressure
gradients oppose flow convergence less strongly than in the
g = 5 3 case.

Figure 6 also compares our new accretion rates to a fitting
formula to the results of MacLeod & Ramirez-Ruiz (2015a) for

=R 0.05s , labeled M2015. The M2015 simulations all used
 = 2, g = 5 3, and the density gradient in the background
material, r, was uniform rather than polytropic. Finally, there
was no corresponding pressure gradient (a uniform pressure
background was assumed). We find that despite these differences,
accretion rates of asimilar order of magnitude are found.
However, differences appear to lie in the functional form of
r˙ ( )M and in the accretion rate for mild values of  r 1. The

two simulation suites presented here show higher mass accretion
rates for  r0.2 1.5 by a factor of a few than M2015. One

likely contribution to this difference is the lower Mach number in
our current simulations for these density gradients.
Turning now to the accretion of angular momentum, Figure 7

evaluates the distributions of the magnitude of specific angular
momentum, ∣ ∣l , of material absorbed by the sink boundary.
These are normalized to the Keplerian specific angular
momentum at the sink surface, lkep (for details, see MacLeod
& Ramirez-Ruiz 2015a, Section 4.3). In mild density gradient
cases, accreted material has a relatively narrow distribution of
specific angular momenta, with typical values much less than
Keplerian. In these cases, the mass accretion rate is high
(compare to Figure 6) because the net angular momentum of
the flow does not substantially oppose accretion when
∣ ∣l lkep. At higher values of the density gradient, the

distributions of specific angular momenta of accreted material
are much broader, with typical values of ~∣ ∣l l 0.5kep . None of
our simulations show signs of accreting material with nearly
complete rotational support ~∣ ∣l lkep, which makes sense

Figure 6.Median mass accretion rates into the sink boundary condition defined
by =R R0.05s a. Shaded regions denote the 5th to 95th percentile values of the
time-variable Ṁ . These are compared to the g = 5 3 case result of MacLeod &
Ramirez-Ruiz (2015a), which adopted  = 2 for all simulations (labeled
M2015). In all cases, we find that steepening density gradient inhibits
accretion, with typical values for large r of ˙ ˙M MHL. The g = 4 3 cases
show systematically higher Ṁ than g = 5 3, perhaps because pressure
gradients provide less resistance to flow convergence and accretion in the more
compressible flow.

Figure 7. Distributions of specific angular momentum of material accreted by
the sink boundary condition ( =R R0.05s a). Values are normalized to the
specific keplerian angular momentum at the sink boundary: =l R vkep s kep. The
distributions contain a range of <∣ ∣l l 1kep , because material with full rotational
support at the sink boundary ∣ ∣l l 1kep would not accrete. In cases of a
shallow density gradient, the net angular momentum of the incoming flow is
sufficiently small that flow circularizes inside the boundary condition. In these
cases, we see narrow distributions with ∣ ∣l l 1kep . These cases exhibit higher
accretion efficiencies in Figure 6. In steeper-gradient cases, accretion is limited
by angular momentumand we see overlapping, broad distributions of ∣ ∣l lkep,
with correspondingly low accretion efficiencies in Figure 6.
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because in a given timestep, any material that is fully
rotationally supported will be unable to accrete. However, the
g = 4 3 simulations show systematically higher specific
angular momenta than those of the g = 5 3 simulations.

4.3. Drag Forces

With the inclusion of the gravitational restoring force of the
primary star (and hydrostatic equilibrium pressure gradient) our
simulations are much better suited to the evaluation of drag
forces than those of MacLeod & Ramirez-Ruiz (2015a). This
section studies contributions to the force on an embedded
object from gaseous dynamical friction and from the accretion
of linear momentum by the sink boundary. The details of both
terms are outlined in Section 3.2.

We integrate the gravitational drag force (dynamical
friction), given by Equation (28), over 10 different volumes
each timestep. The integration volumes are spherical shells
with inner radius equal to Rs and outer radius evenly spaced in

( )rln out between R0.1 a and R3.5 a. The outer integration radii

therefore are, »r R 0.1out a , 0.15, 0.22,0.33, 0.49, 0.72, 1.06,
1.59, 2.36, 3.5. We find that in the steepest gradient cases, our
results for the outer two radii are somewhat sensitive to the
boundary position (whether the y z, domain extends R3.5 a or
 R4 a) because of the diode (no inflow) boundary conditions
imposed. We therefore show results for integration radii only
out to R1.59 a in what follows, which are converged with
respect to boundary location in even the steepest gradient cases.
The motivation for logarithmically spaced integration bins

is that dynamical friction forces (in both gaseous and collisio-
nless systems) in uniform media grow as µ ( )rln out (e.g.,
Chandrasekhar 1943; Ostriker 1999). By spacing our integra-
tion bins in this manner, each bin contains a similar
contribution to the total force. The “advective” force due to
the rate of accretion of linear momentum by the sink boundary
is given by Equation (25) and is labeled ˙Fpx

here. In our
coordinate system the dynamical friction force acts in the
positive direction (and is therefore a drag), while net accretion
generally acts in the negative direction (and is therefore a
thrust) because most material is accreted from behind the
embedded object.
We begin by examining the net drag forces as a function of

time in some example simulations. Figure 8 plots the net force
on the embedded object for each value of the outer integration
radius of the dynamical friction force, rout, as denoted by line
color. We show results for two simulations from the
g = G = 5 3s simulation suite. These simulations have differ-
ing density gradients,  »r 0.5 and  »r 0.8. In both cases, we
see an initial transient behavior while the flow sets up (the box
crossing time is » ¥R v8 a ), followed by a settling to a steady
state.
In the  »r 0.5 simulation, the flow visualizations in

Figures 2 and 3 show relatively smooth post-shock structure
without substantial small-scale vorticity. As discussed in
relation to Figure 7, this is likely because the sink is large
enough to swallow much of the circularizing material. As a
result of the smooth wake, the dynamical friction force
experienced by the embedded object is also relatively smooth.
The net force is negative (a thrust) when the dynamical friction
is only integrated to very small radii R0.3 a. When we include
the contributions from progressively larger radii, Fdf outweighs

˙Fpx
and the net force is positive (a drag).
The  »r 0.8 panel of Figure 8 shows many similarities to

the  »r 0.5 panel, but exhibits substantially greater time
variability. It is interesting to note that features in the variability
overlap at many scales in the cumulative drag force plotted.
Some variability is imprinted at the smallest scales, in
particular, the short timescale (but relatively small amplitude)
variation. The majority of the variability in the net drag is
imposed at larger scales, of the order of the shock standoff
distance. This occurs as vorticies shed in the wake cause some
breathing and instability of the position of the bow shock.
Since this large-scale flow instability is not present in the
shallower-gradient cases, the drag force is much steadier. An
interesting caveat to this point is that the size of the sink
boundary likely plays a role in both the time variability of the
drag forceand which flow parameters generate highly variable
post-shock regions. As shown in MacLeod & Ramirez-Ruiz
(2015a, Figure 7), smaller sink boundaries result in more
vorticity in the post-shock region and more variable accretion.
We can speculate that the boundary condition might imprint

Figure 8. Net drag forces (including contributions from dynamical friction and
accretion of linear momentum) as a function of simulation time and dynamical
friction integration radius (line color) for two example simulations. The initial
flow is marked by rising drag forces as a wake sets up. The  »r 0.5 case
shows relatively smooth drag force at late times, compared to the much more
time-variable force of the  »r 0.8 simulation. This difference is reflected in the
flow visualizations of Figures 2 and 3, which show a transition from smooth to
more turbulent post-shock flow as material transitions from circularizing inside
to outside the sink boundary. In this measurement of the drag forces, we see
variability imprinted on the net drag from small scales, particularly around
~ R0.5 a, the standoff distance of the bow shock (orange line and below in the
colorbar).
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itself on the time variability of the drag force in a similar
manner.

The relative displacement of the lines in Figure 8 is also
informative. To first order, the spacing in these simulations is
relatively uniform, indicating that the contribution to the
dynamical friction drag is growing approximately µ ( )rln out . A
transition to slightly larger spacings among the largest
integration radii comes after passing the approximate standoff
distance of the bow shock—in this simulation, ~ R0.5 a. Within
the shock standoff radius, the density field is more symmetric
(though still not entirely so) than integration radii that include
the shock (e.g., Thun et al. 2016).

Figure 9 shows the cumulative drag within different
(logarithmically spaced) integration radii. As seen in the time
series of Figure 8, the net drag is negative (a thrust) when the
dynamical friction is only integrated out to a small radius. In
the g = G = 5 3s case, we see that logarithmically spaced bins
contribute roughly equally to the cumulative drag force. This
implies that the net drag is growing according to~ ( )r rln out in ,
as is the case for gas dynamical friction in homogenous media
(Ostriker 1999; Thun et al. 2016). The contribution of each
increasing radius bin tells us something about the characteristic
scale rin in the dynamical friction force. A numerical

comparison quickly reveals that the appropriate rin is not Rs,
the radius of the inner boundary of our computational domain,
but is instead something of theorder of ~ R0.5 a. Thun et al.
(2016) find something qualitatively similar in their analysis,
and they point out that this minimum scale is the standoff
distance of the bow shock, because the density field becomes
markedly more asymmetric outside this distance. This implies
that our drag force results could be scaled to different
maximum radii using a factor of ~ ( )r Rln 0.5out a .
In the g = G = 4 3s simulation suite, the first characteristic we

note is that the overall coefficients of drag are substantially larger
than those in the g = G = 5 3s simulations. This is likely
because the more compressible equation of state results in a higher
density wake behind the embedded object, which then exerts a
stronger gravitational deceleration on the embedded object’s
motion. The shallow gradient cases appear to grow roughly
logarithmically, with ~r R0.5min a as in the g = G = 5 3s
simulations. The steepest gradient cases of the g = G = 4 3s
simulation suite show somewhat different behavior: the growth of
Fdf is superlogarithmic. Ostriker’s (1999)Equation (13) shows
that the logarithmic behavior comes, in part, from the constant
opening angle of the Mach cone. The cases that grow more
rapidly than ( )rln out in our wind-tunnel calculation are those that
show a flared wake due to the Mach number gradient discussed in
Section 4.1. With a wider wake opening angle with increasing
distance in these cases, the integrated dynamical friction drag
grows faster than logarithmically in rout.
Finally, we summarize our results for coefficients of

dynamical friction as a function of density gradient and Mach
number in Figure 10 (not including the advected momentum
term). We see immediately that the coefficient of drag rises
with increasing density gradient by a factor of several across
the span of values we have simulated. Qualitatively, what we
see is that in cases of steep density gradient, the drag force
depends not only on the value of the density at the embedded
object’s position (r¥), but also the sweep of higher densities
within the accretion radius. The flow focusses this dense

Figure 9. Net drag forces (including dynamical friction and momentum
accretion) for different dynamical friction outer integration radii and density
gradient. Points and their errorbars show the median, along with fifth and
ninety-fifth percentile regions for times < <t10 30 (after steady state is
established) in our simulations.

Figure 10. Dynamical friction drag forces plotted vs. density gradient for two
integration radii, R1.06 a and R1.6 a. The coefficient of drag is systematically
higher in the more compressible g = 4 3 simulations because a higher density
wake trails the embedded object. In all cases, the drag coefficient increases with
density gradient, because dense material offset from the object’s position in the
–y-direction (toward the primary-star center) is focused into the wake.
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material into the wake of the embedded object, causing it to
contribute to the net dynamical friction. We also can observe a
sharp downturn in the drag coefficient in the shallowest
gradient g = G = 5 3s case. This is readily explained by the
low Mach number of this simulation, = 1.1, which allows
pressure to partially resist the density asymmetry of the wake.
Ostriker (1999) discusses this effect extensively, and shows
that the drag should behave µ + -( )ln 1 2 in the supersonic
limit, thus decreasing steeply as   1 (Equation (15) in
Ostriker 1999). The lowest Mach number simulation in our
g = G = 4 3s suite has  = 1.35, so we do not expect (or
see) as dramatic of a correction due to low flow Mach number.

We note here that the coefficients of drag and their
dependence on r derived here are different (though with
asimilar order of magnitude) from those in MacLeod &
Ramirez-Ruiz (2015a, Figure 13), both because of our updated
formalism and different flow parameters (Section 2), and
because of our corrected dynamical friction diagnostics
described in Section 3.2. These updates represent a significant
improvement in our ability to correctly asses the dynamical
friction acting on the embedded object, and the difference of
our new results reflectsthese changes.

5. Implications for Common Envelope Inspiral

We have used idealized numerical simulations to study flow
morphologies, as well as coefficients of drag and accretion for
objects embedded in thecommon envelope. These quantities
describe the transformation of an object and its orbit through
the common envelope episode. Drag forces drive the orbital
tightening, while flow convergence and mass accretion might
transform the object itself.

There are, of course, caveats associated with the simplifications
we have made here. We have isolated particular flow conditions
and measured steady-state rates of drag and accretion, but it is
worth considering that steady state might not be realized during
the complex and violent flow of a common envelope interaction.
Among the potential concerns with extrapolating the results of
these simulations is that the geometry of our simulations does not
match that of the large-scale common envelope: we have adopted
a Cartesian geometry, where stars are spherical. We similarly
disregard the effects of the rotating frame that co-moves with the
embedded object. These simplifications almost certainly affect the
exact numerical values derived for our coefficents of drag,
particularly on scales >Ra, which become similar to the binary
separation, a, the scale where curvature becomes very important.
Similarly, by fixing the gas compressibility, γ, and studying two
representative values of 4/3 and 5/3, we ignore thermodynamic
transitions that might result from the gas’s passage through shocks
and compression as it passes near the embedded object.

Our coefficients of accretion have dependence on the size of
the sink boundary, as documented in MacLeod & Ramirez-Ruiz
(2015a). These rates should thus be treated as rates of flow
convergence through a boundary of a particular size: if we are
considering an embedded compact object, which might be orders
of magnitude smaller, it is not obvious that all of the converging
material will reach the embedded object’s surface. Second, not
all objects are thermodynamically able to accrete from the
common envelope gas. Accretion onto white dwarfs or main-
sequence stars has no obvious cooling channel (photons will be
trapped in the very dense flow) and therefore we probably
should not expect mass accumulation on these objects despite
flow convergence. On the other hand, for high enough accretion

rates, neutrinos can likely mediate the accretion luminosity of
accretion onto neutron stars (Houck & Chevalier 1991;
Chevalier 1993; Fryer et al. 1996; Brown et al. 2000; MacLeod
& Ramirez-Ruiz 2015b), and, lacking a surface, black holes will
certainly accrete material passing through their horizons.
Despite the remaining uncertainties, the coefficients of drag and

accretion derived here carry lessons for the dynamics of common
envelope episodes. In MacLeod & Ramirez-Ruiz (2015a, 2015b),
we argued that the ratio of drag coefficient to accretion coefficient
that arises from asymmetric flows in thecommon envelope
implies that objects grow by at most a few percent during their
inspiral. This qualitative conclusion remains unchanged despite
our improved derivations of drag and accretion coefficients.
In Figures 11 and 12, we illustrate the effect of including a

coefficient of drag that varies with the flow parameters of the
material that it is passing through. We use the primary-star
profiles of Figure 1, and (as elsewhere in this paper), take a
mass ratio ofq=0.1. We assume thatthe primary star is
initially non-rotating. We integrate the equation of motion
of the secondary star relative to the enclosed mass of the
primary, and add a drag force, p r=F C R vd d a

2 2, where
p r= ¥ ¥C F R vd df a

2 2 is the coefficient of drag. We illustrate
the influence of two choices: =C 1d , a Hoyle–Lyttleton drag
force, and a numerically derived Cd from our simulations
(which comes from Figure 10; here we take the force generated

Figure 11. Inspiral of a M0.3 secondary through a M3 , R31 primary star’s
envelope. The two examples show a drag force applied with p r=F C R vd a

2 2,
where we adopt the Hoyle–Lyttleton value of =C 1d and a coefficient
interpolated from our g = 5 3 simulation results of Figure 10, for an
integration radius of R1.6 a. With simulation coefficients applied, the initial
orbital inspiral is much more rapid, while the late inspiral slows and wraps
tighter than in the =C 1d case.

Figure 12. Same as Figure 11 for an M8 secondary object and an M80 ,
R720 primary star. Numerical coefficients of drag are interpolated from our

g = 4 3 simulation suite in this calculation.
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from <r R1.6 a, and use the g = G = 5 3s case for the M3
primary and the g = G = 4 3s case for the M80 primary). Our
example inspirals are initialized at =a R0.95 1 and are
integrated until =a R0.1 1.

A priori, we might imagine that the initial inspiral of
common envelope episodes is slow, taking many orbits while
the secondary passes through the low-density atmosphere of the
primary’s envelope. Instead, with the realistic coefficients, the
initial common envelope inspiral is substantially more rapid
than with the Hoyle–Lyttleton force alone. In the late inspiral,
the drag force drops, and the orbits wrap tighter. This result can
be qualitatively understood in the context of our simulations:
when an embedded object lies along a steep density gradient
(where the scale height is small compared to Ra), the object
gravitationally focusses dense material from deeper in the
stellar interior into its wake. This denser material (compared to
the density at the secondary’s position within the primary star)
leads to a more massive wake, and a higher dynamical friction
drag force. In terms of the flow streamlines shown in Figures 2
and 4, the envelope gas contributing to the wake comes largely
from dense material with impact parameters in the –ydirection
in simulation coordinates—toward the primary-star interior.

One potential impact of the increased rapidity of early
inspiral is on transients from the onset of acommon envelope.
The emergent class of luminous red novae transients has been
associated with mass ejection in stellar merger and common
envelope encounters (see, e.g., Tylenda et al. 2011; Ivanova
et al. 2013a; Williams et al. 2015; Kurtenkov et al. 2015;
MacLeod et al. 2017; Smith et al. 2016; Blagorodnova et al.
2017, for recent examples). A rapid early inspiral would match
the rapid light-curve rise of some of these transients. For
example, the M31 LRN 2015 outburst rose from detection to
peak brightness in a timescale of the order ofone binary orbital
period. With a ~ – M3 5 , ~ R35 progenitor giant, this system
had a primary star broadly similar to that shown in Figure 11
(Williams et al. 2015; MacLeod et al. 2017). This is a
surprisingly rapid timescale when we compare to the slow early
inspiral predicted by Hoyle–Lyttleton drag coefficients
( =C 1d ), but it is perhaps more consistent with our numerically
derived coefficients, which show substantial inspiral in a single
orbit. There remains much work to be done, though, to
establish the mappings between orbit evolution, mass ejection,
and light-curve generation in these events.

The q=0.1 inspirals of Figures 11 and 12 differ
qualitatively between the M3.0 primary and the M80 primary
in the number of orbits elapsed during the inspiral. For the

M3.0 primary, the secondary spirals to =a R0.1 1 in ∼4 orbits,
while in the M80 case, the plunge takes ∼13 orbits (with the
interpolated drag coefficients). This difference reflects the
difference in primary-star envelope structure. The density of
the M80 red supergiant envelope is very low, because
radiation pressure (and the fact that the star is nearly at the
Eddington limit) inflates the envelope (e.g., Sanyal et al. 2017).
One consequence of this difference might be that the embedded
star orbits through material that it has disturbed (or shock
heated) in previous passages if the change in separation
between orbits is not greater than the typical bow shock scale.
In other words, when ȧP Rorb a, we can expect that the
envelope is disturbed from its initial state on subsequent
orbits.7 In these cases, we might expect some departure from

our common envelope wind tunnel flow relations. The exact
extent to which this effect is important will depend on the
spherical geometry of the flow (e.g., Kim & Kim 2007a, 2007b;
Kim et al. 2008; Kim 2010, 2011) and is difficult to asses
within the context of the simulations presented here.

6. Conclusions

In this paper, we have shown characteristic relationships
between the density scale height and Mach number in the
common envelope based on the primary star’s structure, and we
have studied three-dimensional realizations of these gas flows
in an idealized “wind tunnel” setup. We draw several key
conclusions from this work.

1. We have derived relationships for dimensionless flow
scales that generically characterize common envelope
flows. In particular, Equations (18) and (19) relate flow
Mach numbers and density gradients in terms of binary
mass ratio, envelope structure, and relative velocity.

2. These relationships between flow parameters affect
common envelope flow morphologies in a correlated
way. Low Mach number flows tend to have mild density
gradients, while high Mach number flows are always
accompanied by steep gradients.

3. Density gradients in common envelope flows limit mass
accretion toward the embedded objects to a fraction of

p r= ¥ ¥Ṁ R vHL a
2 , where density and velocity are defined

at the location of the embedded object within the
envelope.

4. Dynamical friction (gravitational) drag forces are
enhanced by steep density gradients compared to the
Hoyle–Lyttleton drag force, p r=¥ ¥ ¥Ṁ v R vHL a

2 2 ,
because of the contribution from dense material
r r¥( ) that is focused into the wake of the embedded
object from deeper within the stellar interior (the
-y-direction in our wind tunnel setup). These conditions
are particularly relevant near stellar envelope limbs,
implying more rapid orbital evolution at the onset of
common envelope interactions than predicted from the
Hoyle–Lyttleton force alone, with potential implications
for the timescale of associated transients.

There remain many future questions to address, even in the
context of simplified studies of flow within a common envelope
“wind tunnel.” In future simulations, we imagine it will be
particularly worthwhile to consider flow properties in cases of
partial synchronization between the primary-star envelope and
the secondary’s orbital motion ( <f 1k ), the role of equation of
state, and of non-accreting secondary stars. To understand open
questions about the transition from dynamical plunge to
subsonic motion and stabilized inspiral (Podsiadlowski 2001;
Ivanova et al. 2013b; Ivanova & Nandez 2016; Kuruwita
et al. 2016; Iaconi et al. 2017), it is likely critical to move
beyond the wind tunnel formalism established here to capture
the details of the passage of objects through envelope gas,
which they have already perturbed. However, even shock-
heated material will retain the relationships between density
gradient and flow Mach number described in Section 2 if it is in
(approximate) hydrostatic equilibrium.
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7 See, Livio & Soker (1988) and Iben & Livio (1993) for similar
considerations based on stellar envelope profiles.
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