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Abstract

We present the results of the theoretical analysis and numerical simulations of the Weibel instability in two
counterstreaming hot relativistic plasma flows, for instance the flows of electron–proton plasmas with rest-mass
densities 10 g cm4 3r ~ - - , Lorentz factors 10G ~ , and proper temperatures T 10 K13~ . The instability growth
rate and the filament size at the linear stage are found analytically and are in qualitative agreement with the results
of three-dimensional particle-in-cell simulations. In the simulations, incoherent synchrotron emission and pair
photoproduction in electromagnetic fields are taken into account. If the plasma flows are dense, fast, and hot
enough, the overall energy of the synchrotron photons can be much higher than the energy of the generated
electromagnetic fields. Furthermore, a sizable number of positrons can be produced due to the pair photoproduction
in the generated magnetic field. We propose a rough criterion to judge copious pair production and considerable
synchrotron losses. By means of this criterion, we conclude that the incoherent synchrotron emission and the pair
production during the Weibel instability can have implications for the collapsar model of gamma-ray bursts.
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1. Introduction

The Weibel instability(Weibel 1959) is thought to be a
source of a near-equipartition magnetic field and power-law
high-energy tails in electron spectra(Silva et al. 2003; Saito &
Sakai 2004; Spitkovsky 2008; Nishikawa et al. 2009) in
numerous astrophysical objects, e.g., gamma-ray bursts
(GRBs). The magnetic field lives for a long time, due to
the nonlinear growth of the field scale(Silva et al. 2003;
Medvedev et al. 2005), or for even longer, due to continuous
particle injection(Garasev & Derishev 2016), and ensures the
prolonged synchrotron emission needed for GRB afterglow
interpretation(Piran 1999). The synchrotron afterglow model
explains the GRB emission fairly well, at least in the radio
band(Chevalier 1998; Soderberg et al. 2010). The Weibel
instability has been intensively studied theoretically(Grassi
et al. 2017), numerically (including extreme laser fields; see
Efimenko et al. 2017), and experimentally(Liu et al. 2011;
Huntington et al. 2015; Garasev et al. 2017).

One may notice that the power of the synchrotron emission
is proportional to(Landau & Lifshitz 1975) B2 2g , where γ is
the electron Lorentz factor and B is the magnitude of the large-
scale electromagnetic fields. Thus, this power is approximately
proportional to the cube of the energy density of the
flows(Piran 1999), and the energy being carried away by
synchrotron photons can become greater than the energy of
large-scale electromagnetic fields for quite dense and energetic
flows. More precisely, we consider plasmas and fields such that

1c ~ , where χ is the quantum parameter crucial for
synchrotron emission(Berestetskii et al. 1982),
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where ee and pe are the electron energy and momentum, E and
B are the electric and magnetic field magnitudes, ÿ is Planck’s
constant, c is the speed of light, and e 0> and m are the
electron charge and mass, respectively. If 1c , the energy of

a photon emitted by an electron is about the electron energy,
and the average distance at which the photon emission occurs is
about ℓ ℓfem a~ , where ℓ mc eBf

2~ ( ) is the radiation
formation length(Berestetskii et al. 1982) and e c2 a = »
1 137 is the fine structure constant. Hence, the ratio of ℓ cem to
the timescale of the Weibel instability(Grassi et al. 2017) is the
following:
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where e n m4 e
2 1 2w p= ( ) is the electron plasma frequency,

and we use the equipartition assumption B n mc8 e e
2 2p g~ ¯ ,

where ne is the electron density and eḡ is the mean electron
Lorentz factor. Equation (2) obviously means that if 137e ḡ
and 1c ~ is reached, the synchrotron emission potentially can
take away the electron energy on a timescale shorter than the
Weibel instability timescale. Thus, synchrotron losses should
be taken into account if one considers the Weibel instability in
dense ultrarelativistic plasma flows.
If for an electron 1c ~ , it quite probably emits a photon

with momentum p pe~g almost parallel to the electron
momentum, p peg , and with the energy of about the electron
energy(Berestetskii et al. 1982; Baier et al. 1998), ee e~g .
Pair photoproduction in a strong electromagnetic field,

e e , 3g  ++ - ( )

is governed by the quantum parameter
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e

m c
E c , 4

3 4
2 2
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which is the same as the χ in Equation (1) with eg and pg
substituted for by ee and pe, respectively. Hence, for a photon
emitted by an electron with 1c , we estimate 1  . In this
case, the probability of the pair photoproduction is of the order
of the probability of the emission of a synchrotron photon by
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the electron. Therefore, pair production (Equation (3)) should
be also taken into account.

Here we present the results of numerical simulations of the
Weibel instability in two counterstreaming hot and dense
relativistic plasma flows. The simulations were performed with
the particle-in-cell (PIC) code QUILL(Nerush & Kostyukov
2010; Serebryakov et al. 2015), utilizing the Monte Carlo
technique(Nerush et al. 2014) together with Baier–Katkov
quasiclassical formulas (Berestetskii et al. 1982; Baier et al.
1998; for PIC codes with pair production, see also, e.g.,
Grismayer et al. 2017, Kalapotharakos et al. 2017). The code
QUILL conserves the sum energy of fields and particles that
allows, for instance, the laser field absorption in a self-
generated pair plasma(Nerush et al. 2011) to be simulated.
Unlike synchrotron emission and pair production, particle
collisions (e.g., Compton scattering and bremsstrahlung) are
not included in the simulations.

Let us also note that in the theoretical considerations of the
Weibel instability, we follow the electromagnetic scenario
(Stockem et al. 2014), because for ultrarelativistic flows
( 1G  , where Γ is the Lorentz factor of a flow in some,
e.g., laboratory, reference frame K ), almost all velocity vectors
of plasma particles belong to a cone 1q G despite the high
temperature of the flow (see Figure 1; here, θ is the angle
between the particle velocity and the flow velocity). This is true
even if the mean Lorentz factor of the flow particles in the
comoving reference frame K ¢ is much greater than Γ, which is
evident from the Lorentz transform of angles from the proper
reference frame of the flow K ¢ to K:

v

v V
tan tan , 5x

x

q q=
¢

G ¢ +
¢

( )
( )

where V is the flow velocity in K and the x-axis is parallel to it.
Furthermore, it follows from the transformation of the Lorentz
factor,

v V1 , 6xg g= ¢G + ¢( ) ( )

that the proper temperature of the flow determines only the
mean energy of particles in the laboratory reference frame,
g g= ¢G¯ ¯ (we assume v 0x¢ = ). Therefore, a hot plasma flow
with 1G  should behave similarly to a cold plasma flow, and
the Weibel instability in the counterstreaming flows should
grow in accordance with the electromagnetic scenario

(formation and growth of current filaments with azimuthal
magnetic field and low electric field; see Stockem et al. 2014;
Garasev et al. 2017 and references wherein) rather than with the
electrostatic one.
This paper is organized as follows. In Section 2.1, we

consider the Weibel instability of the electromagnetic type in
counterstreaming relativistically hot plasma flows analytically,
without synchrotron emission and pair production taken into
account. In Section 2.2, we estimate the plasma parameters
corresponding to 1c ~ and 1 ~ , hence, to efficient
synchrotron emission and copious pair production. In
Section 3, the results of numerical simulations with synchro-
tron emission and pair production taken into account are given,
and in Section 4, their astrophysical implications are discussed.
In Section 5, the summary of the paper is given.

2. Weibel Instability in Hot Collisionless Plasmas

2.1. Effect of Temperature

Let us consider the stability of two relativistic counter-
propagating plasma flows moving along the x-axis with respect
to the formation of a cylindrically symmetric current filament.
In the following, the properties of the flows are denoted by the
indices 1 (the flow velocity v 0x > ) and 2 (v 0x < ). We also
assume that the filament remains quasi-neutral and

n n n n , 7e i i e1 2 1 2d d d d= = - = - ( )

where nd is the density perturbation relative to the initial value
for the flow (n1 or n2) and the indices i and e refer to protons
and electrons, respectively (assumption (7) will be justified a
bit later; it is not always fulfilled and is used to simplify
calculations). Let r and j be the cylindrical coordinates with
respect to the axis of the current filament that coincides with the
x-axis. x, r, and j are right-handed coordinates. We also
assume that none of the plasma characteristics depend on x,
therefore Maxwell’s equations can be written as follows:
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To obtain the equation for the density perturbation, one
should start from the Boltzmann equation in Cartesian
coordinates:

v
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m
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where r vf ,( ) is the distribution function, v1 2 1 2g = -( ) , and
we assume that for particles F v^ , hence d dt 0g = . For the
particle density,

n y z f y z v v v dv dv dv, , , , , . 11
v c

x y z x y z
2 2

=
<
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From the Boltzmann equation, we obtain

v
n

t
n , 12

¶
¶

= - · ( ¯) ( )

Figure 1. Mapping of the particle velocity values v¢ and the angles q¢ (between
v¢ and the x-axis) from the proper reference frame of the flow (K ¢, left) to the
laboratory reference frame (K, right). Different values of q¢ are shown with
different colors, and the left panel depicts the color bar for the right one; the
radial coordinate depicts either the velocity v¢ (left) or v (right). The x-axis is
parallel to the direction of V , where V is the velocity of K ¢ in K. For this
plot, V c0.86= .
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where the bar denotes averaging over velocities:
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For the average velocity, we obtain
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where the Einstein summation convention is used. We also
assume that the covariance matrix for v is a constant, i.e.,

v v v v const, 15kl k k l l º - - =( ¯ )( ¯ ) ( )

and the distribution function is assumed to be symmetrical in
the yz coordinates, so that 0k l =¹ and zz yy  = º . Then,
Equation (14) for vy or vz can be written as
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We suppose that in the case of a relativistically hot plasma in
the proper reference frame, the plasma particles are uniformly
distributed over the surface of a sphere v v v cx y z

2 2 2 2¢ + ¢ + ¢  ,
hence, using velocity transformation formulas,
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one may easily derive the expression for  in the reference
frame where the flow velocity is relativistic:
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Here, v c v vx y z
2 2 2 1 2¢ = - ¢ - ¢( ) .

After that, Equations (12) and (16) can be rewritten in
cylindrical coordinates, assuming that v 0=j̄ :
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We consider only the initial stage of the instability, so for the
force in Equation (21), the following expression can be used:

F eB , 22r  j¯ ( )

where the sign is determined by the sign of vx̄ and the sign of
the particle charge, hence we can estimate

F

m

F

m
. 23r r

g g


⎛
⎝⎜

⎞
⎠⎟

¯
¯

( )

Notice that the sign of the force is the same for the ions
(electrons) of the first flow and for the electrons (ions) of the
second flow, so in the case of flows with equal densities,
Lorentz factors, and temperatures, the density is perturbed such
that the quasi-neutrality condition, Equation (7), stands true.

Otherwise, when the densities or Lorentz factors of the flows
do not coincide, condition(7) may not be fulfilled, but we will
use it for the sake of simplicity, assuming the plasma is quasi-
neutral.
We look for the solution of Maxwell’s Equations (8) and(9)

together with Equations (20) and(21) in the following form:
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t

0 0 l= L ( ) ( )

n n e J r , 25e
t

1 0 0d d l= - L ( ) ( )

v B e
dJ r

dr
, 26r

t 0 l
µ µj

L ( ) ( )

where E0 and n0d are the amplitudes and J0 is the zero-order
Bessel function of the first kind, i.e., the solution of the
equation
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Therefore, we obtain the equations that describe the parameters
of the cylindrically symmetric mode:
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where n1, again, is the first flow initial density n n t 0e1 ,1º =( )
and e n m41

2
1

1 2w p= ( ) is the related plasma frequency.
The first equation at 0 = describes, in addition to the

stable mode, the Weibel instability, and the second at E 00 =
describes quasi-sound waves. In the first and second cases, it is
easy to obtain a relation between the characteristic spatial scale
of the mode λ and the characteristic “increment” Λ:
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The relation between Λ and λ can be found from
Equations (30) and (31) in the general case as well:
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therefore, taking into account that c1
2  , we derive for the

unstable mode
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In the above equation, it can be seen that at 0 ¹ , the
considered mode is unstable ( 02L > ) if

2
, 341 1
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
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g
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>
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i.e., for modes with a spatial scale greater than a few. It can be
easily shown that in the presence of temperature, the maximum
increment mL is realized for the mode with the following
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spatial scale,
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2 2 . 36m 1 1p w p gL ~ ¯ ( )

Note that although we obtain Equations (35) and (36) for flows
with equal parameters, we will use these equations for flows
with different parameters as well, assuming that the index 1
denotes the flow with a higher corrected plasma frequency,

1 1
1 2

2 2
1 2w g w g>¯ ¯ , which yields a higher value for the

increment(Equation (36)). The obtained estimates are com-
pared with the results of the numerical simulations in Section 3.

2.2. Pair Production

Here we consider pair photoproduction, Equation(3), in
electromagnetic fields during the Weibel instability. The pair
production becomes efficient if 1  , where the quantum
parameter ù depends on the field magnitude and the energy of
the photon; see Equation (4). In order to check if the
process(Equation (3)) appears in some astrophysical objects,
the magnitude of the electromagnetic fields and photon energy
should be found.

For the sake of simplicity, we consider the Weibel instability
in two counterstreaming plasma flows in the reference frame
where the momentum flow is the same for both jets:

n V n V . 371 1 1
2

1 2 2 2
2

2h hG G ( )

Here, we estimate 1 1 1g h» G¯ and 2 2 2g h» G¯ . The parameter η
defines the average kinetic energy of ions in the reference
frame comoving with the flow as follows:

1 . 38ih g= -( ) ( )

From here on, we assume that flow 1 is denser than flow 2
(n n1 2> ), and in flow 2, ions and electrons are more energetic
than those in flow 1 ( 2 1g g¯ ¯ ).

We assume that a sizable part of the initial energy of the
flows is transferred to the energy of the electromagnetic fields,
and the magnitude of the fields can be estimated as follows:

B n mc8 , 392
2

2
2p g~ ¯ ( )

where we additionally suppose that the volume occupied by the
plasma is not changed much while the filaments grow. An
electron in strong-enough fields emits photons with energy of
about its own energy (namely, if 1c ; see Section 1).
Therefore, in ù (Equation (4)), we can estimate the photon
energy as follows:

mc , 402
2e g~g ¯ ( )

which leads to

n r8 , 41e C2
3 2

2
2 g p l~ ¯ ( )

where r e mce
2 2= is the classical electron radius and

mcC l = is the Compton wavelength. Supposing that the
average electron energy initially or after the acceleration
process(Silva et al. 2003; Spitkovsky 2008) is as high as the
initial ion energy, we have M m2 2 2g h» G¯ . Therefore, copious

pair production is ensured if

M m n r8 1. 42e C2 2
3 2

2
2 h p l~ G( ) ( )

Here, again, all values are given in the center-of-momentum
reference frame(37) and the index 2 denotes the flow with
particle density lower than the density of the other flow.
In the case of strong synchrotron losses, the equipartition

assumption can lead to an overestimation of the magnitude of
the fields. On the other hand, we estimate the photon energy
using the mean particle energy and do not take into account
high-energy spectrum tails (Silva et al. 2003; Spitkovsky 2008).
However, the resulting criterion of copious pair production,
Equation (42), can remain relevant despite the losses; this is
confirmed in the next section by means of numerical
simulations.

3. Results of Numerical Simulations

To verify the above estimates, we performed three-dimen-
sional numerical simulations of the development of the Weibel
instability in counterpropagating hot plasma flows using the
PIC code QUILL(Nerush & Kostyukov 2010; Serebryakov
et al. 2015). To numerically solve kinetic equations, PIC
simulations in which distribution functions are represented
as sums of quasiparticle shape functions are generally used
(Pukhov 2003; Birdsall & Langdon 2004), and Maxwell’s
equations are solved with finite-difference schemes. In QUILL,
the algorithms of Pukhov (1999) are used in order to solve
Maxwell’s equations and to approximate currents and fields. In
order to solve the equations of quasiparticle motion, we used
the method of Vay (2008).
The simulations were carried out taking into account the

emission of hard photons and pair photoproduction in strong
fields by means of the Monte Carlo method. Namely, for a
quasiparticle (e.g., an electron), at every time step, two random
numbers (one relates to the emitted photon energy and the other
to the emission probability), which are used to make decision
on the photon emission(Elkina et al. 2011), are generated.
Then, if photon emission occurs, a new quasiparticle (hard
photon with the same position as of the emitting electron) is
added to the simulation region, and the electron momentum is
decreased by the momentum of the emitted photon. Pair
photoproduction is treated similarly. The method described
leads to the correct energy transfer between fields, particles,
and secondary particles, and the QUILL code is capable of
simulating, for instance, the field absorption in self-sustained
electromagnetic cascades(Nerush et al. 2011) or the influence
of synchrotron losses on the ion acceleration by the laser
field(Nerush & Kostyukov 2015; Artemenko et al. 2016).
Using the classical description of the electron trajectory

together with quantum synchrotron formulas for the photon
emission and pair production is valid because the radiation
formation length in strong-enough fields is much smaller than
the field characteristic scale (Landau & Lifshitz 1975; Baier
et al. 1998), thanks to a spectral gap between the large-scale
electromagnetic fields and synchrotron photons(Gonoskov
et al. 2015). It is worth noting that collisions of particles and,
in particular, Compton scattering and bremsstrahlung were not
taken into account.
The simulations performed were three dimensional, and the

quasiparticle merging algorithm (the algorithm that reduces the
number of particles in the simulation domain; see Timokhin

4

The Astrophysical Journal, 851:129 (12pp), 2017 December 20 Nerush, Serebryakov, & Kostyukov



2010), implemented in QUILL, was not used. In comparison
with two-dimensional simulations with merging of quasiparti-
cles, our setup obviously requires much more computational
resources. This limits the simulation resolution and the
computational time (see below); nevertheless, this fits better
the aims of the simulations, i.e., first, it clearly demonstrates the
electromagnetic nature of the Weibel instability for the
considered parameters, and, second, it clearly demonstrates
that the criterion given by Equation (42) is reasonable. Two-
dimensional simulations, in that 1  and the saturation of
the Weibel instability are reached, will be considered in further
publications.

We chose the following simulation parameters: the size of
the simulation region was 54 24 24 1

3l´ ´ , where 1l , as
before, is the plasma wavelength of the denser flow. Initially,
each of the flows occupied half of the region. The transverse
step of the numerical grid was equal to y z 0.14 1lD = D = ,
the longitudinal one was x 0.063 1lD = , and the time step was

t 0.06 2 1p wD = ´ . The initial number of quasiparticles of
each species (electrons and ions) in a cell is equal to eight. The
plasma density of the flows had a flat transverse profile with a
decrease in the density at the edges to zero on the scale 2 1l~ .
We used open boundary conditions that allowed the free
outflow of electromagnetic waves and particles at the
boundaries(Pukhov 1999).

Initially, the particles of the flow in the comoving reference
frame had the distribution

f e , 43i
1µ g h- - ( )( )

f e , 44e
m M1µ g h- - ( )( ) ( )

hence, the average kinetic energy of the ions (or the electrons)
in the comoving reference frame was equal to Mc2h.

We carried out a series of seven simulations for different
Lorentz factors, densities, and temperatures of the plasma
flows, which were chosen randomly. The parameters of the
simulations are given in Table 1, where s* denotes the
simulation identifier. The proton-to-electron mass ratio M m
in the simulations was chosen to be much lower than that for
the real particles in order to reduce computational costs. For the
given parameters of the simulations, the instability growth rate

mL and the transverse scale of the filaments ml were computed
using Equations (36) and (35), respectively. The parameter ù,
crucial for pair photoproduction, was estimated using
Equation (42). In most simulations, the end time was equal
to t 27 2end 1p w= ´ . However, in some simulations, we were
forced to terminate them before tend due to the significant
growth of the number of particles (mostly photons). In those
simulations, the end time is given as a subscript in a simulation
identifier (e.g., s422). The ratio of the number of positrons to the

number of electrons N Np e at the end of a simulation and the
quantity dN dNp g characterizing the positron generation
efficiency (see more details further) are computed in the
simulations and are also given in Table 1.
Let us consider the s2 simulation as an example. Figure 2(a)

shows the sum of the electron and ion density (shown as the
color intensity) as well as the relative electric charge (shown as
color hue) at the filament cross-section. It is seen that the
plasma remains close to neutral during the instability growth.
Figure 2(b) depicts the transverse (azimuthal) magnetic field
generated around the filaments. It should be noted that the
typical filament size and the scale of the magnetic field they
generate are approximately of the order of the distance between
the filaments. From Figures 2(c) and (d), showing the electron
and photon density distributions, respectively, one can see that
the positions of these distributions’ maxima coincide. At the
same time, the distribution of the generated positrons is similar
to the distribution of the magnetic field (see Figures 2(b), (c),
and (e)).
In Figure 3 (top), the growth of the energy of electro-

magnetic fields, the growth of the energy of photons and
positrons in the process of instability development in the s2
simulation, are shown with solid lines (for comparison, the
dashed lines show the same quantities for the s3 simulation).
Figure 3(bottom) depicts the number of electrons, positrons,
and synchrotron photons in the s2 and s3 simulations as
functions of time. Despite the fact that the energy of the
electromagnetic fields in the s3 simulation is higher, the
number of positrons produced in it is negligible in comparison
with the s2 simulation. It can be seen from Figure 3 (top) that
the growth rate of the plasma field energy (i.e., the slope of the
f lines) depends on time, which is explained by the transition
from the linear stage of the instability development to the
nonlinear one. The nonlinear stage is characterized not only by
the perturbation of the plasma density of the order of its initial
value, but also by the merging of the current filaments. As an
example, see the density distribution in the y–z plane for the s3
simulation at two different time instants (Figure 4).
Consider the entire set of simulation results (s1–s7). The

characteristic transverse scale of the filaments ℓ was found from
the simulation results as follows. First, the modulus of the
Fourier image of By in the y–z plane was computed, and its
background (values below 0.1 of its maximum) was deleted.
Figure 5(a) shows such a Fourier image for the s3 simulation
and t c10 1l= . Then, using this image, the dispersion of the
transverse wave vectors was computed, for example,
Figure 5(a) yields the dispersion k 9.72

1
2l» and there-

fore ℓ k2 2 1p l= » .
For the s1–s7 simulations, the characteristic distance

between the filaments ℓ computed with this method as a

Table 1
Simulation Parameters and Results

Simulation n1 1h 1G n n2 1 2h 2G M m m 1l l 2 m 1p wL ù N Np e dN dNp g

cm 3-( )
s1 1×1025 2 25 0.25 20 10 10 0.14 0.28 14 1.4×10−3 6×10−3

s226 6.3×1023 20 10 1 20 10 10 0.71 0.14 7.2 1.4×10−3 3×10−3

s3 2.5×1024 5 10 0.4 5 25 1 0.11 0.89 0.14 1.5×10−7 <10−6

s422 1.6×1023 1.3 10 1 1.3 10 15 0.22 0.45 0.11 1.4×10−8 <10−6

s5 7.7×1022 10 16 0.5 2 160 15 0.49 0.13 6.5 7×10−6 7×10−5

s623 1.9×1022 7 4 0.7 4 10 20 0.94 0.27 0.27 3.6×10−9 <10−6

s7 5×1024 2 4 0.08 1.2 80 20 0.5 0.5 5.7 3.8×10−6 1×10−4
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function of time is given in Figure 5(b). The dependence of the
energy of hard photons g and the dependence of the energy of
the electromagnetic field em on time are depicted in
Figures 5(c) and (d), respectively.

In small times, the magnetic field generated due to the
Weibel instability is smaller than the noise associated with the
temperature, so the described method of filament scale
computation gives an ℓ of the order of the transverse step of
the numerical grid. However, if the generated magnetic field
becomes greater than the noise level, the sharp growth of ℓ

from the grid step to some other value occurs. We suppose that
the value of ℓ computed at the end of this sharp growth
corresponds to the filament scale reasonably well. The time
instants of this sharp growth and the resulting transverse scales
of the filaments for the s1–s7 simulations are shown in
Figure 5(b) with dots, together with the estimated value of the
filament size 5 ml computed with Equation (35) and marked

with the short black lines. We multiplied the analytical values
ml by 5 for better coincidence between theory and simulations.

The need for this multiplier can be explained by the fact that
Equation (35) gives the filament radius whereas the method of ℓ
computation instead gives the distance between filaments. Note
that the filament size computed for the s1 and s3 simulations is
close to the step size of the numerical grid, and thus, in these
simulations, the linear stage of the Weibel instability was
computed with a higher inaccuracy than in the others.
The nonlinear stage of development of the Weibel instability

is characterized, first, by the fact that the density perturbation
becomes of the order of the initial particle density and, second,
by the filament merging. In Figure 5(b), almost for all

Figure 2. Results of the s2 simulation. (a) In the y–z plane, the sum of the
proton and electron density is shown with the color intensity, and the ratio of
the charge density to the total particle density is depicted as the color hue (q;
the red color corresponds to a plasma consisting of 60% ions and 30%
electrons, the blue color corresponds to a 30% ion and 60% electron mixture;
see also Figure 4). (b) The transverse magnetic field B By z

2 2 1 2+( ) distribution
in the y–z plane; white lines sketchily show the field direction. The electron and
positron density distribution (c) in the y–z and (e) in the x–y planes. Note that
the maximum positron density is about two orders of magnitude lower than that
of electrons. (d) The gamma quanta density in the y–z plane. All distributions
are given at t c26 1l= . Both the x–y plane and the y–z plane pass through the
center of the simulation area.

Figure 3. Normalized particle and field energy (top) and the particle number
(bottom), as they depend on time in two different simulations: s2 (solid lines)
and s3 (dashed lines). 0 is the initial overall energy of ions in the simulation
box, multiplied by 2. Electrons (e), positrons (p), photons (γ), and
electromagnetic fields (f) are shown.

Figure 4. Total electron and ion density n n n n4e i 1= +( ) and the relative
charge density q n n n ni e i e= - +( ) ( ) for the s3 simulation at different time
instants: t c10 1l= (left) and t c20 1l= (middle). The right panel shows the
color correspondence for different n and q values. The same color
correspondence is used in Figure 2(a).
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simulations, the nonlinear stage starts right after the marked
time instants and manifests itself as the subsequent growth of ℓ.

As Figure 5(d) and Table 1 demonstrate, by an order of
magnitude, the increment at the linear stage of instability
development, obtained in the numerical simulations, is in good
agreement with the increment estimated with Equation (36),
which does not take into account many factors. For example, in
the case of essentially different parameters of flow 1 and flow
2, the difference in the density of protons and electrons in
filaments can be of the order of the particle density itself (see
Figure 4). In addition, the energy of the emitted gamma quanta
can significantly exceed the energy of the generated electro-
magnetic fields even at the initial stage of instability
development (see Figure 3).Equation (36) probably remains
relevant in this case due to the following competing effects. On
the one hand, the radiation losses decrease the particle energy
that should increase the instability increment; on the other
hand, electrons with lower energy become thermal earlier and
no longer pump the instability.

At the saturation of the Weibel instability, in the case of
counterstreaming plasma flows, the filament current is
determined only by the plasma density, and the maximum
magnetic field is about B n ℓe~ . Therefore, the filament size is

strongly coupled with the energy of the magnetic field.
Therefore, the synchrotron emission should also lead to a
smaller filament radius, because the radiation losses reduce the
energy of the magnetic field.
For the s2–s6 simulations, a noticeable increase in the

instability increment is observed during the transition to the
nonlinear stage (after the time instants marked with dots in
Figure 5(d)), but after that, the increment can decrease because
the filaments grow and the characteristic distance between them
increases. It should also be noted that a rapid change in the
filament configuration at the nonlinear stage (filament merging)
can lead to the appearance of strong electric fields.
Numerical simulations in this work were carried out at the

limit of technical capabilities available to the authors. Several
calculations were stopped at t c27 1l< (until the flows
intersected each other completely in the simulation region)
because of the large number of newly born photons and
limited RAM resources. Because of this, the saturation of the
Weibel instability was not attained in almost all calculations;
however, in all calculations, a nonlinear stage of the
instability was achieved (see Figure 5). Since the simulation
parameters are different and the simulation time is some-
times less than desired, we introduced the parameter

Figure 5. (a)Modulus of the two-dimensional Fourier image of the magnetic field component B y z,y ( ), F By∣ ( )∣, in the simulation s3 at t c10 1l= and at x passing the
center of the simulation box; ky and kz are the wavenumbers along the y- and the z-axes respectively. (b) For the s1–s7 simulations, the filament size ℓ determined from
the Fourier images of By, as a function of time. Dots mark the time instants at which the determination of the filament size from F By∣ ( )∣ starts to be relevant. The
ordinate of the black horizontal bars corresponds to the estimate of the filament scale, Equation (35), multiplied by 5, i.e., 5 m 1l l (see Table 1 for the numerical
values). (c) The energy of the gamma-rays and (d) the energy of the large-scale electromagnetic fields normalized to the ion energy of the unperturbed flows that fill up
the simulation box entirely, 0 . The short black lines in (d) are the exponents texp mem µ L , where mL is the estimate of the instability growth rate, Equation (36) (see
Table 1 for the numerical values).
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dN dN dN dt dN dtp p=g g( ) ( ) in order to isolate the simula-
tions with abundant positron production. This parameter roughly
shows the proportion of photons that produce electron–positron
pairs. The dependence of the number of positrons and dN dNp g
on time in the s1–s7 simulations is shown in Figure 6 top and
bottom, respectively. From Np and dN dNp g at the end of the
simulations (see Table 1), we conclude that in the simulations s1,
s2, s5, and s7, significant production of electron–positron pairs is
realized. In the s3, s4, and s6 simulations, a low number of
positrons is observed (despite the significant number of
photons), and dN dNp g does not exceed the background noise
values. Thus, the criterion given in Equation (42), yielding

1 > for the s1, s2, s5, and s7 simulations and 1 < for the s3,
s4, and s6 simulations, does indeed allow us to distinguish the
pair production regime during the development of the Weibel
instability.

4. Discussion and Astrophysical Implications

In this paper, we consider the Weibel instability in two
relativistic plasma flows that can lead to efficient synchrotron
emission. The numerical simulations demonstrate that the
conversion efficiency of the energy of the initial flows into
the energy of synchrotron photons is much higher than that for
the generation of large-scale magnetic fields, if the flows are
quite dense and energetic.

The numerical simulations also show that the synchrotron
photons can produce e e+ - pairs in the magnetic field, giving

the number of positrons up to 10−3 and higher for the number
of electrons in the flows. In order to clarify the flow parameters
leading to copious pair production, the theoretical estimate,
Equation (42), can be rewritten using the rest-mass density of
the hydrogen plasma of the flows ρ (namely, the density of the
cooled plasma in the comoving reference frame):

6.2 g cm 1, 452
3 2

2
2

2
3 h r~ ´ G -[ ] ( )

where the flow Lorentz factors 1,2G are given in the center-of-
momentum reference frame (see Equation (37)) and

1h g= ¢ -( ) is the mean normalized kinetic energy of the
ions in the reference frame comoving with the flow. The index
2 denotes the flow with particle density lower than the density
of the other flow, i.e., n n2 1 . For instance, this estimate yields

1 » for 12h ~ , 52G = , and 10 g cm2
4 3r ~ - - .

The simulation results s1–s7 are obtained for M m far from
the real proton-to-electron mass ratio ( 1836» ), but can be
scaled in a way that conserves the base estimate(42) as
follows: 2 2h G from Table 1 is multiplied by aM m1836( ), and
n2 is replaced by n a2

3, where a is an arbitrary constant (we
choose a 104 3= in order to fit 2 2h G in the range 1–100). The
values of 2 2h G and n2 obtained with this scaling correspond
to a hydrogen plasma and can be tested with criterion(45)
and compared with the generally assumed values of these
parameters for astrophysical jets.
The line corresponding to Equation (45) and 1 ~ , along

with the points obtained from the simulation results s1–s7, are
shown in Figure 7. The simulations s1, s2, s7, and s5, resulting

Figure 6. (Top) Number of positrons Np and (bottom) the parameter dN dNp g
in the s1–s7 simulations as functions of time.

Figure 7. Parameters of counterstreaming plasma flows. A subset of the
simulations (this paper; red triangles: s1, s2, s5, and s7) demonstrates copious
pair production and significant synchrotron losses, whereas in the other
simulations of this paper (green triangles: s3, s4, s6) the positron yield is low
and the energy of the synchrotron photons does not much exceed the energy of
the magnetic field. These subsets evidently belong to the regions 1 > (above
the dashed line) and 1 < (below it), respectively (for ù, see Equation (45)
and Table 1). A number of numerical models of GRBs (collapsars with
neutrino–antineutrino annihilation powered jets (yellow squares: A00, LC13,
and M07), mergers (hollow blue squares: A05 and A05′), a collapsar with a
Blandford–Znajek powered jet (a hollow yellow diamond: MK06)) found in
the literature, as well as the estimated properties of a tidal disruption event
leading to jet formation (solid circle B12) and blazars (hollow circles B13 and
N15) are also shown (see the text for details).
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in a high number of positrons and high rate of their production,
are marked with red triangles. The simulations s3, s4 and s6,
resulting in a low number of positrons generated, are marked
with green triangles. It is clearly seen that the line 1 ~
divides well the regions of copious and weak positron
production, and Equation (45) can be used to test various
astrophysical objects.

4.1. Gamma-Ray Bursts

Relativistic plasma jets are often associated with GRBs, tidal
disruption events, active galactic nuclei (AGNs), and blazars.
The energy of particles in the jets and the jet mass density
could not be measured directly; however, the values used in a
number of models of these phenomena can be used.

In the collapsar model of MacFadyen & Woosley
(MacFadyen & Woosley 1999; Woosley & MacFadyen 1999),
GRBs are linked with rotating massive stars, the core collapse
of which produce a black hole swallowing surrounding matter.
In that process, strong jets are generated due to energy
deposition in the progenitor star envelope within the cone
region around the rotation axis of the star. This energy
deposition can be associated with neutrino–antineutrino
annihilation with subsequent heating and acceleration of the
baryonic matter. The Weibel instability can arise either in
internal shocks in the jets or in external shocks with a pre-
explosive stellar wind or the star envelope. Note that in this
model the huge external pressure that accelerates the jets is
often associated not with the ion temperature but mostly with
radiation, hence we use 1h ~ for this model. Note that such an
assumption neglects the e e+ - pairs produced by neutrino–
antineutrino annihilation and contributing to the plasma
density, hence the parameter ù given for the collapsar models
below is rather underestimated.

In the simulations based on the MacFadyen & Woosley
model(Aloy et al. 2000) with energy deposition of the order of
10 10 erg50 51– , the jet breaking out of the progenitor star has the
rest-mass density of about 10 g cm1 3- - , the temperature 1h ~ ,
and the Lorentz factor 5G ~ , while the envelope of the star is
motionless and has a density of about 1 g cm 3- (see dotted lines
in Figure 2 from Aloy et al. 2000). In the center-of-momentum
reference frame, the Lorentz factor of the less dense flow (the jet)
can be estimated as 22G ~ , while the rest-mass density
and thermal energy of ions, obviously, are the same,

10 g cm2
2 3r ~ - - and 12h ~ . These parameters yield

2.5 » and are shown as the yellow square A00 in Figure 7.
In the two-dimensional simulation of Morsony et al. (2007),

adhering to the MacFadyen & Woosley collapsar model and a
power-law stellar envelope model, the energetic jet ( 300G » ,

10 g cm4 3r ~ - - ; see the color version of Figure 3 in Morsony
et al. 2007) breaks out of the star envelope ( 10 g cm1 3r ~ - - )
that provides favorable conditions for the extreme Weibel
instability ( 1502G ~ , 12h ~ , 10 g cm2

4 3r ~ - - , 103 » ; see
the yellow square M07 in Figure 7). In a further development
of this model (three-dimensional simulation with a more
realistic stellar progenitor; see López-Cámara et al. 2013), the
parameters of the jet breaking out of the progenitor star (at
t 4.2 s= ) are slightly different: the jet has 10G » and

10 g cm2 3r ~ - - , and the envelope has 1 g cm 3r ~ - (see
the green lines in Figures 4 and 6 of López-Cámara et al. 2013).
These parameters yield 102G ~ and 10 g cm2

2 3r ~ - - (shown
in Figure 7 as the LC13 yellow square), which, together with

1h ~ , are above the threshold 1 ~ ( 60 » ).

Short GRBs are not linked with supernova explosions, and it
is proposed that mergers (neutron star–neutron star or neutron
star–black hole mergers) could be the source of such bursts. It
implies lower density of the ambient and the jet plasmas, and
higher Lorentz factors of the jets in general(Aloy et al. 2005).
For instance, in the simulation B01 at time 0.5 s (see Figures
25 and 26 of Aloy et al. 2005), the Lorentz factor of the jet
head is 1000G » and its rest-mass density is only

10 g cm9 3r ~ - - . Assuming that the internal shock in such a
jet has 302

1 2G ~ G » (A05 hollow blue square in Figure 7),
we obtain 0.2 » . Earlier, i.e., at time 0.1 s, the head of the jet
has the Lorentz factor 100G ~ and density 10 g cm7 3r ~ - -

(see Figures 15 and 16 of Aloy et al. 2005). The corresponding
parameters of the internal shock with 102

1 2G ~ G » again are
not favorable for pair production during the Weibel instability
( 0.2 » ) and are shown as the A05 hollow blue square in
Figure 7.
Another model of jet formation in long GRB engines

connects it with the Blandford–Znajek mechanism of energy
extraction from a rotating black hole(Blandford & Znajek
1977) and predicts the formation of a magnetically driven
outflow McKinney (2006; i.e., an outflow with magnetic
pressure dominating over particle pressure and Poynting flux
dominating over the flux of the particle energy). This model
allows one to estimate the plasma density if the GRB
luminosity and the mass of the central black hole is known
(see the next subsection for details). For example, for a black
hole with mass M M10BH =  (where M is the solar mass)
and overall jet luminosity L 10 erg sj

50 1= - , which is typical
for long GRBs(Piran 1999), one can obtain a huge density

17 g cm2
3r ~ - that together with 102G » leads to 103 ~

and is shown as the MK06 hollow yellow diamond in Figure 7.
Thus, the pair production regime of the Weibel instability can

potentially be reached in long GRBs associated with the collapse
of massive stars. Short GRBs associated with the merging of black
holes and neutron stars presumably provide 1  and a negligible
rate of pair production in the magnetic field of collisionless shocks.

4.2. Supermassive Black Holes

It is generally believed that supermassive black holes
(SMBHs) drive energetic outflows in AGNs and blazars.
However, a large value of the Schwarzschild radius of SMBHs
implies a low value of the plasma density and 1  .
The source SwiftJ164449.3+573451, which is associated

with a tidal disruption of a star by a dormant SMBH(Zauderer
et al. 2011), is of interest because the observable data allows
one to estimate the jet parameters quite near the black hole. The
rapid time variability of the gamma-rays and X-rays requires a
compact source with a characteristic size of 0.15 au
( 2 10 cm12 ´ ; Berger et al. 2012). More than 200 days of
radio observations of the source let one obtain the jet properties
at the distance r 10 cmrf

18~ from the black hole(Berger
et al. 2012): 5G » and n r 1 cmrf

3~ -( ) . Assuming that the
opening angle of the jet 5jq ~ , the distance between the
SMBH and the gamma- and X-ray source is
r tan 0.15 au 2 10 cmj

1 13q~ ´ ~ ´g
-( ) , which yields at this

distance n r n r r r 2.5 10 cmrf rf
2 2 9 3~ ~ ´g g

-( ) ( ) , hence
4 10 g cm2

15 3r ~ ´ - - . This value, together with 52G » and
12h » , gives 10 5 ~ - , and is depicted as the B12 violet circle

in Figure 7.
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The parameters of the blazar jets can be similarly found from
radio observations and the luminosity in all bands, and then can
be continued up to the distance closer to the central black hole.
The distance from the black hole rγ where the internal shock
and the Weibel instability arise is crucial for a plasma density
estimate and can be found as follows. First, rγ is connected
with the variability timescale tvar and the jet opening angle jq ,
r ct tan jvar

1q~g
-( ) . Second, the numerical hydrodynamical

model of jet formation of McKinney (2006), which takes into
account general relativity and is capable of modeling the
Blandford–Znajek mechanism of the jet supply(Blandford &
Znajek 1977), predicts that magnetic pressure dominates in the
jet from the region of jet formation up to the Alfvén surface at
r r10 100A g~ – , where r GM c2g BH

2= is the black hole
Schwarzschild radius, MBH is the black hole mass, and G is
the gravitational constant. Beneath the Alfvén surface, the
internal shocks are absent in the simulations of McKinney
(2006), hence r r r100A g ~g .

Let us assume that the jet luminosity Lj is equal to the jet
energy traveling through the jet cross-section at rγ, and the
particle energy becomes comparable with the energy of the
magnetic field here, hence

L r c tan . 46j j
2 3 2 2p r h q~ Gg ( )

Thus, in order to estimate ρ, one should know MBH, Γ, and η.
Relying on the simulations of McKinney (2006), we use

10G » and 5jq »  in further estimations, additionally
assuming 1h ~ .

In order to estimate the parameters of the internal shock that
is the nearest to the black hole of the famous blazar 3C 273, we
follow Böttcher et al. (2013) and Zdziarski & Böttcher (2015).
In the leptonic model of Böttcher et al. (2013),
L 1.3 10 erg sj

46 1» ´ - (see Equation (5) and the value of
Lp in Table 2 therein), and in Zdziarski & Böttcher (2015), the
black hole mass is assumed to be M M7 10BH

9» ´ , which
yields r 2 10 cm15= ´g , 4 10 g cm17 3r » ´ - - , and

10 6 ~ - (see the B13 hollow violet circle in Figure 7). Note
that the variability timescale t 1 dayvar ~ gives a slightly
higher value of r 3 10 cm16~ ´g and an even lower value
of ù .

The reported detection of gravitational lensing of the blazar
PKS 1830–211(Neronov et al. 2015) independently provides
the size of the gamma-ray emitting region about
r tan 10 cmj

15q ~g , which coincides fairly well with about a
1 day variability timescale and r10 100 g– for the central black
hole(Neronov et al. 2015). Thus, we adopt r 10 cm16~g ,
which, together with the luminosity L 3 10 erg sj

45 1~ ´ - ,
leads to 1.5 10 g cm18 3r ~ ´ - - and 10 6 ~ - (see the N15
violet hollow circle in Figure 7).

Therefore, SMBHs provides outflows with very low plasma
density and 1  .

4.3. Collisions

Figure 7 clearly demonstrates that the copious emission of
hard photons and pair production during the Weibel instability
rises if the plasma density is at least 10 g cm8 3- - . In such
plasmas, electron–photon and electron–ion collisions can be
important, and the corresponding cross-sections should be
estimated.

The Compton scattering cross-section in the center-of-
momentum reference frame can be estimated as

follows(Berestetskii et al. 1982):

r
ln , 47C

e
2

2
s

g
g~

¯
¯ ( )

where r e mce
2 2= ( ) is the classical electron radius, and the

electron and photon energies are approximately equal to each
other and to mc2ḡ . Thus, the ratio of the free time
t nc1f

C
Cs=( ) (the mean time between two scattering events

of the same particle) to the Weibel instability timescale m
1L-

(36) is

t
rln

1 48m f
C

e

3 2g
g
l

L ~ ¯
¯

( )( )

for almost any realistic plasma density (here λ is the plasma
wavelength).
Electron–proton scattering can be considered similarly. The

momentum-transfer (transport) cross-section mts is determined
mostly by events with little change in the particle directions,
and formulas for electron scattering in a constant field can be
used(Landau & Lifshitz 1975, 1976; Berestetskii et al. 1982):

r8
ln , 49mt

e
2

0
2

max

min
s

p
g

q
q

» ( )

where maxq and minq are the maximum and minimum deflection
angles of the electron trajectory, respectively, and 0g is the
initial Lorentz factor of the scattered electron. In the limit

1q  , the angles can be estimated as(Landau & Lifshitz 1975)

r

r

2
, 50e

0 0
q

g
» ( )

where r0 is the impact parameter. The minimal deflection angle
minq can be estimated using the Debye length r cD p

1 2g w~ ¯ ,
and, as long as the electron de Broglie wavelength is smaller
than the proton size ( r ;e~ we assume c e 1370

2g » ), the
maximal deflection angle can be estimated using the proton
size. Therefore, we estimate the momentum-transfer cross-
section as follows:

r

r

8
ln , 51mt

e

e

2

0
2

1 2
s

p
g

lg
~ ¯ ( )

and the ratio of the corresponding timescale tf
ei( ) to the

timescale of the Weibel instability(36) as follows:

t
r r

ln , 52m f
ei

e e

3 2 1
1 2l

g
g l

L ~ -¯ ¯ ( )( )

This ratio is smaller than tm f
CL ( ) by a logarithmic factor of the

order of 10, thus tm f
eiL ( ) is also much greater than unity for

almost all plasma parameters.
The characteristic timescale of electron energy losses caused

by bremsstrahlung is about the timescale of e e+ - pair
production by a photon colliding with a proton(Berestetskii
et al. 1982), and is the following:

t
r

1

ln
, 53m f

b

e
1 2ag g

l
L ~

¯ ¯
( )( )

where ḡ is the Lorentz factor of the emitting electron or the
energy of the photon-producing e e+ - pair, normalized to mc2.
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For the density 10 g cm4 3r ~ - - and 1.8 104g = ´¯ provid-
ing 1 ~ , we have t 10 1m f

b 8L ~ ( ) .
Therefore, for the parameters of interest, the effect

of collisions is negligible on the Weibel instability timescale.
However, at least the scale ctf

b( ) is less than the size
of a gamma-ray emitting region in the collapsar model
of GRBs. Namely, for a photon density of the order of
n n1 2~ , and 10 g cm1,2

4 3r ~ - - , 11,2h ~ , and 101,2G ~ ,
we obtain ct r10 cmf

C 13~ g( ) , ct r10 cmf
ei 12~ g( ) , and

ct r10 cmf
b 6~ g( ) for both nñ-annihilation driven jet (rγ is

less than or about 1 light-second) and a jet driven by the
Blandford–Znajek mechanism (r 10 cm7~g ).

Therefore, the spectral energy distribution (SED) of photons
would be drastically modified as they disappear in the e e+ -

photoproduction in collisions with the nucleus. The cross-
section of this process for high-energy photons ( 1g ¯ )
depends logarithmically on the photon energy, and the
threshold of the pair photoproduction 1g ~¯ should be
distinguished in the SED. Indeed, Fermi GBM data demon-
strate that most SEDs of the detected GRBs have a break in the
power-law fit(Gruber et al. 2014) or a maximum in the photon
energy distribution(Abdo et al. 2009) at 100–1000 keV. The
maximum photon energy detected in GRBs (tens of GeV; see
Abdo et al. 2009; Ackermann et al. 2014) is about the energy of
a proton with a Lorentz factor of about 100 that coincides well
with the generally believed Lorentz factor of GRB jets. In any
case, the generation of observed high-energy photons can
hardly be attributed to the high-density shock-wave region
because of the complicated energy–temporal distribution of the
photons(Abdo et al. 2009; Ackermann et al. 2014). Moreover,
blazars also emit photons with energy 10 GeV~ ; nevertheless,
they have no regions of high-density plasma (see Figure 7) that
imply other mechanisms of high-energy photons generation
(e.g., Comptonization).

Thus, collisional effects are negligible on the timescale of the
Weibel instability; however, bremsstrahlung as well as pair
production in photon–proton collisions should be taken into
account on the scale of the gamma-ray emitting region
of GRBs.

5. Summary

The Weibel instability in hot and dense counterstreaming
relativistic plasma flows is considered theoretically and
numerically. The results include the following.

(i) Due to the relativistic pinch of the angles, if the flow’s
Lorentz factor 1G  , the instability scenario for hot
plasma is the same as for the cold one, namely, current
filaments elongated in the direction of the flow’s velocity,
and the magnetic field focusing the filaments, are formed.

(ii) Numerical simulations reveal that the generated magnetic
field causes an efficient synchrotron emission by
electrons, and the overall energy of the synchrotron
photons can be much higher than the energy of the
magnetic field.

(iii) At the linear stage of the instability, the transverse
filament scale ml and the instability growth rate mL can
be estimated using Equations (35) and (36), even if
synchrotron losses are considerable. For a certain Lorentz
factor of the flows Γ and for a proper flow temperature
( hµ ), one can find m

1 2hL µ G -( ) and m
1 2l hµ G( ) .

(iv) Pair photoproduction in the magnetic field can efficiently
convert the synchrotron photons to e e+ - pairs. The
criterion for judging copious pair production in the
Weibel instability is proposed ( 1  ; see Equations (42)
and (45)). Moreover, the fulfillment of this criterion also
ensures that the energy of synchrotron photons is greater
than the magnetic field energy(ii).

(v) The considered effects become noticeable for plasmas
with very high values of the mean electron Lorentz factor,
which leads to the timescale of the collisional effects
being much longer than the instability timescale.

(vi) In the framework of the collapsar model of long GRBs,
1  and even 1  can be reached for the interaction

of the jet with the progenitor star envelope, or for the
internal shock in the jet at a distance of about 100
Schwarzschild radii from the black hole (see Figure 7).

The Weibel instability that leads to 1  should potentially
modify the plasma parameters dramatically. The gamma-ray
emission and the e e+ - pair photoproduction would not stop
until the mean particle energy becomes so low that 1  .
Therefore, in the shock region, the plasma density can be
increased a lot, which at the same time leads to the decrease of
the mean particle energy. The impact of this scenario on the
GRB models will be considered elsewhere.

This research was supported by the Russian Foundation for
Basic Research (grant No. 15-02-06079), by the Grants
Council under the President of the Russian Federation (grant
No. MK-2218.2017.2), and by the “Basis” Foundation (grant
No. 17-11-101).
We thank Vl.V.Kocharovsky for inspiring conversations

and I.I.Artemenko for a discussion on the effect of collisions.
Software:QUILL(Nerush & Kostyukov 2010; Serebryakov

et al. 2015; http://iapras.ru/english/structure/dep_330/quill.
html), ggplot2(Wickham 2016; http://ggplot2.org/).

ORCID iDs

E. N. Nerush https://orcid.org/0000-0003-4227-9233
D. A. Serebryakov https://orcid.org/0000-0001-9233-7214
I. Yu. Kostyukov https://orcid.org/0000-0002-5818-440X

References

Abdo, A. A., Ackermann, M., Arimoto, M., et al. 2009, Sci, 323, 1688
Ackermann, M., Ajello, M., Asano, K., et al. 2014, Sci, 343, 42
Aloy, M. A., Janka, H.-T., & Müller, E. 2005, A&A, 436, 273
Aloy, M. A., Müller, E., Ibáñez, J. M., Martí, J. M., & MacFadyen, A. 2000,

ApJ, 531, L119
Artemenko, I. I., Golovanov, A. A., Kostyukov, I. Y., et al. 2016, JETPL,

104, 883
Baier, V. N., Katkov, V., & Strakhovenko, V. 1998, Electromagnetic Processes

at High Energies in Oriented Single Crystals (Singapore: World Scientific)
Berestetskii, V. B., Lifshitz, E. M., & Pitaevskii, L. P. 1982, Quantum

Electrodynamics (New York: Pergamon)
Berger, E., Zauderer, A., Pooley, G. G., et al. 2012, ApJ, 748, 36
Birdsall, C. K., & Langdon, A. B. 2004, Plasma Physics via Computer

Simulation (Boca Raton, FL: CRC Press)
Blandford, R. D., & Znajek, R. L. 1977, MNRAS, 179, 433
Böttcher, M., Reimer, A., Sweeney, K., & Prakash, A. 2013, ApJ, 768, 54
Chevalier, R. A. 1998, ApJ, 499, 810
Efimenko, E., Bashinov, A., Bastrakov, S., et al. 2017, arXiv:1708.09636
Elkina, N. V., Fedotov, A. M., Kostyukov, I. Y., et al. 2011, PhRvS, 14,

054401
Garasev, M., & Derishev, E. 2016, MNRAS, 461, 641
Garasev, M. A., Korytin, A. I., Kocharovsky, V. V., et al. 2017, JETPL,

105, 164

11

The Astrophysical Journal, 851:129 (12pp), 2017 December 20 Nerush, Serebryakov, & Kostyukov

http://iapras.ru/english/structure/dep_330/quill.html
http://iapras.ru/english/structure/dep_330/quill.html
http://ggplot2.org/
https://orcid.org/0000-0003-4227-9233
https://orcid.org/0000-0003-4227-9233
https://orcid.org/0000-0003-4227-9233
https://orcid.org/0000-0003-4227-9233
https://orcid.org/0000-0003-4227-9233
https://orcid.org/0000-0003-4227-9233
https://orcid.org/0000-0003-4227-9233
https://orcid.org/0000-0003-4227-9233
https://orcid.org/0000-0001-9233-7214
https://orcid.org/0000-0001-9233-7214
https://orcid.org/0000-0001-9233-7214
https://orcid.org/0000-0001-9233-7214
https://orcid.org/0000-0001-9233-7214
https://orcid.org/0000-0001-9233-7214
https://orcid.org/0000-0001-9233-7214
https://orcid.org/0000-0001-9233-7214
https://orcid.org/0000-0002-5818-440X
https://orcid.org/0000-0002-5818-440X
https://orcid.org/0000-0002-5818-440X
https://orcid.org/0000-0002-5818-440X
https://orcid.org/0000-0002-5818-440X
https://orcid.org/0000-0002-5818-440X
https://orcid.org/0000-0002-5818-440X
https://orcid.org/0000-0002-5818-440X
https://doi.org/10.1126/science.1169101
http://adsabs.harvard.edu/abs/2009Sci...323.1688A
https://doi.org/10.1126/science.1242353
http://adsabs.harvard.edu/abs/2014Sci...343...42A
https://doi.org/10.1051/0004-6361:20041865
http://adsabs.harvard.edu/abs/2005A&amp;A...436..273A
https://doi.org/10.1086/312537
http://adsabs.harvard.edu/abs/2000ApJ...531L.119A
https://doi.org/10.1134/S0021364016240085
http://adsabs.harvard.edu/abs/2016JETPL.104..883A
http://adsabs.harvard.edu/abs/2016JETPL.104..883A
https://doi.org/10.1088/0004-637X/748/1/36
http://adsabs.harvard.edu/abs/2012ApJ...748...36B
https://doi.org/10.1093/mnras/179.3.433
http://adsabs.harvard.edu/abs/1977MNRAS.179..433B
https://doi.org/10.1088/0004-637X/768/1/54
http://adsabs.harvard.edu/abs/2013ApJ...768...54B
https://doi.org/10.1086/305676
http://adsabs.harvard.edu/abs/1998ApJ...499..810C
http://arxiv.org/abs/1708.09636
https://doi.org/10.1103/PhysRevSTAB.14.054401
http://adsabs.harvard.edu/abs/2011PhRvS..14e4401E
http://adsabs.harvard.edu/abs/2011PhRvS..14e4401E
https://doi.org/10.1093/mnras/stw1345
http://adsabs.harvard.edu/abs/2016MNRAS.461..641G
https://doi.org/10.1134/S0021364017030067
http://adsabs.harvard.edu/abs/2017JETPL.105..164G
http://adsabs.harvard.edu/abs/2017JETPL.105..164G


Gonoskov, A., Bastrakov, S., Efimenko, E., et al. 2015, PhRvE, 92, 023305
Grassi, A., Grech, M., Amiranoff, F., et al. 2017, PhRvE, 95, 023203
Grismayer, T., Vranic, M., Martins, J. L., Fonseca, R. A., & Silva, L. O. 2017,

PhRvE, 95, 023210
Gruber, D., Goldstein, A., Weller von Ahlefeld, V., et al. 2014, ApJS, 211, 12
Huntington, C. M., Fiuza, F., Ross, J. S., et al. 2015, NatPh, 11, 173
Kalapotharakos, C., Brambilla, G., Timokhin, A., Harding, A. K., &

Kazanas, D. 2017, arXiv:1710.03170
Landau, L., & Lifshitz, E. 1976, Mechanics (3rd ed.; Portsmouth, NH:

Butterworth-Heinemann)
Landau, L. D., & Lifshitz, E. M. 1975, The Classical Theory of Fields (Oxford:

Elsevier)
Liu, X., Li, Y. T., Zhang, Y., et al. 2011, NJPh, 13, 093001
López-Cámara, D., Morsony, B. J., Begelman, M. C., & Lazzati, D. 2013, ApJ,

767, 19
MacFadyen, A. I., & Woosley, S. E. 1999, ApJ, 524, 262
McKinney, J. C. 2006, MNRAS, 368, 1561
Medvedev, M. V., Fiore, M., Fonseca, R. A., Silva, L. O., & Mori, W. B. 2005,

ApJL, 618, L75
Morsony, B. J., Lazzati, D., & Begelman, M. C. 2007, ApJ, 665, 569
Neronov, A., Vovk, I., & Malyshev, D. 2015, NatPh, 11, 664
Nerush, E., & Kostyukov, I. Y. 2010, VANT, 68, 3 (http://vant.kipt.kharkov.

ua/ANNOTAZII_2010/annotazii_2010_4_3.html)

Nerush, E. N., & Kostyukov, I. Y. 2015, PPCF, 57, 035007
Nerush, E. N., Kostyukov, I. Y., Fedotov, A. M., et al. 2011, PhRvL, 106,

035001
Nerush, E. N., Kostyukov, I. Y., Ji, L., & Pukhov, A. 2014, PhPl, 21, 013109
Nishikawa, K.-I., Niemiec, J., Hardee, P. E., et al. 2009, ApJL, 698, L10
Piran, T. 1999, PhR, 314, 575
Pukhov, A. 1999, JPlPh, 61, 425
Pukhov, A. 2003, RPPh, 66, 47
Saito, S., & Sakai, J.-I. 2004, PhPl, 11, 859
Serebryakov, D. A., Nerush, E. N., & Kostyukov, I. Y. 2015, PhPl, 22, 123119
Silva, L. O., Fonseca, R. A., & Tonge, J. W. 2003, ApJL, 596, L121
Soderberg, A. M., Chakraborti, S., Pignata, G., et al. 2010, Natur, 463, 513
Spitkovsky, A. 2008, ApJL, 682, L5
Stockem, A., Fiuza, F., Bret, A., Fonseca, R. A., & Silva, L. O. 2014, NatSR,

4, 3934
Timokhin, A. N. 2010, MNRAS, 408, 2092
Vay, J.-L. 2008, PhPl, 15, 056701
Weibel, E. S. 1959, PhRvL, 2, 83
Wickham, H. 2016, ggplot2: Elegant Graphics for Data Analysis (Berlin:

Springer)
Woosley, S. E., & MacFadyen, A. I. 1999, A&AS, 138, 499
Zauderer, B. A., Berger, E., Soderberg, A. M., et al. 2011, Natur, 476, 425
Zdziarski, A. A., & Böttcher, M. 2015, MNRAS Letters, 450, L21

12

The Astrophysical Journal, 851:129 (12pp), 2017 December 20 Nerush, Serebryakov, & Kostyukov

https://doi.org/10.1103/PhysRevE.92.023305
http://adsabs.harvard.edu/abs/2015PhRvE..92b3305G
https://doi.org/10.1103/PhysRevE.95.023203
http://adsabs.harvard.edu/abs/2017PhRvE..95b3203G
https://doi.org/10.1103/PhysRevE.95.023210
http://adsabs.harvard.edu/abs/2017PhRvE..95b3210G
https://doi.org/10.1088/0067-0049/211/1/12
http://adsabs.harvard.edu/abs/2014ApJS..211...12G
https://doi.org/10.1038/nphys3178
http://adsabs.harvard.edu/abs/2015NatPh..11..173H
http://arxiv.org/abs/1710.03170
https://doi.org/10.1088/1367-2630/13/9/093001
http://adsabs.harvard.edu/abs/2011NJPh...13i3001L
https://doi.org/10.1088/0004-637X/767/1/19
http://adsabs.harvard.edu/abs/2013ApJ...767...19L
http://adsabs.harvard.edu/abs/2013ApJ...767...19L
https://doi.org/10.1086/307790
http://adsabs.harvard.edu/abs/1999ApJ...524..262M
https://doi.org/10.1111/j.1365-2966.2006.10256.x
http://adsabs.harvard.edu/abs/2006MNRAS.368.1561M
https://doi.org/10.1086/427921
http://adsabs.harvard.edu/abs/2005ApJ...618L..75M
https://doi.org/10.1086/519483
http://adsabs.harvard.edu/abs/2007ApJ...665..569M
https://doi.org/10.1038/nphys3376
http://adsabs.harvard.edu/abs/2015NatPh..11..664N
http://vant.kipt.kharkov.ua/ANNOTAZII_2010/annotazii_2010_4_3.html
http://vant.kipt.kharkov.ua/ANNOTAZII_2010/annotazii_2010_4_3.html
https://doi.org/10.1088/0741-3335/57/3/035007
http://adsabs.harvard.edu/abs/2015PPCF...57c5007N
https://doi.org/10.1103/PhysRevLett.106.035001
http://adsabs.harvard.edu/abs/2011PhRvL.106c5001N
http://adsabs.harvard.edu/abs/2011PhRvL.106c5001N
https://doi.org/10.1063/1.4863423
http://adsabs.harvard.edu/abs/2014PhPl...21a3109N
https://doi.org/10.1088/0004-637X/698/1/L10
http://adsabs.harvard.edu/abs/2009ApJ...698L..10N
https://doi.org/10.1016/S0370-1573(98)00127-6
http://adsabs.harvard.edu/abs/1999PhR...314..575P
https://doi.org/10.1017/S0022377899007515
http://adsabs.harvard.edu/abs/1999JPlPh..61..425P
https://doi.org/10.1088/0034-4885/66/1/202
http://adsabs.harvard.edu/abs/2003RPPh...66...47P
https://doi.org/10.1063/1.1641784
http://adsabs.harvard.edu/abs/2004PhPl...11..859S
https://doi.org/10.1063/1.4938206
http://adsabs.harvard.edu/abs/2015PhPl...22l3119S
https://doi.org/10.1086/379156
http://adsabs.harvard.edu/abs/2003ApJ...596L.121S
https://doi.org/10.1038/nature08714
http://adsabs.harvard.edu/abs/2010Natur.463..513S
https://doi.org/10.1086/590248
http://adsabs.harvard.edu/abs/2008ApJ...682L...5S
https://doi.org/10.1038/srep03934
http://adsabs.harvard.edu/abs/2014NatSR...4E3934S
http://adsabs.harvard.edu/abs/2014NatSR...4E3934S
https://doi.org/10.1111/j.1365-2966.2010.17286.x
http://adsabs.harvard.edu/abs/2010MNRAS.408.2092T
https://doi.org/10.1063/1.2837054
http://adsabs.harvard.edu/abs/2008PhPl...15e6701V
https://doi.org/10.1103/PhysRevLett.2.83
http://adsabs.harvard.edu/abs/1959PhRvL...2...83W
https://doi.org/10.1051/aas:1999325
http://adsabs.harvard.edu/abs/1999A&amp;AS..138..499W
https://doi.org/10.1038/nature10366
http://adsabs.harvard.edu/abs/2011Natur.476..425Z
https://doi.org/10.1093/mnrasl/slv039
http://adsabs.harvard.edu/abs/2015MNRAS.450L..21Z

	1. Introduction
	2. Weibel Instability in Hot Collisionless Plasmas
	2.1. Effect of Temperature
	2.2. Pair Production

	3. Results of Numerical Simulations
	4. Discussion and Astrophysical Implications
	4.1. Gamma-Ray Bursts
	4.2. Supermassive Black Holes
	4.3. Collisions

	5. Summary
	References



