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Abstract

Theoretical stellar evolution models are constructed and tailored to the best known, observationally derived
characteristics of metal-poor ([Fe/H]∼−2.3) stars representing a range of evolutionary phases: subgiant HD
140283, globular cluster M92, and four single, main sequence stars with well-determined parallaxes: HIP 46120,
HIP 54639, HIP 106924, and WOLF 1137. It is found that the use of a solar-calibrated value of the mixing length
parameter αMLT in models of these objects is ineffective at reproducing their observed properties. Empirically
calibrated values of αMLT are presented for each object, accounting for uncertainties in the input physics employed
in the models. It is advocated that the implementation of an adaptive mixing length is necessary in order for stellar
evolution models to maintain fidelity in the era of high-precision observations.
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1. Introduction

Characterizing heat transport in stars is notoriously compli-
cated, and the task of reproducing the physics involved with
high precision on stellar evolutionary timescales is a long-
standing problem in stellar modeling. For this reason,
convection in one-dimensional (1D) stellar evolution codes is
addressed primarily through a framework known as mixing
length theory (MLT). Impeded by computational limitations,
stellar codes invoke MLT to parameterize a nonlinear,
turbulent, 3D process in a 1D manner.

A simplified picture of convection was developed by Ludwig
Prandtl (1925), whose framework invoked analogy with
molecular heat transfer. Conceiving of the bulk transfer of
fluids as taking place in discrete “parcels,” we may define a
region inside of a convective area and map the vertical
trajectory of a particular parcel with uniform physical
characteristics. Assuming the parcel is in pressure, but not
thermal, equilibrium with its surroundings, a hot parcel of
material rises upward to a cooler region, which causes it to
expand and denature; analogously, cooler parcels fall and
compress. The “mixing length” then refers to the characteristic
vertical distance, or mean free path, that such a parcel can
travel before losing its definition. The mixing length is defined
in units of pressure scale height, d ln(P)/d ln(T). This frame-
work was first applied to stellar interiors by Erika Böhm-
Vitense, whose seminal paper on solar convection (Vitense
1953) has been used to guide stellar models for over half a
century.

Much progress has been made since to handle convection in
a more sophisticated way. Convective overshoot, for example,
is also invoked in 1D codes in the form of an adjustable
parameter describing the degree of permeability of the
convective boundary layer. With the advent of supercomput-
ing, 3D hydrodynamical models are available, and they are able
to characterize convection much more authentically than any
lower-dimensional formulation (see, e.g., Nordlund 1982;
Deupree 1985; Freytag et al. 1996; Ludwig et al. 1999; Arnett
et al. 2009; Trampedach et al. 2014 and many others).
However, they can only do so on very short timescales,

relative to evolutionary time, and typically only for a region
near the surface of the star.
While the state of the art for modeling atmospheres and

surface convection is quite advanced, it is another undertaking
entirely to address mixing across evolutionary time and over
the range of temperatures and densities within a stellar interior.
There have been few attempts to generalize MLT to higher
dimensions, but these and other improvements to the frame-
work have been examined. Such investigations include (1) non-
local versions of MLT (Grossman & Narayan 1993; Grossman
1996), (2) those which invoke full spectrum turbulence (e.g.,
Canuto & Mazzitelli 1991), (3) calibrations of the mixing
length parameter against 3D radiative hydrodynamical simula-
tions (e.g., Ludwig et al. 1999; Trampedach et al. 2014; Arnett
et al. 2015; Magic et al. 2015), and (4) the development of
models which seek to remove mixing length theory’s
approximations and which are based directly on 3D simulations
(e.g., Lydon et al. 1992; Arnett et al. 2015). Despite these
efforts, MLT endures most often in a form not hugely different
from that in which it was first conceived.
Some obvious shortcomings of this theory follow from the

naïve physical assumptions it supposes. In particular, mixing
length theory ignores convective overshooting, despite the fact
that the boundaries of the convective region(s) in a stellar
interior are not physically rigid. Many other issues arise
especially by the assumption of strictly vertical paths. MLT
supposes only a simple, 1D trajectory for a parcel; real
convection, on the other hand, involves the continuous
shearing, fragmenting, reorientation, and deletion of the flow
channels through which material travels.
Likewise, MLT incorrectly assumes symmetry between

upflows and downflows. In reality, there is no symmetry
between channels that carry material toward the surface of the
star and channels that carry it away. Plasma flowing upward
expands as its density drops, creating broad convection cells
surrounded by an interconnected network of thinner downflow
lanes. Since the upflows are expanding as they move material
toward lower-density layers of the star, turbulence in the
upward lanes will be smoothed out. In the downflow lanes, the
material is traveling against the density gradient, which
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enhances turbulence. Also, due to the density gradient,
conservation laws dictate that upflows must donate mass to
the downflows (Stein & Nordlund 1989).

The asymmetry between up- and downflows in real
convective regions means that most of the plasma in the
upflows originates from the deep interior of the convection
zone, making the upflows isentropic (Stein & Nordlund 1989).
The downflows, however, contain contributions from over-
turning at every point on the way. Some of this material is from
the surface, where it undergoes radiative cooling and lost
entropy. The downflows therefore incorporate a large range of
low entropies and are hence denser than the upflows. This
facilitates the downflows’ penetration into denser interior
regions, causing turbulence. Mass conservation at each layer,
combined with momentum conservation and the fact that the
downflows are slightly denser, means that (1) downflow speeds
are higher and (2) downflows occupy a smaller area than the
upflows. These conditions in combination result in “negative
kinetic flux,” or the inward transfer of kinetic energy (Stein &
Nordlund 1989). Such plasma physics is well understood, but
MLT cannot account for these asymmetries.

Lastly, radiative hydrodynamics has shown that the idea of a
well-defined convective bubble is not valid; there is no
quantized unit of convection in stellar interiors, but rather a
continuum of upflows and cooler, turbulent downflows.

In addition to the above issues, the mixing length
parameterizes the entropy jump between the top of the
convective envelope and the asymptotically adiabatic portion
of the convection zone. Neither this entropy jump, nor the
depth of the convective envelope which it implies, is
observable. Given its lack of a priori physical justification,
αMLT must be empirically determined. In stellar codes, αMLT is
varied in solar reproductions until the model star’s temperature,
luminosity, and surface metal abundance at the solar age reflect
the observed solar values to their best known accuracy.
Naturally, empirical data are known to much greater precision
and with much greater certainty for the Sun than for any
other star.

In the same way that αMLT is not a physical constant, it is
also not a computational one. Because it is a free parameter, the
value of αMLT must be determined on an individual basis in
each stellar evolution code, and its value as determined by
different codes will reflect the prescriptive differences among
those codes—even though the target features to be reproduced
are identical.

Most importantly, not all stars are the Sun. While it is well
understood that our nearest star is not a valid representation of
stars in general, it remains the standard in stellar evolution
codes to calibrate the mixing length according to solar
specifications—uniquely—and then apply this αMLT value to
stellar models of a wide range of masses and compositions.

However, there has been growing evidence that the use of a
solar-calibrated mixing length is not always appropriate.
Attempts at modeling the α-Centauri binary system (which
consists of 1.1 and 0.9Me stars with nearly solar compositions)
have suggested, for many years, that a solar-calibrated mixing
length may not be suitable for all stars (e.g., Guenther &
Demarque 2000). Stellar models of the near-solar metallicity 61
Cygni binary system (M=0.7 and 0.6Me) have suggested
that a subsolar mixing length should be used for lower-mass
stars (Kervella et al. 2008). Three-dimensional radiative
hydrodynamic simulations of convection in the surface layers

of stars predict that the mixing length used in stellar evolution
codes should depend on the composition and surface gravity of
the star (e.g., Freytag et al. 1999; Trampedach et al. 2014;
Magic et al. 2015). We note, however, that such studies do not
predict significantly different effective temperatures for stellar
models than what is found when using a solar-calibrated
mixing length (Salaris & Cassisi 2015).
Finally, asteroseismology of Kepler target stars has found

that the observed radii and effective temperatures of red giant
stars require a variable mixing length (e.g., Bonaca et al. 2012;
Tayar et al. 2017), with the most recent work suggesting that a
metallicity-dependent mixing length requiring a decrease of
order Δα∼0.2 per dex should be used for red giant stars.
It has also been demonstrated explicitly that a solar-

calibrated mixing length is ineffective at modeling stellar
conditions that deviate significantly from the Sun’s. In
particular, Creevey et al. (2015) used interferometry to resolve
the metal-poor subgiant HD 140283 and determine its radius.
They found that the solar-calibrated value of αMLT does not
produce models that match the observed temperature and
luminosity of the highly metal-poor star ([Fe/H]=−2.2) HD
140283. We corroborate this result and also find that lower
values of αMLT are necessary to fit other stellar objects with
metallicities near HD 140283ʼs ([Fe/H]=−2.2 to −2.4). Our
findings are consistent with results calibrated against data from
NASA’s Kepler mission (Bonaca et al. 2012), which suggest
that the mixing length needs to vary with stellar properties.
Nevertheless, mixing length theory is still implemented in

most stellar evolution codes. This includes the 1D stellar
evolution code DSEP: the Dartmouth Stellar Evolution
Program (Dotter et al. 2008), which is used to generate all
stellar models in this study. The standard will persist in the
foreseeable future; however, we aim to mitigate, in part, MLT’s
biasing impact on stellar evolution calculations through
considering empirical calibrations to stars which differ
significantly from the Sun. With the advent of highly accurate
observational data on metal-poor stars throughout their
evolution, stellar interior environments that deviate signifi-
cantly from solar conditions provide laboratories in which we
can test the extent of the solar mixing length’s usefulness.
This paper is laid out as follows. First, we describe the

procedure for calibrating αMLT and present a series of solar-
calibrated mixing length values for a range of physical
prescriptions within DSEP. Next, we present the mass-αMLT

combinations of DSEP stellar tracks which fit the observed
properties of HD 140283, as determined by Creevey et al.
(2015). We also elect to examine the effects of uncertainties
in the input physics on the stellar models by considering
modifications to the atmospheric boundary conditions and the
efficiency of diffusion (hereafter denoted with the parameter ηD).
Although these are just two of many sources of uncertainty
(others include, for instance, opacities and nuclear reaction
rates), we choose to focus on surface boundary conditions and
diffusion because they have been shown in, e.g., Chaboyer
(1995), Chaboyer et al. (1998), and Chaboyer & Krauss (2002)
to be the more significant contributers of uncertainty in stellar
models.
We next present best-fitting isochrones to the metal-poor

globular cluster M92 which, due to its compositional similarity,
serves as a population analogous to HD 140283, and likewise
allows us to consider the impact of variable mixing length on
the red giant branch. Following this, we present empirical,
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best-fit mixing length values for four single, metal-poor, main
sequence stars (hereafter referred to as “subdwarfs,” as they are
fainter at a given color compared to solar-metallicity main
sequence stars) which have metallicities similar to those of
M92 and HD 140283. These stars are HIP 46120, HIP 54639,
HIP 106924, and WOLF 1137. We conclude with the argument
that our results demonstrate (1) a subsolar trend for αMLT in
metal-poor stars and (2) the necessity of an adaptive treatment
of the mixing length.

2. Solar Mixing Length Calibration

One of many issues with the MLT framework, and free
parameters in general, is that the value of αMLT is subject to its
computational environment; it “absorbs” computational and
physical artifacts unique to the code in which it is implemented.
Because the physics used within stellar evolution codes varies
from model to model, αMLT must be calibrated according to
each code. Likewise, it must be recalibrated whenever the
physical prescription within a code is altered.

We calibrate a solar model by adjusting the mixing length,
initial helium abundance (Y), and initial heavy element
abundance (Z) (which affect the chemical evolution degen-
erately) until the model reproduces the observed solar radius,
luminosity, and surface Z/X abundance at the solar age to
better than 0.1% accuracy. We solve the stellar structure
equations to a tolerance of one part in 105, and find that we can
compute the mixing length to five digit accuracy before
adjacent input values give redundant residuals in log Rmodel/log
Re and log Lmodel/log Le. The mixing length obtained through
this minimization is αe,DSEP.

In typical circumstances, this mixing length value becomes a
constant within the code, assumed in subsequent calculations
for models of all types of stars. In this study, we conduct a
series of solar mixing length calibrations under different
prescriptions for DSEP’s physics. These calibrations demon-
strate (1) the degree to which αMLT is affected by other
components of the code, and (2) the differences within the
stellar interior implied by various physical models.

We provide solar mixing length calibrations for four
different prescriptions of the modeling physics. We elect to
vary the surface boundary conditions and diffusive efficiency
because there is considerable uncertainty associated with each
(Chaboyer 1995), and both of these parameters can have a
significant impact on the predicted effective temperature of the
stellar models (see the discussion in Trampedach et al. 2014
and Salaris & Cassisi 2015). We explore two choices of outer
boundary conditions: the PHOENIX model atmospheres,
which are standard in DSEP, and the Eddington approximation
to the gray atmosphere (Eddington 1930). We also vary the
effectiveness of diffusion, which is enhanced or suppressed by
changing the parameter ηD. The standard diffusive “strength” is
represented by a value of ηD=1.0.

The treatment of diffusion in DSEP follows the prescription
of Thoul et al. (1994) and includes thermal diffusion and
gravitational settling, but not radiative levitation. In this
prescription, H, He, and heavy elements are diffused, where
heavy elements are represented as a single species assumed to
diffuse at the same rate as fully ionized iron (Chaboyer
et al. 2001). A thorough discussion of DSEP’s formalism for
diffusion, the uncertainties therein, and how these processes
contribute to DSEP’s ηD parameter are described in Chaboyer
et al. (2001). For our purposes, it is sufficient to consider ηD to

be a parameterization of the coefficients embedded in the
equations governing thermal diffusion and gravitational
settling, and to be a parameter which expresses a measure of
how quickly the diffusive process proceeds globally. Two of
the physical configurations investigated in this study use altered
diffusion: one with diffusion suppressed to half its default
efficiency (ηD=0.5), and one enhanced (ηD=1.5).
The atmospheric boundary conditions used by DSEP can be

specified from a number of possibilities. PHOENIX model
atmospheres (Hauschildt et al. 1999) are used by default to
determine the surface boundary conditions for temperatures up
to 10,000 K and log g=5.5 (all of the models produced in this
study are well beneath these conditions). DSEP does the
matching between the interior solution and the surface
boundary conditions at an optical depth of τ=2/3. This
approach has been adopted as it leads to stellar models which
are in broad agreement with the observations (e.g., Dotter et al.
2007, 2008). More details on DSEP’s handling of both
diffusion and boundary conditions, and justifications for
choices regarding these implementations, can be found in
Dotter et al. (2008).
Table 1 shows the value of the solar-calibrated mixing length

for four physical configurations: The first (referred to
henceforth as our “default” or “canonical” configuration) uses
PHOENIX model atmospheres as boundary conditions and
DSEP’s default implementation of diffusion. The second uses a
gray model atmosphere and the same diffusive efficiency. The
last two revert back to the PHOENIX model atmospheres, but
suppress and enhance diffusion, respectively.
Due to turbulence, the convective regions of stars are well-

mixed compared to their radiative counterparts, and mixing is
assumed to be instantaneous compared to evolutionary time-
scales. Because the mixing length is defined to be a mean free
path for fluid parcels, it is, in some sense, a proxy for the
mixing efficiency within the convective region. Speaking
strictly in the language of MLT, a larger mixing length
indicates that a parcel is traveling further in space before
denaturing, thereby representing a more efficient exchange of
heat from different points along its trajectory. Larger mixing
lengths lead to more efficient transport of heat within the star,
which in turn yields small convection zones. Hence, the
star becomes more compact and displays a higher surface
temperature.
Despite the fact that the MLT framework and the physical

prescription for diffusion apply to entirely separate regions of
the star (convective and radiative, respectively), changes in
mixing length can mimic the effect on global parameters of
modifying the efficiency of diffusion.

Table 1
Solar-calibrated Mixing Length Values for Various Physical Configurations

Atmosphere ηD αe Yin Z0

PHOENIX 1.0 1.9258 0.275 0.019
Grey 1.0 1.8205 0.282 0.019
PHOENIX 0.5 1.8292 0.277 0.0176
PHOENIX 1.5 1.9780 0.282 0.0192

Note. The solar-calibrated mixing length αMLT,DSEP is computed for models
with varying diffusive efficiency and atmospheric boundary conditions. In all
cases, the solar luminosity and radius at the solar age were reproduced to within
0.1% of the true solar values. The surface abundance Z/X was reproduced at
the solar age to within 1% of the true solar value.
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The physical consequences of increasing the efficiency of
diffusion include a decrease in hydrogen in the center of the
model, which leads to shorter main sequence lifetimes, and an
increase in hydrogen abundance in the outer region of the star,
which causes an increase in opacity in the surface layers. This
increase in opacity leads to a decrease in the surface
temperature of the model. Raising the diffusive efficiency
(ηD) and lowering the mixing length therefore both lead to a
decrease in the model star’s effective temperature. We
emphasize, however, that changes in the mixing length and
in the efficiency of diffusion are not physically related, but
merely manifest the same way in terms of surface observeables.

Obtaining lower and higher values in our solar calibrations
of αMLT,e—where the effective temperature is fixed at the solar
value—for models with suppressed (ηD=0.5) and enhanced
(ηD=1.5) diffusion, respectively, is therefore consistent with
our expectations.

3. Stellar Models

A thorough discussion of the DSEP code can be found in
Bjork & Chaboyer (2006) and Dotter et al. (2008). Major
adjustments within the code since 2008 are discussed in Joyce
& Chaboyer (2015), and include updates to nuclear reaction
rates (Adelberger et al. 1998; Marta et al. 2008).

We use DSEP to generate grids of stellar tracks which are
then interpolated to construct isochrones. In the case of
comparing DSEP’s predictions to HD 140283, we source our
data directly from the stellar tracks.

To fit HD 140283, we probe a parameter space encompass-
ing masses of 0.7–0.85 Me and mixing lengths ranging from
αMLT=0.5 to 2.0 by generating a grid of stellar tracks in mass
increments of 0.01 Me and αMLT increments of 0.1. To fit M92
and the four main sequence stars, we generate isochrones in
mixing length increments of roughly 0.05—the sampling is not
constant across the entire mixing length spectrum due to the
fact that changes in the mixing length at low values of αMLT

have a much greater impact on the isochrone’s effective
temperature than do identical changes at higher αMLT.

Each isochrone involves the generation of two grids of stellar
tracks. A high-mass grid is generated using DSEP’s standard

analytical equation of state, which includes Coulomb correc-
tions (Chaboyer & Kim 1995), and encompasses tracks of mass
0.65–1.0 Me, in increments of roughly 0.03 Me. A separate
grid of tracks is generated using the more sophisticated (and
more computationally demanding) FREE EOS equation of state
(Irwin 2012), for M<0.65Me. FREE EOS is invoked only in
the low-mass regime, where it has a significant impact on the
tracks.
We compute isochrones for ages 8–16 Gyr, in increments of

1 Gyr. To account for uncertainty in the ages of the objects, we
consider all of these as potential fits to M92 and the four main
sequence stars. However, only isochrones within the range of
11–15 Gyr match the observations, and we therefore concen-
trate on analyzing this range.

4. Fits To HD 140283

HD 140283 is significant in both its metal-poorness and
proximity. Thanks to the latter, it is the only very metal-poor
star whose radius we know empirically from interferometry.
In their recent paper, Creevey et al. (2015) (hereafter C15)

thoroughly constrain the observational features of HD 140283.
Over four nights in 2012 and 2014, C15 used CHARA array
interferometric observations to determine the angular diameter
of HD 140283. Using these data, they derive a (limb-darkened)
radius of R=2.21±0.08Re, a luminosity of 4.12±0.10Le,
and Teff=5543, assuming an interstellar extinction of AV=
0.0 mag. However, AV is uncertain, and in adopting a maximal
error bar of AV=0.1, the constraints on luminosity extend up
to 4.47Le, and on Teff to 5647 K. These values provide the
bounds on the HR diagram to which we fit. As in C15, we
adopt ([Fe/H]=−2.46±0.014 based on the PASTEL
catalog (Soubiran et al. 2016).
In deriving the star’s model-dependent properties—mass,

age, initial metal abundance—C15 employ the CESAM stellar
evolution code. This code invokes libraries and formalisms that
are standard among stellar evolution codes, including OPAL
opacities (Iglesias & Rogers 1996), the NACRE nuclear
reaction rates, MARCS (Gustafsson et al. 2008) model
atmospheres, and the MLT framework for modeling convective
regions. Using this input physics, they create a set of models
spanning a range of masses, initial metallicities, and mixing
lengths to find the combination that best reproduces derived
luminosity, effective temperature, and present metallicity of
HD 140283.
Irrespective of the mixing length value, C15 use stellar

tracks to determine that the mass of HD 140283 falls between
0.75 and 0.84 Me based on the observed luminosity, the
physically reasonable assumption that the star is not older than
the age of the universe (t<14 Gyr), and the primordial helium
abundance (Yi=0.245). Having inferred these mass con-
straints without co-optimizing the mixing length, they are then
left with only zero-age–metallicity Z0—the primordial metal
abundance by weight specified in the pre-MS model—and
αMLT as parameters that cannot be constrained directly by
observations.
In adjusting both Z0 and αMLT, C15 find, first, that no model

with αMLT=αe (in the CESAM code, αe=2.0) can
reproduce the effective temperature Teff and interferometrically
derived radius R of HD 140283. Rather, they find that a mixing
length half this value (αMLT=1.0) is needed. Considering the
smallest possible mass (0.78 Me—see Section 5 for a
discussion of the mass–mixing length degeneracy) within their

Figure 1. Masses and mixing lengths fit to HD 140283ʼs temperature and
luminosity constraints, provided by C15, using grids of DSEP tracks. The top
panel shows the variation in Teff and L as a function of mixing length for
models with mass 0.77Me. The bottom panel illustrates the effect of mass for
fixed α, as listed. All models in both panels use a PHOENIX model atmosphere
and ηD=1.0.
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constraints, they can push αMLT up only as far as 1.5, or 0.75
αe. Across the full mass spectrum, the best-fitting mixing
length drops as low as 0.45αe (αMLT=0.9) at 0.82 Me.
Their Figure 7 shows a set of tracks with co-varying

masses and mixing lengths superimposed on the region in the
HR diagram that is consistent with observations of HD
140283. We extend this analysis by fitting stellar tracks
generated with DSEP to their parameter space and investigat-
ing the scope of consistent αMLT values under variations
in DSEP’s input physics, based on physical uncertainties in
the prescriptions for diffusion and atmospheric boundary
conditions.
In Table 2, we present the sets of mass–αMLT combinations

for which DSEP reproduces the observable features of HD
140283, under four distinct physical configurations. The first
sub-table lists the values of αMLT for a given mass that place

Table 2
Matches to HD 140283

Mass (Me) αMLT Age (Gyr) T Range (K) L/LeRange

PHOENIX Model Atmosphere, ηD=1.0

0.75 0.8 14.9 5461, 5433 4.0, 4.1
0.9 14.9 5527, 5433 4.0, 4.2
1.0 14.8 5588, 5434 4.0, 4.3
1.3 14.8 5746, 5470 4.0, 4.6
1.7 14.7 5749, 5673 4.3, 4.6

0.76 0.7 14.3 5537, 5432 4.0, 4.2
0.8 14.3 5603, 5432 4.0, 4.3
0.9 14.2 5659, 5434 4.0, 4.4
1.0 14.2 5718, 5434 4.0, 4.5
1.3 14.1 5748, 5558 4.3, 4.6
1.7 14.1 5748, 5748 4.6, 4.6

0.77 0.5 13.9 5627, 5432 4.0, 4.2
0.7 13.7 5701, 5435 4.0, 4.4
0.8 13.7 5747, 5435 4.0, 4.5
0.9 13.6 5748, 5483 4.1, 4.6
1.0 13.6 5749, 5547 4.2, 4.6
1.3 13.5 5747, 5711 4.5, 4.6

0.78 0.5 13.3 5748, 5436 4.1, 4.5
0.7 13.2 5749, 5510 4.2, 4.6
0.8 13.1 5746, 5571 4.3, 4.6
0.9 13.0 5749, 5637 4.4, 4.6
1.0 13.0 5751, 5692 4.5, 4.6

0.79 0.5 12.7 5744, 5574 4.4, 4.6
0.7 12.6 5748, 5689 4.5, 4.6
0.8 12.5 5748, 5736 4.5, 4.6

Eddington Gray, ηD=1.0

0.75 0.8 14.9 5477, 5436 4.0, 4.1
0.9 14.9 5538, 5433 4.0, 4.2
1.0 14.8 5598, 5435 4.0, 4.3
1.3 14.8 5747, 5496 4.0, 4.6
1.7 14.7 5748, 5674 4.3, 4.6

0.76 0.8 14.3 5605, 5434 4.0, 4.3
0.9 14.2 5665, 5431 4.0, 4.5
1.0 14.2 5723, 5435 4.0, 4.5
1.3 14.1 5751, 5578 4.3, 4.6
1.7 14.1 5751, 5746 4.5, 4.6

0.77 0.5 13.9 5628, 5433 4.0, 4.2
0.7 13.7 5702, 5433 4.0, 4.5
0.8 13.7 5751, 5435 4.0, 4.6
0.9 13.6 5751, 5503 4.1, 4.6
1.0 13.6 5751, 5562 4.2, 4.6
1.3 13.5 5750, 5717 4.5, 4.6

0.78 0.5 13.3 5745, 5436 4.1, 4.5
0.7 13.1 5748, 5518 4.2, 4.6
0.8 13.1 5751, 5581 4.3, 4.6
0.9 13.0 5747, 5642 4.4, 4.6
1.0 13.0 5751, 5696 4.5, 4.6

0.79 0.5 12.7 5746, 5580 4.4, 4.6
0.7 12.6 5748, 5685 4.5, 4.6
0.8 12.5 5747, 5735 4.5, 4.6

PHOENIX Model Atmosphere, ηD=0.5

0.76 0.8 14.5 5633, 5436 4.0, 4.3
0.9 14.4 5703, 5432 4.0, 4.5
1.0 14.4 5747, 5439 4.1, 4.6
1.3 14.4 5748, 5613 4.4, 4.6

Table 2
(Continued)

Mass (Me) αMLT Age (Gyr) T Range (K) L/LeRange

0.77 0.5 13.9 5627, 5432 4.0, 4.2
0.7 13.8 5720, 5433 4.0, 4.5
0.8 13.8 5747, 5439 4.1, 4.6
0.9 13.8 5751, 5516 4.2, 4.6
1.0 13.8 5748, 5582 4.3, 4.6

0.78 0.5 13.3 5748, 5436 4.1, 4.5
0.7 13.2 5750, 5522 4.2, 4.6
0.8 13.2 5748, 5595 4.3, 4.6
0.9 13.2 5748, 5663 4.4, 4.6
1.0 13.2 5746, 5722 4.5, 4.6

0.79 0.5 12.7 5744, 5574 4.4, 4.6
0.7 12.7 5745, 5692 4.5, 4.6

PHOENIX Model Atmosphere, ηD=1.5

0.75 0.9 14.6 5484, 5436 4.0, 4.1
1.0 14.6 5542, 5438 4.0, 4.2
1.3 14.5 5675, 5435 4.0, 4.5
1.7 14.4 5748, 5630 4.2, 4.6

0.76 0.8 14.1 5571, 5431 4.0, 4.3
0.9 14.0 5623, 5436 4.0, 4.4
1.0 13.9 5678, 5431 4.0, 4.4
1.3 13.8 5750, 5508 4.2, 4.6
1.7 13.8 5747, 5694 4.4, 4.6

0.77 0.5 13.9 5627, 5432 4.0, 4.2
0.7 13.6 5682, 5436 4.0, 4.4
0.8 13.5 5727, 5433 4.0, 4.5
0.9 13.4 5748, 5457 4.1, 4.6
1.0 13.4 5747, 5513 4.2, 4.6
1.3 13.2 5746, 5642 4.4, 4.6

0.78 0.5 13.3 5748, 5436 4.1, 4.5
0.7 13.1 5749, 5495 4.2, 4.6
0.8 13.0 5751, 5551 4.2, 4.6
0.9 12.9 5750, 5611 4.3, 4.6
1.0 12.8 5749, 5662 4.4, 4.6

0.79 0.5 12.7 5744, 5574 4.4, 4.6
0.7 12.6 5745, 5680 4.5, 4.6
0.8 12.5 5748, 5723 4.5, 4.6

Note. Matches to C15’s parameter space for HD 140283, using a grid of DSEP
stellar tracks spanning a mixing length range αMLT=0.5–2.0 and a mass
range 0.74–0.79 Me, with varying physical prescriptions as indicated.
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the model star’s effective temperature and luminosity within
the error bounds in C15, as well as the age of the model star
at the track’s midpoint of intersection (in luminosity). The
minimum and maximum temperature and luminosity values
along the tracks in the regions of intersection are also given.
The second sub-table shows these data for a set of DSEP tracks
implementing a gray model atmosphere. The last two sub-
tables show the same for physical configurations invoking a
PHOENIX (standard) model atmosphere, but modified diffu-
sive efficiency: ηD=0.5 and ηD=1.5, respectively. Taking
into account the current best constraint on the age of the
universe (13.8 Gyr, Planck Collaboration 2013), but relaxing
this somewhat to account for uncertainties in stellar dating,
only parameter sets that result in intersection ages below
15 Gyr are shown.

We explore the mass range allowed by DSEP when fitting
HD 140283ʼs Teff and L. We find that in no case is a DSEP
track with mass above 0.79 Me found to agree with the
observational constraints. Mixing lengths ranging from 0.25αe
to 1.05αe (αMLT=0.5 to αMLT=2.0, with variable grid
spacing) are examined.

Figure 1 mimics C15ʼs Figure 7, showing analogous
mass-αMLT curves. The set of DSEP tracks that intersect with
these observational constraints differs somewhat from C15ʼs; in
particular, the masses are lower. The difference in fitted masses
is indicative of differences between CESAM and DSEP, which
employ different nuclear reaction rates and atmospheric
boundary conditions. Among mixing lengths, we do find
DSEP tracks in agreement with the CESAM tracks for
αMLT>0.5αe (αMLT>1.0), up to and including 0.89αe
(αMLT=1.7). This is still notably lower than DSEP’s solar-
calibrated mixing length, but this difference falls just short of
the factor of two disparity between αe,CESAM and the fitted
value found by C15. For M=0.79Me, however, agreement is
found using mixing lengths as low as ∼25% of DSEP’s solar
value.

DSEP produces intersecting curves at every mass between
0.75 and 0.78 Me for mixing lengths at C15ʼs fit of
αMLT=1.0, or within 10% of this value. As in their results,
DSEP too rules out αMLT=2.0 as a possibility for this star.

More to the point, DSEP also cannot produce a consistent
curve using its own αe.

4.1. Uncertainty in Metallicity

The metallicity and α element enhancement for HD 140283
are [Fe/H]=−2.39±0.14 and αFe=0.40, respectively
(C15), which imply a best-fitting surface abundance of
Z X 0.000186 0.000014

0.000108= -
+ . Given that metallicity is one of the

free parameters in the characterization of HD 140283, it is
instructive to examine the impact of adjusting Z0.
Figure 2 shows two sets of stellar tracks, grouped by mixing

length. For each value of αMLT, tracks are generated for each of
[Fe/H]ä{−2.53,−2.39,−2.26} dex (or Z e1.057 ,0

4Î -{
e e1.46 , 1.964 4- - } for α-enhanced models), corresponding

to C15ʼs reported value of [Fe/H]=−2.39 and taking the
uncertainty at its most severe in both directions. Tracks of the
same color implement the same mixing length, and tracks of
the same line style implement the same [Fe/H]. The allowed
parameter space for HD 140283 is outlined in black.
In the subgiant region, the effect of varying input metallicity

is more dramatic than anywhere else in the HR diagram; raising
[Fe/H] by 0.25 dex has an effect on a par with that of lowering
the mixing length by ∼0.6 scale heights. The physical effect of
e.g., raising Z0 is to lower both the estimated effective
temperature and luminosity of HD 140283, corresponding to
a rise in its fitted age. The median range of allowed mixing
lengths for fitting HD 140283 at a zero-age–metallicity of
[Fe/H]=−2.26 is αMLT∼0.5–0.8. When [Fe/H]=−2.53,
the median fit range shifts to αMLT∼0.9–1.7.
This degeneracy between αMLT and metallicity should be

taken into consideration when constructing the best possible set
of parameters. We reiterate that we constrain zero-age–
metallicity from observations, which have associated uncer-
tainties, thus making input metallicity itself an adjustable
parameter within those uncertainties. Hence, the value derived
for metallicity that provides the best fit to HD 140283 is
dependent on the values of the other adjustable parameters in
the models (like the mixing length), and as such means that
possible shortcomings in the model physics may also be
absorbed into the zero-age–metallicity.
Because abundances affect the modeling of diffusion, the

degree of α element enhancement also affects the chemical
evolution of the star. However, although there is observational
uncertainty in [α/Fe] on the order of 0.15 dex, the impact of
varying [α/Fe] within this uncertainty is negligible compared
to variations in [Fe/H]. At, for example, [Fe/H]=−2.39, the
change in Z0 for [α/Fe]=+0.25 versus [α/Fe]=+0.55 is
less than 0.09×10−4. We note that an increase in the degree
of α-enhancement does raise Z0, but constitutes only a small
relative increase in metallicity.
Taking into account this uncertainty, the range of mixing

lengths which provide acceptable fits to HD 140283 is
αMLT=0.8–1.3 across masses, atmospheric boundary condi-
tions, and diffusive efficiency, reaching extreme values of 0.5
(αMLT/αe=0.26, when ηD is minimal and mass is maximal)
and 1.7 (αMLT/αe=0.88, when mass is minimal and ηD is
high). If a strict age constraint of 13.8 Gyr is applied, the mid-
point of the range of acceptable values of αMLT drops to 0.7.
The centermost set of values (with looser age allowance)
corresponds to 42% to 68% of DSEP’s αe (per physical
prescription; see Table 1). This is in good agreement

Figure 2. For two mixing length values α=0.7, 1.3, stellar tracks generated
with three different input metallicities are shown. The constraints for HD
140283 are shown in black. Tracks invoke a PHOENIX model atmosphere and
ηD=1.0.
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with C15ʼs need to invoke a mixing length at roughly half the
solar-calibrated value.

5. Degeneracies in Age, Mass, and Mixing Length

As others (e.g., Tayar et al. 2017) have demonstrated, the
mixing length can heavily impact the predicted age of a model
star. For a stellar track designed to reproduce a specific mass,
effective temperature, and luminosity (as with HD 140283), a
lower mixing length raises the age at which a model of given
mass will reproduce the star’s temperature and luminosity.

Figure 3 demonstrates the effect of mixing length on the age
of present-day models of HD 140283 as a function of mass.
The figure shows a few mixing length values for each of the
four physical configurations as a function of age, over a subset
of the range of masses for which DSEP tracks agree with C15ʼs
observational constraints: 0.74–0.79 Me. Only mass and αMLT

combinations which produce intersection between the stellar
track and C15ʼs observational constraints on temperature and
luminosity are shown.

Tracks generated under the same physical configuration are
shown in the same color and line style, in order to emphasize
the impact of the input physics—primarily ηD—on tracks
irrespective of particular mixing length and mass values.
Mixing lengths within each of these sets of tracks increases
from right to left (e.g., models with lower mixing lengths, for a
given mass, are older for a fixed point in Teff–L space),
demonstrating that models with the same mass but lower
mixing lengths evolve more slowly.

As has been demonstrated in the literature (e.g., Chaboyer
1995), the impact of altering diffusion is much more evident
than that of changing the model atmosphere. Taking the red set
of curves to represent the canonical, or “default” configuration
(PHOENIX model atmosphere, ηD=1.0), we see that when
diffusion is made half as efficient (green curves), model stars of
a given mass are older. We also find that the mixing length has
less of an impact on the star’s age overall in the lower-diffusion
model; this is inferred from the tighter spacing between the

mixing length curves using suppressed diffusion relative to the
sets of models with standard or enhanced diffusion.
As discussed in Section 2, this can be understood in terms of

the conjugate effects of mixing in convective regions and
efficiency of heavy element diffusion. Because lessening the
efficiency of diffusion mimics lowering αMLT, one should
anticipate that lowering ηD lessens αMLTʼs impact overall. That
the same mixing lengths create older stars under low-diffusion
conditions speaks to the same degeneracy: with a lower degree
of chemical mixing in the stellar interior comes longer burning
cycles, and hence higher ages.
Using a gray model atmosphere over the PHOENIX model

atmosphere does not affect the median age of intersection
appreciably or consistently; the difference between a track
using the canonical configuration and the Eddington track is
only noticeable on the order of 0.05 Gyr. In contrast, there is
nearly an 0.7 Gyr difference between a canonical track and a
track using ηD=0.5, for the models of lowest mass.
It is important also to note the large effect on the ages of the

stellar models due to changes in the mixing length. Models of a
given mass can differ in age by up to half a billion years
through a change of αMLT=αe to αMLT=0.5αe. We note
also that the impact of the mixing length on the age of the
model is not linear with αMLT; it is proportionally greater for
lower-mass stars. This trend is due to the fact that the
convective envelope takes up a proportionally larger region of
the stellar interior for low-mass stars.
Figure 3 explicitly quantifies the impact of changes in αMLT

relative to changes in ηD and T(τ). When diffusive efficiency is
maximized, a change of 0.3 scale heights in αMLT results in an
age difference of nearly 0.3 Gyr, for models at the high end of
the mass spectrum and mixing lengths in the lower regime. At
the opposite end of both spectra, the impact of mixing length
on age is virtually non-existent for low ηD. Irrespective of
differences in physical inputs, αMLTʼs impact on age likewise
diminishes for lower masses and lower values of αMLT. In
addition to these coupled effects, we also reiterate that the
impact of mixing length on age is degenerate with metallicity
near the turn-off (TO) and along the subgiant branch (see
Figure 2).
Degeneracies among parameters are a notorious source of

uncertainty in stellar age determinations from model fitting; the
source of frustration is that we have, until recently, lacked the
ability to place robust observational constraints on a star’s
interior properties (asteroseismology has been successful in this
regard, but not for a broad spectrum of stars; some alternative
HR-dependent methods for age determinations have also been
investigated—see e.g., Nataf et al. (2013), Joyce & Chaboyer
(2015) and other studies focusing on the red giant branch
bump). For now, we quantify these degeneracies as best we
can, and maintain strict awareness of the pitfalls of working
with multiple free parameters.

6. Fitting Other Regimes

Although HD 140283 provides the only empirical test we
have, it is arguably more reasonable to generalize our findings
about its best-fitting mixing length to all highly metal-poor
subgiants than it is to generalize the solar mixing length to all
stars. That is to say, it is not ideal. One way we can expand our
knowledge, however, is by studying mixing length fits to stars
of similar composition as HD 140283, but for a range of masses
and ages.

Figure 3. Input track mass (Me) shown as a function of intersection age (Gyr)
for mixing lengths αMLT ä {0.7,1.0,1.3}. The value of αMLT within a set of
tracks (grouped by color) decreases from left to right; e.g., smaller mixing
lengths intersect at higher ages. The red curves with square markers correspond
to models generated with the standard prescription (PHOENIX atmosphere,
ηD=1.0). The yellow curves with circular markers correspond to models
generated with a gray model atmosphere and ηD=1.0. Curves marked with
green diamonds and blue triangles correspond to curves generated with
PHOENIX model atmospheres and ηD=0.5, 1.5, respectively.
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6.1. Best Fits to M92

While our findings agree with the need to implement a
mixing length significantly smaller than the solar-calibrated
value to fit subgiant HD 140283, we also ask whether the
mixing length should be adaptive depending on atmospheric
parameters, and hence on age of the star, as supported by
αMLT-calibrations against 3D simulations (Freytag et al. 1999;
Trampedach et al. 2014; Magic et al. 2015). For this reason, we
examine the fits of stellar isochrones over a range of mixing
lengths to observations of stars in different evolutionary phases,
beginning with the red giant branch.

Though there is no other very metal-poor star with
observational characterization as extensive as HD 140283ʼs, a
globular cluster with very similar metallicity allows for the
examination of αMLT for subgiants, red giants, and for a
significant mass range along the main sequence.

The data for M92 are provided by Sarajedini et al. (2007), who
present a reddening and distance modulus of E(B−V )=0.02
and m−MV=14.7. When fitting M92, we calibrate our own
reddening and distance modulus values in accordance with
DSEP’s isochrones. The values we find vary slightly depending
on the physical inputs used in DSEP (see the discussion in
Section 6.1.1 for more details).

To determine the best-fitting mixing length, we create
isochrones comprising grids of stellar tracks generated for

mixing lengths spanning αMLT=0.5 to αMLT=3.0, or
roughly 0.25–1.5 times the solar mixing length, with variable
grid spacing (higher αMLT values require denser sampling to
account for the reduced Teff sensitivity at higher mixing
lengths; see Section 5). We once again consider isochrones
between the ages of 8–16 Gyr, in increments of 1 Gyr (and
likewise find fits only between the ages of 11–15 Gyr). For
each mixing length, we then visually determine the isochrone
and age that best fit M92. As with HD 140283, we determine
the best-fitting mixing length under four physical prescriptions
encompassing two model atmospheres and three values of ηD.
Table 3 lists the mixing lengths, normalized mixing lengths

(the mixing length divided by the solar-calibrated mixing
length corresponding to the relevant physical prescription), and
ages of each best-fitting isochrone. Figure 4 shows an example
of the fits of isochrones spanning the aforementioned age range
to M92 for models generated using a gray model atmosphere
and a mixing length of αMLT=1.65 (the color calibration
scheme of VandenBerg & Clem (2003; hereafter VC) is used to
transform all isochrones from Teff,L to colors and magnitudes
unless otherwise specified; Section 6.3 gives more details).

Table 3
Mixing Length Values of Best-fitting Isochrones to M92

Object Model Atm ηD [Fe/H] m−MV E(B−V ) αMLT αMLT/αe Age

M92 PHOENIX 1.0 −2.4 14.6 0.058 1.75 0.9087 13
Gray 1.0 −2.4 14.7 0.058 1.65 0.906 12
PHOENIX 0.5 −2.4 14.7 0.058 1.7 0.929 13
PHOENIX 1.5 −2.4 14.6 0.058 1.75 0.885 13

Note. We show the mixing length value and other fit parameters for the best-fitting isochrones to the M92 data for each physical prescription. The column αMLT/αe

describes the best-fitting mixing length normalized by the solar-calibrated mixing length value for the associated configuration; e.g., values of αMLT corresponding to
models with an Eddington/gray atmosphere and ηD=1.0 are divided by αe=1.8205 (see Table 1). We also provide the reddening and distance modulus applied to
the M92 data in each case, which we allow to vary slightly from Sarajedini et al.ʼs (2007) values of m−MV=14.7 and E(B−V )=0.05. We note that the distance
modulus and age are degenerate parameters, but the adjustments in distance modulus are minor compared to the age resolution among the isochrones (1 Gyr).

Figure 4. The fits of five isochrones spanning ages 11–15 Gyr, in increments of
1 Gyr, are shown against M92 in terms of apparent magnitude, to allow for
variations in distance modulus and reddening to be applied to the isochrones.
All models shown here invoke a gray model atmosphere, ηD=1.0,
αMLT=1.65, and VC color calibration.

Figure 5. Six isochrones, each of age 13 Gyr, generated with different mixing
lengths and shown against M92 for reference. Each isochrone in the figure
invokes the same physical prescription (PHOENIX model atmosphere, ηD=1)
and color calibration (VC). The M92 data are once again presented in apparent
magnitudes to allow for individual tailoring in distance modulus and reddening,
applied to the isochrones. m−MV=14.7 in all cases; E(B−V ) ranges from
0 to 0.06. The mixing length’s greatest effect is on the shape of the isochrone,
in particular on the length, and hence duration, of the subgiant branch. The
goodness of fit is determined primarily by the isochrone’s alignment with the
red giant branch; highly subsolar values of αMLT fit this region quite poorly in
the case of M92.
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The data reflect the same trend first explained in the solar
mixing length calibration: the best-fitting αMLT values are
higher for higher values of ηD. In fits to M92, the gray
atmosphere models require slightly lower values of αMLT

compared to models using PHOENIX atmospheres, but this is
not the case in the fits to HD 140283 or to any of the metal-
poor parallax stars (see Section 6.2). The best-fitting mixing
length values are not different enough among the first three
physical prescriptions to merit extensive physical speculation.
What is much more important to recognize is that αMLT<αe
by a meaningful degree (∼10%) for every prescription.

In Figure 4, we see that the main sequence TO and subgiant
branch are the most parameter-sensitive regions of the fit to
M92; the best-fitting age is determined exclusively by the TO.
The tracks along the main sequence and the red giant branch,
on the other hand, show virtually no effect of even a 5 Gyr age
difference for a given αMLT. However, the red giant branch
does display extreme sensitivity to αMLT itself—Figure 5
shows a range of 13 Gyr isochrones, spanning αMLT=0.7 to
αMLT=1.95 (roughly αe), with otherwise identical para-
meters: a PHOENIX model atmosphere and ηD=1.0. In
summary, the length of the subgiant branch and the curvature
of the red giant branch are the decisive features in determining
both the best-fitting mixing length and the best-fitting age.

We find that, relative to the acceptable ranges for HD
140283, higher values of αMLT provide the best fits to M92.
For all physical prescriptions, the best-fitting mixing length
hovers at roughly 90% of its respective solar-calibrated value.
While this is not a large deviation from αe, the constancy of
the normalized mixing lengths across widely different physics
—both in terms of the range of evolutionary stages captured by
fits to a globular cluster and in terms of variations in diffusion
and atmospheric boundary conditions—is worth recognizing.
The consistency is noteworthy especially given that the
isochrones are fitting multiple evolutionary phases simulta-
neously by fitting a large cluster of stars, although the subgiant
and red giant branches display the most parameter sensitivity
and functionally dictate the fit. Paying particular attention to the
red giant branch, we conclude that a slightly subsolar value of
αMLT is required to reproduce the observed properties M92 as
accurately as possible, and suggest that lower values may be
required to fit metal-poor red giants in general.

Our findings for M92 differ slightly from results reported by
Tayar et al. (2017), who would predict a mixing length of
∼1.6, or 0.93 αe,YREC (using the YREC stellar evolution
models), for M92 based on their αMLT-[Fe/H] trend. We note,
however, that their results are based on stars with much higher
metallicities than we consider in this paper: [Fe/H] ∼−0.5 dex
in Tayar et al. (2017) versus [Fe/H] =∼−2.3 dex here.

6.1.1. Additional Fitting Parameters

In the case of M92, the determination of the best-fitting
isochrone is also contingent on the distance modulus and
reddening adopted for the observational data. We find that
applying the values for distance modulus and reddening reported
in Sarajedini et al. (2007), m−Mv=14.7 and E(B−V )
=0.05, respectively, to the M92 data provide the best fit to a
model using the default physical configuration and αMLT=1.8.
We use Sarajedini et al.ʼs (2007) values as an initial baseline
throughout our M92 analysis, but manually adjust both
parameters as needed to improve the fits case by case. In
Figure 4, for example, the optimal distance modulus varies from

∼14.5 to 14.8, and the optimal reddening varies from 0.047 to
0.065, with younger isochrones requiring the highest values in
both parameters. In Figure 5, the optimal distance modulus is
found to be m−Mv=14.7 in all cases, and the optimal
reddening ranges from 0 to 0.6.
Figures 4 through 7 are shown in terms of apparent rather

than absolute magnitude so that we can demonstrate the
adjustments in m−MV and E(B−V ) to each isochrone
individually. In the cases where αMLT is smallest in Figure 5,
reddening values below zero would provide better agreement
between the isochrone and the M92 data; however, we restrict
to E(B−V )>0 for the moment. We compare otherwise
physically identical isochrones of different ages as well as
allowing for some flexibility in the upper age limit (15 Gyr) to
account for the age−αMLT covariance.
Figure 6 shows the fits of isochrones with a variety of

diffusive efficiencies and atmospheric boundary prescriptions,
and again in each case, the age of the isochrone, distance
modulus, and reddening are varied to optimize the fit.
αMLT=1.8 remains fixed for all isochrones in this figure.
Table 4 provides more detail on these parameters. In this case,
we do allow for negative reddening values in our optimization
for the purpose of demonstration. We acknowledge that, for
example, the negative reddening values found to optimize the

Figure 6. Sample of isochrones at their respective optimized fit parameters,
given in Table 4, shown for a selection of configurations and mixing lengths.
The distance modulus and reddening are also fit individually and given in
Table 4. A VC color calibration is applied to all.

Table 4
Adjustable Parameters for Fits to M92 (Figure 6)

αMLT Atmosphere ηD m−MV E(B−V ) Age (Gyr)

3.0 PHOENIX 0.5 14.9 0.13 12
2.5 Gray 1.0 14.8 0.10 12
1.8 PHOENIX 1.0 14.7 0.05 13
1.1 PHOENIX 1.0 14.4 −0.05 15
0.9 Gray 1.0 14.5 −0.07 15

Note. For each isochrone of specified mixing length, the set of observational
and theoretical parameters that gives its best possible fit to M92 is presented.
Distance modulus, reddening, and age are permitted to vary in constructing a
fit. m−MV is the fitted distance modulus, and E(B−V ) gives the fitted
reddening. We reiterate that negative reddenings are unphysical, and they are
only presented to demonstrate the optimal fit parameters.
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fit at αMLT=1.1 and αMLT=0.9 are not physically valid.
This indicates that these mixing lengths are unsuitable for the
prescriptions specified; otherwise reasonable mixing length
values can, of course, be ruled out by physical violations
besides a poor fit in magnitude−color space. Similarly, it
follows that reasonable αMLT values should not be ruled out by
poor color transformations alone.

6.2. Best Fits to Low-metallicity Parallax Stars

Having demonstrated that subsolar values of αMLT produce
better models of metal deficient stars in their post-TO phases, we
move on to an investigation of the main sequence. Until this point,
we have also only examined stars with nearly identical
metallicities. We now consider four highly metal-poor, main
sequence stars with two degrees of severe metal depletion: [Fe/H]
∼−2.2 and [Fe/H]∼−2.5. Taking into account their [α/Fe]
abundances, the less deficient pair of stars shares essentially the
same Z0 as HD 140283 and M92, and can be fitted by the same
tracks and isochrones. For the more metal-deficient pair,
isochrones are generated using tracks with approximately half the
Z0 value used in fitting HD 140283 and M92.

The four stars we fit are HIP 46120, HIP 54639, HIP
106924, and WOLF 1137. Each is a highly metal-poor, main
sequence subdwarf with well-determined parallax, and hence
well-constrained absolute magnitude. Their properties are
summarized in Table 5. Metallicities, reddenings, and photo-
metric observations for these stars are provided by O’Malley
et al. (2017). Parallaxes were independently determined from
Gaia TGAS (Lindegren et al. 2016). Further details of the
observations are given in Chaboyer et al. (2017) and O’Malley
et al. (2017).

For HIP 46120 and HIP 106924, we sample the same grid
of isochrones used to fit M92, due to their similar Z0 values,
taking into account α-element enhancement (Z 1.50 ~ ´
10 4- ). For HIP 54639 and WOLF 1137, we create a similar
grid using Z 7.8 100

5~ ´ - . Grid spacing in αMLT is on the
order of ∼0.05 scale heights, which translates to lower Teff
resolution in the low-αMLT regime.

Figure 7 shows a sampling of isochrones that fit HIP 46120
and WOLF 1137 for a range of parameter combinations. Cases
considered are, once again, PHOENIX versus gray model
atmospheres; enhanced, suppressed, and standard diffusive

efficiency (ηD=0.5, 1.0, 1.5); isochrone ages spanning
11–15Gyr in increments of 1 Gyr; and mixing lengths between
25% and 150% of the solar value (per case). Table 6 gives the
best-fitting values of αMLT under each set of conditions. HD
46120 and HD 106924 are fit only by isochrones with [Fe/H]
=−2.25, and likewise for HIP 54639 and Wolf 1137 with
[Fe/H]=−2.5.
While the vast majority of best-fitting mixing lengths are

subsolar across all physical cases, the αMLT values are highly
segregated by star; there is no generalized “main sequence
trend” that we can infer from these data. HIP 46120 and Wolf
1137 are found to be fit best by normalized mixing lengths
between M92ʼs αMLT/αe∼0.9 and αe. The normalized
mixing lengths are not, however, nearly as consistent across
physical configurations as they were found to be for M92. And,
in a few cases, αMLT is found to be slightly supersolar.

Table 5
Properties of Fitted Objects

Name V V−I [Fe/H] References

HD 140283 7.21 0.0 −2.46 Creevey et al. (2015)
HIP 46120 10.12 0.752 −2.22 Chaboyer et al. (2017)
HIP 54639 11.38 0.914 −2.50 Chaboyer et al. (2017)
HIP 106924 10.36 0.803 −2.23 Chaboyer et al. (2017)
WOLF 1137 12.01 0.85 −2.53 O’Malley et al. (2017)
M92 L L −2.24 Sarajedini et al. (2007)

Note. The observed properties of the objects we consider in this study are
presented with the relevant reference. The reddening and distance modulus
provided by Di Cecco et al. (2010) for M92 are E(B−V )=0.025 and
m−M=14.58, respectively. These values differ slightly from the values
found to best align with DSEP’s isochrones; they vary with physical
configuration, but average closer to the reddening and distance modulus
provided for M92 in Sarajedini et al. (2007): E(B−V )=0.05 and
m−M=14.7, respectively). Figure 7. Sample of isochrones invoking input parameter combinations,

metallicities, and mixing lengths tested against HIP 46120, HIP 106924, and
Wolf 1137. All use a VC color calibration; details of the physical configuration
are given in the legend.

Table 6
Mixing Length Values of Best-fitting Isochrones to Main Sequence Stars

Object Model Atm ηD [Fe/H] αMLT αMLT/αe Age

HIP 46120 PHOENIX 1.0 −2.25 1.85 0.9606 12
Gray 1.0 −2.25 1.6 0.879 13
PHOENIX 0.5 −2.25 1.55 0.847 13
PHOENIX 1.5 −2.25 1.97 0.996 12

HIP 54639 PHOENIX 1.0 −2.5 0.7 0.363 15
Gray 1.0 −2.5 0.5 0.275 15
PHOENIX 0.5 −2.5 0.6 0.328 13
PHOENIX 1.5 −2.5 0.7 0.353 13

HIP 106924 PHOENIX 1.0 −2.25 1.1 0.571 13
Gray 1.0 −2.25 0.95 0.522 13
PHOENIX 0.5 −2.25 1.0 0.547 13
PHOENIX 1.5 −2.25 1.2 0.6067 12

Wolf 1137 PHOENIX 1.0 −2.5 1.95 1.012 15
Gray 1.0 −2.5 1.6 0.879 14
PHOENIX 0.5 −2.5 1.65 0.902 15
PHOENIX 1.5 −2.5 2.1 1.062 13

Note. The same data are presented as in Table 3, excluding distance modulus
and reddening, for fits to each of the metal-poor subdwarfs. A VC color
calibration is used for all isochrones tested.
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The remaining subdwarfs tell a different story. A mixing
length just over half the solar value is required to fit HIP
106924, and a mixing length one-third the solar value fits HIP
54639. From the perspective of empirical calibration, this
means that the solar mixing length is “off” by a factor of 2
(or 3!) for physical prescriptions meant to describe these stars
—quite the lack of accuracy for a parameter which has,
historically, been calibrated to five digit precision.

Although there is high variance among the best-fitting
mixing lengths across stars (αMLT=0.5–2.1), the range of
normalized mixing lengths per star is small; αMLT/αe varies
by a maximum of ∼10% across changes in model atmosphere
and ηD. It is worth noting that, if separating the four subdwarfs
into groups, one with an average αMLT/αe>0.7 and one
below 0.7, a star of each metallicity appears in each group. This
counters the possible suspicion that metallicity may be the
cause of the divergence.

This lack of sensitivity of the mixing length along the main
sequence can be at least partially understood in terms of
knowledge from theoretical stellar evolution. The main effect
of changing the mixing length is to change the entropy of the
asymptotic adiabat of the deep convection zone. This in turn
changes the temperature of the bottom of the convection zone
and the location at which the adiabat crosses the radiative
stratification of the interior. Lower values of αMLT correspond
to higher entropies of the adiabat, meaning the convection zone
will start at a deeper point in the interior. However, the
fractional size of the convection zone does not change much,
which means the star as a whole will be smaller. Hence, a
higher αMLT gives only a slightly smaller convection zone as

fraction of radius, but it gives a significantly smaller radius
of the star overall (Christensen-Dalsgaard 1997). This change
in the location of the bottom of the convection zone accounts
for the difference in stellar radius observed with varying the
mixing length.
Figure 8 demonstrates the difference between isochrones that

invoke [Fe/H]=−2.5 versus [Fe/H]=−2.25. As with M92,
age fitting is also done visually, but the determination of a best-
fitting age is much more difficult for these stars. As Figure 8
demonstrates, the effects of uncertainty in age and metallicity
are degenerate. Explicitly, the range of colors (i.e., tempera-
tures) covered by an age span of 11–15 Gyr is on par with the
range allowed by an uncertainty in metallicity of less than 10%
—a more conservative estimate than what has been adopted as
theoretical uncertainty in the DSEP stellar evolution code in the
past (Bjork & Chaboyer 2006; Joyce & Chaboyer 2015), and a
more conservative bound than, for example, the uncertainty
C15 place on HD 140283. One should not, in other words,
ascribe a great deal of physical significance to the selection of a
best-fitting age along the main sequence, in light of more
consequential sources of uncertainty.
Though we can make no statement about an all-encompassing,

empirical value of αMLT that unilaterally fits the main
sequence, we have demonstrated two important details. First,
the best-fitting values of αMLT found for these stars, across a
plethora of parameter fields, are, once again, subsolar. At their
least egregious, they hover just below αe; at their worst,
αMLT<0.3αe. Second, the fact that such large changes in
αMLT are demanded by stars with such similar characteristics
supports the fact that we would do well to re-evaluate our
stellar models and their connection to the observable proper-
ties of stellar atmospheres. A powerful approach to this is
asteroseismology, which offers us a window into stellar
interiors with very different model-dependencies than classi-
cal analysis of stellar observations.
These findings provide a strong case for the re-observation

of these stars, to verify their colors and temperatures, as well
as motivate the acquisition of more observations of similar
stars. Although there are no other metal-poor stars with
observed radii (besides HD 140283), increasing the sample
size of single, metal-poor, main sequence stars with well-
determined parallaxes would increase the robustness of our
model tests in similar fashion. There are a number of
candidate stars with existing high-resolution spectroscopic
abundances, known metal depletion [Fe/H] < 0.6, and
TGAS parallaxes, and mixing length fits to a large number of
such observations would invariably provide more insight.
Expanding the data set in this way constitutes the first step
toward confirming the existence, or lack, of a mixing length
trend along the main sequence.

Figure 8. Isochrones with ages 11, 13, and 15 Gyr shown at two metallicities:
[Fe/H]=−2.25 and −2.5. Both sets employ a PHOENIX model atmosphere,
αMLT=0.7, ηD=0.5, and a VC color calibration. Subdwarfs HIP 54639 and
HIP 106294—the two requiring the lowest fitted mixing lengths—are shown as
pink and orange circles, respectively, for context.

Table 7
Parameters of Best-fits to M92 Using a PHOENIX Color Calibration

Object Model Atm ηD [Fe/H] m−MV E(B – V ) αMLT αMLT/αe Age

M92 PHOENIX 1.0 −2.4 14.7 0.05 1.9 0.986 12
Gray 1.0 −2.4 14.7 0.06 1.8 0.988 12

PHOENIX 0.5 −2.4 14.7 0.06 1.9 1.039 13
PHOENIX 1.5 −2.4 14.7 0.05 1.97 0.996 13

Note. The same data as given in Table 3 are shown using isochrones calibrated instead to a PHOENIX color scheme.
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6.3. Impact of Color Calibration

The final computational step in fitting isochrones to
observational data is the transformation from luminosity and
temperature to magnitudes and colors. This requires that we
apply a color calibration to DSEP’s (theoretical) output.

We consider two color calibrations in this analysis: the semi-
empirical method of VC—assumed as our default calibration
and used for all isochrones presented thus far—and the method
of Hauschildt et al. (1999) (hereafter PHX). Despite the fact
that use of the PHX calibration is most self-consistent with our
use of the PHOENIX model atmospheres, we choose to apply
the VC transformation as our default because it is semi-
empirical. For the cooler stars discussed in this paper, the VC
color transformations are based upon the model atmospheres of
Bell & Gustafsson (1978) and Vandenberg & Bell (1985),
adjusted to conform to observational constraints (see VC for a
thorough discussion of how this is implemented). We likewise
find that the VC tables lead to better fits to observations than do
the PHX tables. We explore the effect of using PHX’s purely
theoretical transformation for the sake of completeness.

Tables 7 and 8 give the best-fitting αMLT values for isochrones
calibrated instead according to synthetic PHX colors, for M92
and the subdwarfs, respectively. Comparing Tables 3, 6, 7, and 8,
what stands out immediately is the higher absolute and relative
values of αMLT when a PHX color calibration is used. The best-
fitting values under this transformation are functionally indis-
tinguishable from the solar-calibrated values for many objects. In
this sense, the PHX-calibrated isochrones suggest a less severe
issue with adopting the solar-calibrated mixing length for
low-metallicity model stars. We acknowledge that the PHX
calibration yields more conservative results (in some cases; in
others, the PHX values demand questionably large mixing
lengths), but we emphasize again that this calibration scheme is
less empirical than the VC transformation. The difference
between fits found with PHX and VC alone suggest it would
be worthwhile to compare color calibrations at low metallicities
in a more systematic way.

Excluding HIP 54693—which displays the most extreme
deviation from αe—the PHX-calibrated, best-fitting mixing
lengths for M92 and the parallax stars rise to or exceed their
solar-calibrated values.
To illustrate the difference between the two color calibra-

tions, Figure 9 shows two isochrones with identical input
physics (atmosphere, mixing length, diffusive efficiency), but
employing different color calibrations, against both M92 (top)
and the four metal-poor subdwarfs (bottom). As this and
Tables 6 and 8 demonstrate, in some cases, αMLT,PHX is twice
the value of αMLT,VC.
A caveat with this observation is that the impact of changing

αMLT does not scale linearly with αMLT; as mentioned
previously, relatively larger changes to the mixing length are
required to adjust the temperature of an isochrone for high
mixing length values. This varies likewise with magnitude. For
example, the Teff response to a change of αMLT from 2.5 to 3.0
at HIP 46120ʼs magnitude is only ∼30 K, whereas the Teff
response to a change in αMLT from 0.5 to 0.7 at the same
magnitude is roughly 90 K. For this reason, we should not

Table 8
Mixing Length Values of Best-fitting Isochrones to Subdwarfs Using a PHX

Color Calibration

Object Model Atm ηD [Fe/H] αMLT αMLT/αe Age

HIP 46120 PHOENIX 1.0 −2.25 3.0 1.558 13
Gray 1.0 −2.25 3.0 1.648 13
PHOENIX 0.5 −2.25 2.5 1.367 14
PHOENIX 1.5 −2.25 1.3 1.517 11

HIP 54639 PHOENIX 1.0 −2.5 1.0 0.519 14
Gray 1.0 −2.5 0.8 0.439 15
PHOENIX 0.5 −2.5 0.9 0.492 13
PHOENIX 1.5 −2.5 1.1 0.556 14

HIP 106924 PHOENIX 1.0 −2.25 1.75 0.9087 15
Gray 1.0 −2.25 1.44 0.791 13
PHOENIX 0.5 −2.25 1.44 0.787 13
PHOENIX 1.5 −2.25 1.9 0.9606 12

Wolf 1137 PHOENIX 1.0 −2.5 3.0 1.558 11
Gray 1.0 −2.5 2.5 1.373 11
PHOENIX 0.5 −2.5 3.0 1.640 15
PHOENIX 1.5 −2.5 >3.0 >1.52 15

Note. The same data as given in Tables 3 and 6 are shown using isochrones
calibrated instead to a PHX color scheme.

Figure 9. Top: two isochrones with identical physical configurations
(PHOENIX model atmosphere, ηD=1.0, αMLT=1.8) but using different
color calibrations shown against the M92 data at a reddening of 0.5 and
distance modulus of 14.7. Age=13 Gyr. Bottom: the same two color
calibrations are shown against the four metal-poor parallax stars, e.g., the main
sequence region. The physical configuration of the isochrones is the same as in
Figure 9.

12

The Astrophysical Journal, 856:10 (14pp), 2018 March 20 Joyce & Chaboyer



consider αMLT values exceeding 2.5, or 1.3αe, to be as
comparably severe as 0.7αe (αMLT=1.35). The decrease in
Teff sensitivity means that the impact of (1) uncertainty in
observational constraints and (2) degenerate parameter effects
(e.g., Z0-αMLT covariance) in the high-αMLT regime are
enhanced. Specifically, a comparably severe adjustment in
the absolute value of αMLT would be necessary to exceed the
the upper bound of a Teff observational constraint, as compared
to that required at the Teff lower bound. The same change
(uncertainty) in Z0 mimics a larger ΔαMLT for large αMLT than
for small αMLT.

Regardless, the difference imparted by the color calibration
alone speaks to the importance of HD 140283. Knowing this
star’s radius and luminosity allows us to infer its temperature
from first principles, thereby providing a much more stringent
test of the stellar models and eliminating this source of
uncertainty entirely.

7. Summary and Conclusions

In 2015, Creevey et al. (C15) demonstrated that stellar
models with a solar-valued mixing length could not reproduce
observations of HD 140283, adding to a body of accumulating
evidence suggesting that the mixing length is not a universal
constant and should not be treated as such. In agreement
with C15, we also find that we cannot reproduce the
observable features of HD 140283 with DSEP using a solar
mixing length. To account for uncertainties in stellar models,
we present the mass and mixing length combinations that
reproduce HD 140283 under a range of physical input
configurations; in particular, variations in atmospheric
boundary conditions and the efficiency of diffusion. To
contextualize our results in terms of the solar mixing length,
we calibrate the mixing length within DSEP to yield solar
specifications for each physical configuration. In all config-
urations, we require subsolar mixing lengths to reproduce
observations of HD 140283.

To form a more well-rounded picture of the potential
importance of non-solar αMLT values on metal-poor stars as a
whole, we take other evolutionary phases into consideration.
We generate sets of isochrones over a range of mixing length
values to find the best possible fit to globular cluster M92,
whose metallicity and age closely match that of HD 140283
(where HD 140283ʼs age is inferred from our stellar model
fits). In addition, we examine fits of these isochrones to four
highly metal-poor subdwarfs on the main sequence.

Table 9 summarizes our findings about the best-fitting
mixing lengths for all objects. The default mixing length is

considered to be the value of αMLT found to best-fit an object
under a PHOENIX model atmosphere, ηD=1.0, and using a
VC color calibration. The average normalized mixing length
refers to the average of all mixing lengths as a proportion of
their solar-calibrated values; e.g., the sum of the best-fitting
PHOENIX, gray, ηD=0.5 and ηD=1.5 mixing length values
per object, divided by four. In short, subsolar mixing lengths
are found to provide the best reproductions of observations
across the board.
Our results concerning the fit to HD 140283 are in strong

agreement with the findings of C15, with DSEP’s best-fitting
mixing length falling between 0.42% and 0.68% of DSEP’s
αe. If a strict age limit of 13 Gyr (Planck Collaboration 2013)
is imposed, αMLT/αe centers closer to 50%—precisely what
the CESAM code required to fit HD 140283. Given the
sensitivity of the subgiant branch to the mixing length
parameter, and that HD 140283ʼs interferometrically deter-
mined radius allows us to derive temperature constraints from
first principles, this result should be taken with a degree of
confidence beyond that which fits to other regimes can afford.
The best-fitting mixing length values found through

isochrone fits to M92, in contrast, are both the highest-valued
among any object we consider and subject to the broadest array
of uncertainties. Our best fits employ mixing lengths at ∼90%
of the solar value, across all physical conditions. The length of
the subgiant branch and curvature of the red giant branch are
sensitive to both αMLT and age—to the extent that for a given
αMLT, the age can be determined within 1 Gyr. This finding is
corroborated in part by Tayar et al. (2017), who demonstrate
that a variable mixing length must be invoked in order to
correct a trend between temperature offset and metallicity
among red giants. As in our case, Tayar et al.’s (2017)
corrections demand smaller mixing lengths with decreasing
metallicity, with their results suggesting that this could lead to
errors approaching a factor of two in age determinations. This
motivates continued efforts to understand the scope of validity
of solar-valued αMLT and its empirical characterization in non-
solar stellar interiors, including understanding the behavior of
αMLT with atmospheric parameters.
We find, on average, that mixing lengths shorter than their

solar-calibrated values are likewise required to fit the four main
sequence parallax stars when the isochrones are calibrated
according to a semi-empirical (VC) color transformation. We
find no justification to claim an obvious empirical trend
regarding mixing length along the main sequence—neither as a
function of metallicity, nor concerning the relative best-fitting
values in the main sequence stage compared to our findings in

Table 9
Summary: Best-fitting Mixing Lengths to All Objects

Default Average
Object Evolutionary Phase αMLT αMLT/αe αMLT/αe Age (Gyr) Fit Method

HD 140283 subgiant 1.3 0.52 0.36–0.68 12.5 stellar track
M92 red giant 1.75 0.91 0.91 13 isochrone
HIP 46120 main sequence 1.85 0.96 0.92 12 isochrone
HIP 54639 main sequence 0.7 0.36 0.33 13 isochrone
HIP 106924 main sequence 1.1 0.57 0.56 13 isochrone
Wolf 1137 main sequence 1.95 1.01 0.96 12 isochrone

Note. The object and evolutionary phase it represents are given in columns 1 and 2, respectively. Columns 3 and 4 give the best-fitting mixing length and normalized
mixing length values for that object at the default configuration: PHOENIX model atmosphere, ηD=1.0, and with a VC color calibration applied. Column 5 provides
the average value of the normalized mixing length across the four physical prescriptions considered for M92 and the four subdwarfs.
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the other evolutionary phases—given the high variance in best-
fitting αMLT among these stars (and the fact that we have only
four data points). However, the broad range of values
(αMLT=0.33–0.96) alone suggests that a critical re-evaluation
is in order.

When a theoretical color calibration is implemented instead
of the VC calibration, best-fitting mixing lengths rise
considerably. Mixing lengths near or even slightly above the
solar value (per case) are found to fit best when isochrones
adopt a transformation based on synthetic colors from
PHOENIX atmospheric models. While Tayar et al. (2017),
C15, and recent findings from asteroseismology (e.g., Creevey
et al. 2017) all support the need for subsolar mixing lengths, the
best-fitting mixing lengths we found using the PHX calibration
are in better agreement with the findings of Ludwig et al.
(1999), Trampedach et al. (2014), and Magic et al. (2015). We
note, however, that the work of Ludwig et al. (1999) and
Trampedach et al. (2014) is not necessarily generalizable to
stars with the metal depletion considered here. A detailed study
of the effect of color calibrations, and the uncertainties therein,
on mixing length calibrations specifically and on very metal-
poor stars in general, would be highly informative in this
regard.

Despite this, and despite ambiguous results on the main
sequence regarding particular values of αMLT, the subsolar
consistency of our results across diverse evolutionary phases
and physical conditions point collectively and conclusively to
one key point: in order for stellar modeling to maintain fidelity,
αMLT must be treated as an adaptive free parameter, not a
physical constant. We mean this in two capacities: (1) that
αMLT should be adjusted to a subsolar value when modeling
very metal-poor stars (probably as a function of that star’s
metallicity, though we have intentionally considered only one
[Fe/H] regime), and (2) that αMLT should be adaptive for a
given mass according to evolutionary phase. Because we have
carefully chosen a sample of stars with very similar
metallicities, our results support the notion that the same value
of αMLT should not be preserved across the main sequence,
subgiant, and red giant phases for a given mass.

We have demonstrated that subsolar values of the mixing
length provide better fits to highly metal-poor stellar objects,
even when uncertainties in atmospheric boundary conditions,
diffusion, metallicity, and color-calibration (to an extent) are
taken into account. This finding is consistent with recent
literature on mixing length versus metallicity trends, and gains
particular urgency in the era of asteroseismic observing
capabilities.

Highly accurate stellar models are necessary, among many
things, for the accurate dating of globular clusters and for
asteroseismic studies of the stellar systems hosting exoplanets.
The use of an adaptive mixing length is undeniably crucial to
the future of stellar modeling, but in this sense it may well lead
to important cosmological and observational insights as well.
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