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Abstract

We present SALT2X, an extension of the SALT2 model for SN Ia light curves. SALT2X separates the light-curve-
shape parameter x1 into an xr

1 and x f
1 for the rise and fall portions of the light curve. Using the Joint Lightcurve

Analysis SN sample, we assess the importance of the rising and falling portions of the light curve for cosmological
standardization using a modified version of the Unified Nonlinear Inference for Type Ia cosmologY (UNITY)
framework. We find strong evidence that xr

1 has a stronger correlation with peak magnitude than x f
1 . We see

evidence that standardizing on the rise affects the color standardization relation, and reduces the size of the host-
galaxy standardization and the unexplained (“intrinsic”) luminosity dispersion. Since SNe Ia generally rise more
quickly than they decline, a faster observing cadence in future surveys will be necessary to maximize the gain from
this work and to continue to explore the impacts of decoupling the rising and falling portions of SN Ia light curves.
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1. Introduction

Type Ia supernovae (SNe Ia) have played a key role in our
understanding of the energy density of the universe, acting as
“standardizable candles” for measuring distances and inferring the
dynamics of the expansion history. They demonstrated the first
strong evidence for the presence of an accelerated expansion rate
(Riess et al. 1998; Perlmutter et al. 1999) and continue to provide
constraints on the physics driving the acceleration (Scolnic et al.
2018). As the numbers of SNe used in cosmological analyses
grow well into the thousands, and other sources of uncertainties
(such as photometric calibration) are reduced, an improved
understanding of standardization will become increasingly
important for reducing the remaining uncertainties.

The nature of SN Ia standardization has been determined
empirically, and historically has included three main components.
(1) The “color” of each supernova, measured slightly differently by
different light-fitting methods, is correlated with peak luminosity,
likely due to a combination of dust (Phillips et al. 2013) and an
intrinsic color distribution, both requiring that bluer supernovae are
brighter (Wang et al. 2006; Rubin et al. 2015; Mandel et al. 2017).
The range of color standardizations has an rms around ∼0.3 mag.
(2) The width of the light curve is positively correlated with the
peak luminosity, likely due to a relationship between total
radioactive energy available (the amount of 56Ni produced in the
thermonuclear runaway of the white dwarf), and the rate of escape
of optical photons in the ejecta (Hoeflich et al. 1996; Kasen &
Woosley 2007). The light-curve-width standardization has an rms
of∼0.14 mag. (3) The final piece of the current standardization is a
correlation between peak luminosity and the properties of the host
galaxy; Kelly et al. (2010) found that supernovae in higher stellar
mass host galaxies were brighter than expected after standardiza-
tion, a phenomenon that has become known as the “host mass
step.” There is increasing evidence that the host mass step is mostly
driven by the age of the progenitor system (Rigault et al. 2013,
2018; Childress et al. 2014; Kelly et al. 2015; Kim et al. 2018). The
equivalent rms of the mass step standardization is ∼0.05 mag.

Given the important SN-standardization role played by light-
curve width, here we focus on how that width is measured. In a
standard approach (Guy et al. 2007; Jha et al. 2007), observations
of a single SN Ia are fit to a family of light-curve templates in
which a single width parameter controls the variation of both the
rising part and the falling part of the light curve (e.g., the “rise
time” and “decline rate”, suitably defined). Unfortunately for this
standard approach, it is now well established that, for any fixed
decline rate, the SN Ia rise time varies significantly (Strovink 2007;
Hayden et al. 2010; Ganeshalingam et al. 2011).
In Hayden et al. (2010), the “2stretch” model for light-curve

fitting was presented. In that analysis, the Sloan Digital Sky
Survey (SDSS)-II (Frieman et al. 2008) SN Ia light curves were
K-corrected to rest-frame B and V bands, and then fit with an
MLCS2k2 (Jha et al. 2007) 0D = template in each filter. The
stretch parameter, a multiplicative factor applied to the time-axis
of the light curve to estimate the width, was separated into a
different stretch for the rising and falling portions of the light
curve. In this work, we improve on the 2stretch model with
“SALT2X”. This is an extension of the Spectral Adaptive
Lightcurve Template, version 2.4 (SALT2-4; Guy et al. 2007;
Mosher et al. 2014). We use the SALT2.4 spectral time-series
surfaces but apply a different x1 to the rising (xr

1 ) and falling (x f
1 )

portions of the light curve. The model is described in more detail
in Section 2. The SALT2X model allows us to apply the premise
of 2stretch more generally to a larger SN sample, leveraging the
power of the SALT2 spectral template, avoiding the need for
K-corrections, and better utilizing all photometry for each SN. The
SALT2X model will be available as a “source” in future releases
of sncosmo (Barbary et al. 2016),4 and the code to reproduce
this analysis is available on GitHub.5

Future large cadenced surveys, such as the Large Synoptic
Survey Telescope (LSST Science Collaboration et al. 2009) and

The Astrophysical Journal, 871:219 (13pp), 2019 February 1 https://doi.org/10.3847/1538-4357/aaf232
© 2019. The American Astronomical Society. All rights reserved.

4 http://sncosmo.readthedocs.io/en/v1.5.x/
5 https://github.com/drhay53/SALT2X

1

https://orcid.org/0000-0001-9200-8699
https://orcid.org/0000-0001-9200-8699
https://orcid.org/0000-0001-9200-8699
https://orcid.org/0000-0001-5402-4647
https://orcid.org/0000-0001-5402-4647
https://orcid.org/0000-0001-5402-4647
mailto:bhayden@lbl.gov
https://doi.org/10.3847/1538-4357/aaf232
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/aaf232&domain=pdf&date_stamp=2019-02-01
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/aaf232&domain=pdf&date_stamp=2019-02-01
http://sncosmo.readthedocs.io/en/v1.5.x/
https://github.com/drhay53/SALT2X


the Wide Field Infrared Survey Telescope (Spergel et al. 2015),
will measure thousands to tens of thousands of SNe Ia for
cosmological parameter estimation. Since SNe Ia rise faster than
they decline (standard practice is to include observations in the
light-curve fit within −15 to 45 rest-frame days of time of
maximum), accurate constraints on the rising portion of the light
curve require a fast observing cadence (4–5 rest-frame days). It
is therefore critical to understand whether the rising portion of the
light curves carries additional standardization information, which
may help to reduce systematic uncertainties when the number of
cosmologically useful SNe will grow by orders of magnitude.

In this analysis, we apply SALT2X to the Joint Lightcurve
Analysis (JLA) sample of SNe Ia (Betoule et al. 2014). We
perform a basic selection cut on the light curves, using the size
and Gaussianity of the SALT2X fit posteriors as a metric for light-
curve quality. We then use the Unified Nonlinear Inference for
Type Ia cosmologY (UNITY) framework of Rubin et al. (2015) to
determine the standardization parameters on the rising and falling
portions of the light curve, finding a strong preference for the
rising portion in the standardization. We pass a large sample of
simulated light curves through the same procedure, and show that
our analysis successfully recovers the input parameters.

In Section 2, we present the form of the SALT2X model in
terms of the standard SALT2 model. Section 3 describes our light-
curve fits to the JLA SNe. Section 4 describes our data selection
criteria, and Section 5 describes our simulated data sample for
testing the entire framework. In Section 6, we describe the
application of the UNITY model to SALT2X, and in Section 7 we
present our results, including cross-checks of the analysis. We
conclude and discuss the implications of our results in Section 8.

2. The SALT2X Model

In this work, we introduce SALT2X, a version of the SALT2
light-curve model where the SALT2.4 spectral time-series
surfaces are used, but separate xr

1 and x f
1 parameters are fitted,

respectively, to the rising and falling portions of the light curve.
Previously in Hayden et al. (2010), the light curves were K-
corrected to the Bessell B and V bands. SALT2X is a more
extensible, accurate, and reliable procedure for adding an extra
light curve width parameter to the light-curve fit.

The original SALT2 (Guy et al. 2007) is based on the
following model for the flux as a function of phase (p) and rest-
frame wavelength (λ)

f p x M p x M p e, , , , 1c
0 0 1 1

CLl l l= + l( ) · [ ( ) · ( )] · ( )· ( )

where x0 is the normalization (inversely proportional to
luminosity distance squared), M0 is the mean model, x1 is the
light-curve shape parameter, M1 is the variation in SED with
the light-curve shape parameter, c is the color parameter, and
CL (the color law) is the variation (in wavelength only, not
phase) with color. For the SALT2X model, we replace the
single x1 with a smooth function that joins xr

1 and x f
1 , matching

to xr
1 at early phases and x f

1 at late phases:
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Again, p is the phase (the estimated rest-frame time of
observation relative to time of maximum, p= 0 at time of
maximum). The sigmoid transition from xr

1 to x f
1 is necessary

to avoid discontinuity in the light curve, since SNe Ia reach
peak brightness at different times in different bandpasses. We
illustrate synthesized rest-frame U, B, V, and R light curves
from our model in Figure 1.

3. Light-curve Fitting

Separating the rising phases of the light curve from the
falling phases introduces new challenges to the light-curve
fitting procedure. In particular, the JLA sample combines
SNe Ia discovered in both rolling and targeted searches, so the
phase coverage across surveys is not consistent. Some SNe
have few observations before or after peak brightness, meaning
xr
1 or x f

1 could be ill-constrained. SNe such as these will have
substantially non-Gaussian uncertainties on xr

1 or x f
1 , challen-

ging fitters that simply quote a best fit and parameter
covariance matrix. We instead infer our light-curve parameters
with MCMC, which properly treats non-Gaussian uncertainties.
For this work we use the Python package emcee6 to sample
from each SN posterior.
The SALT2X model is implemented in sncosmo v1.5.3,

using the standard SALT2.4 training. The model itself inherits
from the sncosmo.SALT2Source class, changing only the
free parameters of the model and the function for calculating
the flux.7 This allows us to capitalize on the convenience that
sncosmo provides for many aspects of light-curve fitting,
particularly filter integration, magnitude systems, and file I/O
for data in the SALT2 file format.
We use filter-response curves and magnitude systems

directly from the JLA data release with one exception. Since
the SNLS filter response is position-dependent, and JLA does
not release the filter curve for each individual SN as a unique
product, we use the “JLA-Megacam” filters released in
SNANA8 to access the SN-specific filters.
We use the magnitude systems released by JLA by

registering the spectral references in sncosmo. We apply
zero-point offsets by subtracting the zero-points listed in
Table 4 from the zero-points in the JLA light-curve files. The
SWOPE V-band filters are MJD-dependent as the filter was
replaced in 2006 January. When the filter in the JLA light-
curve file is listed as “SWOPE2::V” the filter is set to the
appropriate response curve and zero-point via:

filter name
swope2 v lc3014, MJD 53749
swope2 v lc3009, 53749 MJD 53760
swope2 v lc9844, MJD 53760

. º
<

>

⎧
⎨⎪
⎩⎪

‐ ‐
‐ ‐
‐ ‐

Each SN has bandpasses included only if the rest-frame
effective wavelength is between 3000 and 7000Å. We use the
Milky Way E B V-( ) reported in the JLA light-curve
metadata “MWEBV” parameter, with the CCM89 dust model
as implemented in sncosmo v1.5.3, applied to the model in
the observer frame, and assuming RV=3.1.
The light-curve fit proceeds as follows. An initial guess for

time of maximum and x0 is determined by looping over a grid

6 http://dan.iel.fm/emcee/current/
7 We call this a SALT2XSource.
8 http://snana.uchicago.edu/
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of dates between the earliest and latest observations of the
supernova, and fitting only x0 for the SALT2.4 model with
x c 01 = = . The best 2c point in x0 and time of maximum is
used to initialize the model. We then perform a full SALT2 fit
using sncosmo, which is used to cut the data to include only
phases between −15 and 45 rest-frame days. This fit is then
repeated once more, and another phase cut is performed at −15
to 45 rest-frame days. With this final version of the standard
SALT2.4 fit, we retrieve the covariance of the SALT2X model
from the SALT2.4 model covariance surfaces, and add it to the
observational covariance reported by JLA in the flux
covariance matrices included in the data release. The
uncertainties that are used in the SALT2X fit are then fixed,
and the SALT2X model covariance is no longer iterated (even
though it is technically a function of x1 and c). This is necessary
because some of the light curves with sparse rise or fall data
will have xr

1 or x f
1 posteriors that span regions where the

SALT2.4 model covariance is undefined. The result of this
initial SALT2.4 fit is plotted, and each of these plots has been
manually reviewed by eye for reasonable convergence. The
pseudo log-likelihood for emcee is then constructed as

0.5 1  - ´ -· · , where  is the residual of the data and
the SALT2X model, and 1- is the inverse covariance matrix
including both the SALT2X model covariance and the JLA
observational covariance matrices.

With the data trimmed in phase, the model uncertainties
estimated, and a log-likelihood for emcee, we run emcee with
100 “walkers” and 7500 samples, throwing out the first 2500
samples as burn-in. This amounts to 500,000 (100×5000)
samples from the posterior. For the peak apparent magnitude
estimate mB, used to construct the distance modulus estimate,
we tried two approaches, which gave us virtually identical
results in testing. The first is to make an approximate mB using
m x2.5 logB 10 0º -˜ ( ). The second is to calculate mB by
constructing the best-fit SALT2X model and calculating the
magnitude at peak in the Bessell B filter, using the “vega2”

JLA magnitude system. To build a posterior for mB, this must
be done for each MCMC chain, and becomes computationally
expensive because the actual time of maximum in the B-band
must be estimated, requiring the filter integration to be
performed on a fine grid of times. We used mB º˜

x2.5 log10 0- ( ) for the results presented in this paper because
it was more computationally convenient.

4. Data Selection

As described in Section 6, we use the UNITY framework
(Rubin et al. 2015) to obtain our estimates of the standardiza-
tion parameters. For nonoutlier SNe,9 this framework assumes
Gaussian light-curve fit uncertainties. However, for SNe with
poorly sampled light curves, the uncertainties can be non-
Gaussian, particularly for xr

1 or x f
1 . We are left with three

options. (1) Compute non-Gaussian uncertainties for each SN
and supply those uncertainties to UNITY (perhaps approximat-
ing these non-Gaussian uncertainties as a sum of Gaussians for
computational simplicity). (2) Instead of fitting light curves as a
separate, initial step, build SALT2X light-curve fits into
UNITY, so that the issue of light-curve-fit parameter summary
statistics is sidestepped (and thus the issue of non-Gaussian
uncertainties on these parameters is sidestepped). (3) Apply a
selection cut on the light-curve-fit results, selecting only well
measured SNe for the analysis. As we show in Figure 2, the
SNe with non-Gaussian light-curve-fit uncertainties tend to be
poorly measured (and thus would have much lower weight no
matter our choice), so we adopt option 3), and remove these
SNe from the analysis. We discuss our tests of this selection
and the rest of the analysis chain in Section 5. These tests were

Figure 1. SALT2X model light curves for rest-frame U, B, V, and R. In the top panels, we vary xr
1 ; in the bottom, we vary x f

1 .

9 UNITY uses a mixture model to simultaneously model inliers and outliers.
For our analysis, we assumed that the outlier distribution has a fixed spread
equal to 0.5 mag in mB (added in quadrature with the other uncertainties). We
do not find any SNe in our analysis where the outlier likelihood is greater than
the inlier likelihood, as outliers were already rejected in building the JLA
sample (their rejection was done with a frequentist analysis).
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performed before we saw the equivalent results for the real
data. Thus, this analysis is “blinded,” although some of our
cross-checks (Section 7.1) occurred to us and were performed
after unblinding.

As shown in Table 1, we perform our strongest data selection
on the uncertainty on x f

1 −xr
1 . For our light-curve selection

criteria, we define S/N to be the ability to distinguish SNe
inside the distribution of a light-curve parameter. The
distribution of x f

1 −xr
1 has an intrinsic width of about 0.7,

so S/N>0.75 requires x x 1f r
1 1s - <( ) (see Table 1 for all

S/N based selection cuts and the associated uncertainty
cutoffs). We remove a few SNe with non-Gaussian (but
modest) uncertainties, as shown in the remaining lines of
Table 1. Our metric for non-Gaussian uncertainties is to
compare the edges of the ∼2σ credible interval. For xr

1 , x f
1 , and

x f
1 −xr

1 we compute the 2.28th percentile, the 50th percentile,
and the 97.72nd percentile of the posterior samples for each of
them. Then, we compute P P P Plog ;97.72 50 50 2.28- -[( ) ( )] for
a symmetric uncertainty distribution, this quantity is zero. For a
skewed positive distribution, it is (almost certainly) positive,
and similarly negative for negative skew.10 We cut when the
absolute value is larger than 0.25, indicating a significantly
non-Gaussian uncertainty distribution. After selecting for
modest, symmetric uncertainties, we apply a cut to remove
any extreme values of xr

1 , x f
1 , or c, as shown in the last three

lines of Table 1. We note that these last cuts remove no SNe.
All light-curve fits used in this analysis are available in Table 5.

5. Simulated Data Generation

A test sample was constructed in order to determine how our
full framework behaves for data where xr

1 and x f
1 contain equal

standardization information. The goal is for the sample to have
the exact phase coverage distribution as the real surveys, with
known light-curve parameters and known standardization

parameters. This simulated data set provides an end-to-end
test of the analysis, and imparts confidence that our results are
not due to a detail of the data selection.
To accomplish this simulation, we used the real JLA epochs

and uncertainties to define the observations for each simulated
SN. For each JLA supernova, a SALT2X model is constructed
with the redshift, time of maximum, and Milky Way E B V-( )
of the real supernova, with xr

1 , x f
1 , and c drawn from the

following covariance matrix, similar to that inferred from the
real data11:

x

x

c

N
0
0
0

1 0.74 0
0.74 1 0.02
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The absolute magnitude including standardization information
is then calculated as

M M x x

c N 0, , 4
B B

r fobs fid
1

true
1

true

true
unexpl

g a
b s

= - -
+ +

· ·
· ( ) ( )

where M 19.1B
fid = - , 0.07a g= = , 3.1b = , and unexpls =

0.1. We then set this as the Bessell B absolute AB magnitude of
the supernova, and appropriately rescale the SALT2X x0
parameter. We retrieve fluxes from the spectral time-series
SALT2X model at the epochs of the JLA observations using
the same bands and zero-points as those described in Section 3.
These fluxes are fixed to the SALT2X model, so to achieve the
appropriate amount of dispersion in the photometry, we add
noise drawn from a multivariate normal of the form:

n N 0, , 5obs model ~ +[ ] ( )

where obs is the covariance matrix of the measured
photometric uncertainties from the JLA light curve, and

model is the SALT2X model covariance, drawn from the
SALT2.4 surfaces that describe the model uncertainty from
training.12 The simulated supernova fluxes have this noise
added, and we use the flux uncertainties directly from the real
JLA light curve.
A larger sample is produced by simulating 12 realizations of

each JLA supernova. This simulated sample has identical phase
coverage and flux uncertainties to the real light curves, but with
known standardization parameters for the SALT2X model.
These simulated supernovae are then run through the entire
framework in the same way as the real data, including data
selection, thereby testing how sensitive our results are to the
cadence and uncertainties of the JLA sample. These results are
discussed in Section 7 and Figure 3. In short, we see correct
recovery of the simulation inputs.

Figure 2. Our percentile-based measure of the asymmetry of the x f
1 −xr

1
uncertainty (Section 4) plotted against the size of the uncertainty. Lower-
quality light curves (the right half of the plot) have more variation in the
uncertainty asymmetry. For our three sample selections, we select the SNe
highlighted in blue, the blue+green (our nominal selection), and blue
+green+red.

10 We did not use skew directly to ensure that we considered the symmetry of
only the core of the distribution and not any tails with only a small fraction of
the samples.

11 The simulated data were generated before the final analysis of the real data
was unblinded. We noticed after the analysis was complete that the x f

1 /c
covariance should be negative. This difference in sign drives the opposite sign
of the correlation between β and a a g+( ) in Figures 3 and 4, so despite the
visual difference, we achieve end-to-end recovery of the simulation inputs.
12 The SALT2 model covariance increases significantly at early times, so for
the simulation we cap the early time model covariance to an S/N of 1, i.e., the
maximum size of the model variance is (model flux)2.
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6. UNITY and the Importance of a Bayesian Approach

The initial UNITY framework was presented in Rubin et al.
(2015). This framework simultaneously models (nonlinear) SN
standardization, cosmology fitting, the (sample-dependent) SN
population, a population of outliers, systematic uncertainties,
selection effects, and an unexplained dispersion. Importantly,
UNITY is a Bayesian hierarchical model, necessary for
performing even linear regression with uncertainties in both
dependent and independent variables (in this case, all the light-
curve fit parameters have uncertainties), as discussed in Gull
(1989). For each SN, latent variables describe the “true” values
of the measurements:

m

x
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We impose the following standardization relation, which
also allows us to trivially marginalize (and thus eliminate)
mB

true˜ :

m x x

c c P M

z z
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, , 0.3 , 7

B
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1
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helio CMB
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m
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+ W =

˜ · ·
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where, as stated in Section 3, mB˜ is virtually identical to the
rest-frame B-band magnitude at peak (up to an additive
normalization), but is faster to compute. Here α is the x f

1
standardization coefficient, and β is the color standardization
coefficient; as in Rubin et al. (2015), we use a broken-linear
color standardization, where

c
c

c

2, 0

2, 0,
8true Blue

true

Red
true

b
b b b
b b b

º
= - D <
= + D >

⎧⎨⎩( ) ( )

δis the host-mass-standardization coefficient, and Phigh is the
probability that an SN host galaxy has a stellar mass M1010> .
(In Section 7.1, we investigate a broken-linear x1 standardiza-
tion and find it has little effect.) Mi is the estimated absolute
magnitude (up to an additive constant), which we allow to be
SN-sample-dependent, removing virtually all dependence of
our results on the cosmological model (which we fix to flat
ΛCDM with 0.3mW = ).
As x f

1 is intrinsically strongly correlated with xr
1 , the quantity

x f
1 −xr

1 is generally measured only at low-to-moderate S/N,
even if xr

1 and x f
1 are independently well measured. As

discussed in Minka (1999), such low S/N regression (with
uncertainties in both dependent and independent variables)
must be approached with a Bayesian hierarchical model, as we
do here. In such a model, informative priors are taken on
x f
1

true, xr
1

true, and ctrue (representing a model of the true
underlying distribution, without noise and unexplained disper-
sion), and the parameters in these priors (“hyperparameters”)
are also included in the model. The original UNITY analysis
assumed redshift- and sample-dependent Gaussian distributions
for x1

true, and redshift- and sample-dependent skew-normal
distributions for c.
We make the following changes to UNITY in this work;

some of these changes are improvements, but others are merely
simplifications, removing features not needed for an analysis
focused on standardization rather than cosmological
parameters.

1. (Improvement) We switch to the multivariate skew-
normal distribution (Azzalini & Valle 1996) describing
the xr

1 /x f
1 /c populations. The original UNITY analysis

considered only x1 and c, and modeled their distributions
as uncorrelated. We find that the xr

1 and x f
1 distributions

are intrinsically strongly correlated, so this correlation
must be modeled.

2. (Improvement) We add different xr
1 /x f

1 /c population
means for high-mass hosted and low-mass hosted SNe.

Table 1
Selection Cuts Used in Our Analysis

Selection Cut SNe (Low-z) SNe (SDSS) SNe (SNLS) Combined Combined Combined
S/N>0.75a S/N>0.5b S/N>1c

From JLA 118 374 239 731 731 731
x x 1 1.5 0.75f r

1 1s - <( ) 62 105 72 239 349 177

Percentile Cut x xf r
1 1-( ) 61 101 61 223 299 171

x 1.33 2 1r
1s <( ) 61 101 61 223 297 171

Percentile Cut xr
1( ) 61 95 57 213 274 165

x 1.33 2 1f
1s <( ) 61 95 57 213 274 165

Percentile Cut x f
1( ) 61 95 55 211 269 165

x4 4r
1- < < 61 95 55 211 269 165

x4 4f
1- < < 61 95 55 211 269 165

c0.3 2- < < 61 95 55 211 269 165

Notes. We start with the 731 low-z + SDSS + SNLS SNe in JLA (Top Row), then apply sequential selection cuts and show the number of SNe remaining. The left
four columns of numbers show the low-z, SDSS, SNLS, and combined SNe for our nominal selection (S/N > 0.75). The right two columns show other S/N cuts for
just the combined sample (S/N > 0.5 and 1.0). Most SNe in the sample (and most of the SNe we eliminate) are removed by our x f

1 −xr
1 uncertainty cut (second row

from top). The bottom three rows would remove any extreme values of xr
1 , x f

1 , or c, but we do not see any. The percentile cuts are the cuts on Gaussian posteriors in
the light-curve fit described in Section 4.
a S/N 0.75> requires x x 1f r

1 1s - <( ) , and both xr
1s ( ) and x 1.33f

1s <( ) .
b S/N 0.5> requires x x 1.33f r

1 1s - <( ) , and both xr
1s ( ) and x 2f

1s <( ) .
c S/N 1> requires x x 0.75f r

1 1s - <( ) , and both xr
1s ( ) and x 1f

1s <( ) .
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Figure 3. Credible regions derived from the simulated data. Each contour is drawn based on a KDE of the MCMC samples, and encloses 68.3% of the PDF. Low-z
(blue), SDSS (green), SNLS (red), and combined (black) are all shown. We mark the true simulation input coefficients with a black square. We see no evidence of
biases in this data set; in particular, α (the x f

1 standardization coefficient) and γ (the xr
1 standardization coefficient) are correctly recovered.

6

The Astrophysical Journal, 871:219 (13pp), 2019 February 1 Hayden, Rubin, & Strovink



As light-curve parameters (particularly light-curve width)
correlate with host-galaxy environment (Hamuy et al.
1996; Sullivan et al. 2006), there will be a (small) bias on
the host-mass standardization coefficient (δ) if the
difference in population means is not taken into account.

3. (Simplification) We remove calibration uncertainties and
selection effects. These sources of systematic uncertainty
have only a small covariance with the standardization
coefficients (Betoule et al. 2014), so we can safely
exclude them, and gain a computational benefit in
doing so.

4. (Simplification) We remove off-diagonal unexplained
dispersion terms. The Rubin et al. (2015) UNITY model
allowed for off-diagonal terms in the unexplained-
dispersion covariance matrices. In the limit of Gaussian
populations and linear standardization, these terms can
describe some of the SN standardization. For example, if
ctrue has a Gaussian distribution of width 0.1 mag, and
the color standardization coefficient (β) is 3, then this
is effectively the same as an mB˜ /c covariance of
3 0.1 0.032 =· . The original UNITY framework thus
contained two types of standardization: the structural
model (broken-linear relations), and the implicit linear
model in the off-diagonal elements of the unexplained-
dispersion covariance matrix. For this work, where we
want to focus on the values of the standardization
coefficients, we force these off-diagonal terms to
be zero.

With the data selected, and the updates to UNITY in place,
we can investigate the standardization coefficients, which we
discuss in the next section.

7. Results

We start with our recovery of the input results in the
simulated data, shown in Figure 3. The Low-z, SDSS, SNLS,
and combined constraints are shown in blue, green, red, and
black, respectively. We mark the input parameters with a black
square. Even with 12× the statistics of the real data, there is no
evidence of biases. We also performed a simulation with 4×
JLA statistics where we added covarying unexplained disper-
sion in both color and magnitude. We used the following
values, similar to those described by Kessler et al. (2013; based
on Chotard et al. 2011)—C 9 10m m

4
B B

= ´ - , C 6 10cc
3= ´ - ,

C 6 10m c
4

B
= ´ - —and again find no evidence of biases that

affect the significance of our result. We also check the light-
curve fit results against the true simulation values, and find
accurate uncertainties and no evidence of biases, demonstrating
end-to-end recovery from the light-curve fits to the assumed
standardization relation.

We show similar plots for the real data in Figure 4, with the
68.3% credible intervals in Table 2. Unlike the simulated data
(which were generated with a g= ), the α/(α+γ) credible
interval (enclosing 68.3% of the posterior) is 0.21 0.11

0.10
-
+ , showing

a statistical preference that rise time is more important than
decline time in standardization (g a> ). The normalized
median absolute deviation of the magnitude standardizations
for the SNe in the S N 0.75> selection cut are c 0.26b =·
mag, x 0.13r

1g =· mag, and x 0.04f
1a =· mag. The larger

magnitude standardization range for xr
1 indicates that it is not

simply a rescaled version of x f
1 . In the lower panels of Figure 4,

we see that other parameters correlate with decreasing

a a g+( ): β increases, δ moves toward zero, and unexpls
decreases. We present a comparison of credible intervals
between an xr

1 +x f
1 run and a single-x1 run in Table 2. To

make this comparison fair, we use the same SNe selected for
the xr

1 +x f
1 run for the single-x1 run. As the credible intervals

are derived with the same data, the uncertainties correlate and
thus the differences are generally significant. For example,
going from low to high host mass moves the mean x f

1 by
−0.94±0.16, while the mean of xr

1 moves −0.57±0.21.
Only for 1.25% of the MCMC samples does xr

1 move more
than x f

1 . Thus, the change in δ (which is 1σ ignoring the
correlated uncertainties) is ∼2.2σ taking them into account.
Similarly, the correlation between x f

1 −xr
1 and c, which drives

the correlation between a a g+( ) and β, is 2.9σ.
We show our main result visually in Figure 5, which plots the

single-x1-corrected Hubble residual against x f
1 −xr

1 , xr
1 , and x f

1
for the real data, simulated data with a g= , and simulated data
with α and γ as observed.13 It is helpful to understand these
panels using a toy model. This toy model ignores the effects of
finite scatter and correlations in the uncertainties, but does
enable a simple visual check of the results. Suppose we define
x x xf r
1

1

2 1 1º +¯ ( ) and x x xf r
1

1

2 1 1D º -( ). Then suppose that
SN luminosity scales as xr

1 , but we standardize the luminosity
with x1̄. In this case, part of the single-x1-corrected Hubble
residual should be positively correlated with x1D . This is
exactly what we see in the top left panel of Figure 5, which
shows a positive correlation between single-x1 Hubble
residuals and x f

1 −xr
1 . As expected, we see much weaker

correlations with xr
1 (left panel) and x f

1 (left bottom panel). As
expected, in the middle column simulation where a g= , there
is no residual correlation between single-x1-Hubble residual
and x f

1 −xr
1 , xr

1 , or x f
1 . In the right column, simulated with the

same α and γ as measured on the real data, we confirm the
source of this residual correlation.

Table 2
Comparison of Parameters Obtained Standardizing on Both xr

1 and x f
1 and the

Traditional Single-x1 Analysis

Parameter xr
1 and x f

1 Single x1 (Same SN Selection)

α 0.030 0.016
0.016

-
+ 0.150 0.009

0.009
-
+

γ 0.115 0.013
0.013

-
+ L

a a g+( ) 0.21 0.11
0.10

-
+ L

β 3.22 0.13
0.13

-
+ 3.07 0.13

0.13
-
+

bD 0.74 0.40
0.40

-
+ 1.10 0.44

0.44
-
+

δ 0.046 0.021
0.021- -

+ 0.067 0.020
0.021- -

+

Low-z unexpls 0.102 0.015
0.017

-
+ 0.120 0.016

0.017
-
+

SDSS unexpls 0.086 0.012
0.012

-
+ 0.103 0.010

0.011
-
+

SNLS unexpls 0.076 0.014
0.015

-
+ 0.081 0.013

0.014
-
+

Note. In the standardization where xr
1 and x f

1 are separate, we find a significant
preference for g a> , indicating that xr

1 is more strongly correlated than x f
1

with peak magnitude. We see evidence that standardizing predominantly with
xr

1 increases β, moves δ toward zero, and decreases unexpls .

13 To get better statistics for the simulated data just for Figure 5, we generate
Gaussian random light-curve fit results, rather than performing another
computationally expensive end-to-end simulation. We draw from
Equations (3) and (4), then convolve with random draws from the light-
curve-fit covariance matrices of the real data to get the values with noise. To
generate a self-consistent set of single-x1 values from these xr

1 /x f
1 simulates,

we take the covariance-weighted mean of xr
1 and x f

1 .
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Figure 4. As in Figure 3, we show contours enclosing 68.3% (shaded) of the posteriors, for Low-z (blue), SDSS (green), SNLS (red), and combined (black). Unlike
the simulated data (Figure 3), there is a statistical preference for g a> , i.e., the rise-time containing more luminosity information than the decline. We also see
evidence for correlations between smaller α/(α+γ) and larger β, less-negative δ, and smaller unexpls . For the purposes of making the combined constraints, we present
the mean of all three unexpls values (one for each sample), rather than plotting six contours.
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7.1. Analysis Cross-checks

We also run a series of cross-checks on the analysis,
summarized in Table 3. We show the a a g+( ) credible
interval, the fraction of the posterior with a g> (as a measure
of the statistical significance of our result), and the credible

intervals for α and γ. In all cases, we have reasonable
consistency with the nominal analysis.
The top line shows our results for the primary analysis. The

next two lines show our results varying the S/N cut. The
stability of these results is evidence that UNITY correctly treats
the per-SN uncertainties.

Figure 5. Traditional “Hubble residual” view of the preference for xr
1 in the standardization. The left panels show results from the real data, the middle panels show

simulated data with α=γ, and the right panels show simulated data with α and γ as observed. Top panels: Hubble diagram residuals from a single-x1 analysis plotted
against x f

1 −xr
1 . A moderate positive correlation can be seen in the real data and the α/γ-as-observed simulation (we show binned values in magenta) as expected

from our primary finding that xr
1 carries most of the luminosity information (Section 7). We also show single-x1 Hubble residuals plotted against xr

1 (second-from-top
panels) and x f

1 (second-from-bottom panels). Also, as expected, the correlations here are much weaker for the real data and α/γ-as-observed simulation, and no
correlations are seen in the α=γ simulation. In the bottom panels, we show the observed xr

1 plotted against x f
1 . xr

1 and x f
1 are correlated; this must be an intrinsic

correlation, as the uncertainties are almost always anticorrelated (uncertainty in the date of maximum shifts xr
1 and x f

1 in opposite directions).
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The next two lines investigate the impact of our assumptions
about the light-curve-fit uncertainties. First, we allow the
unexplained dispersion term to have a component in each variable
(mB˜ , xr

1 , x f
1 , c), rather than placing it in magnitude (mB˜ ). We do

note that SALT2X inherits the SALT2 model uncertainties, so
some uncertainty is effectively placed in each light-curve
parameter, even in the nominal analysis. Our other uncertainty
test is a simple investigation of whether a pathology in the SALT2
model (e.g., incorrectly adding a large amount of model

uncertainty to the rising portion of the light curves) may drive
our results. In this test, we rescale all xr

1 uncertainties by a constant
(scaling the covariance between xr

1 and the other parameters by the
same constant). We take a broad log-normal prior on the scaling
factor of 1 0.5 . These two uncertainty tests mirror each other;
one changes the uncertainties by a quadrature sum, and the other
by a constant. Neither test changes our main conclusion.
We also consider whether our skew-normal population

distribution is driving the results. For the results in the next

Table 3
Analysis Variants and Cross-checks

Run Variant α/(α+γ) P a g>( ) α Δα γ

Nominal, S/N > 0.75 0.21 0.11
0.10

-
+ 0.1% 0.030 0.016

0.016
-
+ L 0.115 0.013

0.013
-
+

S/N > 1 0.19 0.11
0.10

-
+ 0.07% 0.028 0.017

0.017
-
+ L 0.121 0.014

0.014
-
+

S/N > 0.5 0.24 0.10
0.10

-
+ 0.3% 0.034 0.015

0.015
-
+ L 0.109 0.013

0.013
-
+

Four-dimensional unexpls 0.04 0.21
0.20

-
+ 1.5% 0.005 0.030

0.031
-
+ L 0.142 0.026

0.029
-
+

Rescale xr
1 Uncertainties 0.02 0.16

0.14
-
+ 0.01% 0.003 0.024

0.022
-
+ L 0.145 0.021

0.023
-
+

Gaussian Populations 0.21 0.11
0.10

-
+ 0.09% 0.030 0.016

0.016
-
+ L 0.115 0.013

0.013
-
+

Broken-linear α, x xf r1

2 1 1+( ) 0.18 0.11
0.10

-
+ 0.06% 0.026 0.017

0.016
-
+ 0.020 0.029

0.029- -
+ 0.117 0.013

0.014
-
+

Broken-linear α, x f
1 0.20 0.11

0.10
-
+ 0.08% 0.028 0.016

0.016
-
+ 0.040 0.032

0.031- -
+ 0.113 0.013

0.013
-
+

Low-z 0.02 0.26
0.22

-
+ 0.7% 0.002 0.029

0.028
-
+ L 0.118 0.021

0.022
-
+

SDSS 0.05 0.18
0.15

-
+ 0.08% 0.007 0.026

0.025
-
+ L 0.145 0.022

0.023
-
+

SNLS 0.53 0.22
0.18

-
+ 57% 0.081 0.036

0.034
-
+ L 0.070 0.026

0.029
-
+

Note. The variants on data and model selection provide a robust demonstration that γ>α, consistently indicating a preference for xr
1 in the standardization. Two out

of the three individual data sets also show a strong preference for γ>α, while the third (SNLS) shows consistency with that conclusion.

Table 4
Zero-point Offsets Applied to the JLA Light Curve Files for Use in sncosmo

Filter Zero-point MagSys Spectrum System

STANDARD-U 9.724 bd_17d4708_stisnic_003 Landolt 2007
STANDARD-B 9.907 bd_17d4708_stisnic_003 Landolt 2007
STANDARD-V 9.464 bd_17d4708_stisnic_003 Landolt 2007
STANDARD-R 9.166 bd_17d4708_stisnic_003 Landolt 2007
STANDARD-I 8.846 bd_17d4708_stisnic_003 Landolt 2007
4SHOOTER2-Us 9.724 bd_17d4708_stisnic_003 Landolt 2007
4SHOOTER2-B 9.8744 bd_17d4708_stisnic_003 Landolt 2007
4SHOOTER2-V 9.4789 bd_17d4708_stisnic_003 Landolt 2007
4SHOOTER2-R 9.1554 bd_17d4708_stisnic_003 Landolt 2007
4SHOOTER2-I 8.8506 bd_17d4708_stisnic_003 Landolt 2007
KEPLERCAM-Us 9.6922 bd_17d4708_stisnic_003 Landolt 2007
KEPLERCAM-B 9.8803 bd_17d4708_stisnic_003 Landolt 2007
KEPLERCAM-V 9.4722 bd_17d4708_stisnic_003 Landolt 2007
KEPLERCAM-r 9.3524 bd_17d4708_stisnic_003 Landolt 2007
KEPLERCAM-i 9.2542 bd_17d4708_stisnic_003 Landolt 2007
SWOPE2-u 10.514 bd_17d4708_stisnic_003 Stritzinger 2011
SWOPE2-g 9.64406 bd_17d4708_stisnic_003 Stritzinger 2011
SWOPE2-r 9.3516 bd_17d4708_stisnic_003 Stritzinger 2011
SWOPE2-i 9.25 bd_17d4708_stisnic_003 Stritzinger 2011
SWOPE2-B 9.876433 bd_17d4708_stisnic_003 Stritzinger 2011
swope2-v-lc3009 9.471276 bd_17d4708_stisnic_003 Stritzinger 2011
swope2-v-lc3014 9.476626 bd_17d4708_stisnic_003 Stritzinger 2011
swope2-v-lc9844 9.477482 bd_17d4708_stisnic_003 Stritzinger 2011
SDSS-u 0.06791 ab-spec.dat Betoule 2012
SDSS-g −0.02028 ab-spec.dat Betoule 2012
SDSS-r −0.00493 ab-spec.dat Betoule 2012
SDSS-i −0.0178 ab-spec.dat Betoule 2012
SDSS-z −0.01015 ab-spec.dat Betoule 2012
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line, we replace the multivariate skew-normal population
distribution with a multivariate Gaussian. Our conclusions are
virtually unaffected.

Next, we consider a broken-linear x1 standardization, as we
already do for c. This cross-check tests whether a nonlinear xr

1 /x f
1

relation, combined with a nonlinear x1/luminosity relation, drives
our results. For this test, we transform our light-curve fits into the
variables x x xf r

1
1

2 1 1º +¯ ( ) and x x xf r
1

1

2 1 1D º -( ). In analogy
with Equation (9), we introduce a broken-linear standardization
on x1̄:

m x x x

c c P M

z z

0.5

, , 0.3 , 9

B

i

m

true
1
true

1 1
true true

high

helio CMB

a g
b d
m

=- ¢ - ¢ D
+ + - +
+ W =

˜ ( ¯ ) · ¯ ·
( ) · · [ ]
( ) ( )

where

x
x

x

2, 0

2, 0.
101

true 1
true

1
true

a
a a
a a

¢ º
¢ - D <

¢ + D >

⎧⎨⎩( ¯ )
¯
¯

( )

The new x1 standardization coefficients are α′ and γ′. We can
relate these back to α and γ as 1

2
a a g= ¢ + ¢( ) and

1

2
g a g= ¢ - ¢( ). These are the α and γ values quoted in
Table 3; in addition, we also quote Δα. We see a slightly
negative Δα (as did Rubin et al. 2015), but it is not statistically
significant and introducing Δα does not change our conclusion
that γ>α.

As an alternative broken-linear x1 standardization, we try a
broken-linear x f

1 standardization (keeping a linear standardiza-
tion relation for xr

1 ). This cross-check is motivated by the
observation that, for x 0f

1 > , the xr
1 /x f

1 correlation seems to be
weaker (bottom panel of Figure 5). It is thus at least possible
that the luminosity changes nonlinearly with x f

1 . Again, aD is
negative (but not statistically significant) and our conclusion
that g a> remains unchanged. Even with this freedom, xr

1
contains more information.

We also divide our results by data set, shown in the last three
lines of Table 3. Two out of the three (Low-z and SDSS)
independently show strong evidence for g a> , and all three are
consistent with the combined constraint. SNLS is the least
consistent, although at least one out of three α/(α+γ)
subsample measurements would be expected to fall 1.5σ from
the combined constraint more than 35% of the time, so this is not
unusual. Table 5 includes all of the parameters of the light-curve
fits necessary to reproduce the sample selection, UNITY
analyses, and cross-checks.

8. Conclusions

In this paper, we introduce the SALT2X model, which
divides the SALT2 light-curve-shape parameter (x1) into a
rising (xr

1 ) parameter and declining (x f
1 ) parameter. We fit the

JLA sample of SNe with this model, selecting only SNe with
reasonable S/N and Gaussian xr

1 and x f
1 uncertainties. In order

to standardize with both parameters simultaneously (despite the
correlations between them), we use UNITY, a Bayesian
hierarchical model that we demonstrate correctly recovers such
standardizations in the presence of such correlations. We find
strong evidence that (x f

1 ) contains only a fraction (0.21 0.11
0.10

-
+ ) of

the x1 luminosity information, justifying our decoupling of the
rise and fall behavior. This result is robust to changes in the
data selection, changing the assumed linearity of the standar-
dization, and other analysis choices. End-to-end simulated data
testing demonstrates that our result is not due to a subtle
difference between the quality of the rising and falling epochs
in JLA, or our implementation of the UNITY model.
When we shift more of the standardization to xr

1 , we see
evidence that the host-mass standardization decreases in size,
the unexplained luminosity dispersion decreases, and the color
standardization shifts moderately in the expected direction of
typical Milky Way extinction ( R 1 4.1Vb ~ + = ). These
findings could imply that standardizing with xr

1 reduces some
of the astrophysical systematic uncertainties currently in SN
cosmology. Thus, future surveys that seek to make SN
cosmological measurements, such as the LSST and the Wide
Field Infrared Survey Telescope should consider maintaining,
at a minimum, a cadence of one observation per 4–5 days in the
rest frame to ensure that the rise and decline are independently
constrained.
In Hayden et al. (2010), it is noted that no significant Hubble

residual effect is found by separating the rise and fall stretches.
Since the SDSS sample in the SALT2X analysis demonstrates
strong preference for γ>α, with many of the SNe common to
both analyses, we investigated the difference in conclusion
regarding the importance of the rise. In the Appendix, we
demonstrate that not including the off-diagonal covariance
terms from the light-curve fitting in Hayden et al. (2010) leads
to an effective χ2 prior that α=γ. We note that in Hayden
et al. (2010) 0.42a a g+ =( ) , albeit without uncertainties;
this qualitatively matches a detection of γ>α in the presence
of a somewhat strong prior pushing toward α=γ. In this way,
our result is not inconsistent with that of Hayden et al. (2010),
but is a more thorough analysis.
In order to apply a rise-time-based analysis to a present

cosmology result, one would need to include SNe with poor
x f
1 −xr

1 constraints. This could be handled by moving the light-

Table 5
All Light-curve Fits Used in the Analysis

SN z Host Model parameters

Name Set helio CMB Stellar Mass Unc. mB x f
1 c x r

1 Cov mB mB Skewness x r
1

05D3jr SNLS 0.37 0.370531 8.008 0.833 12.00 −0.94 0.05 0.76 0.00074 0.004
05D3jq SNLS 0.579 0.5796 8.832 0.4195 12.64 1.92 −0.00 0.79 0.00059 −0.213
sn2006an Lowz 0.064 0.065193 7.989 0.91 7.46 0.04 −0.05 −170.39 0.00093 −0.376
16073 SDSS 0.146 0.14468 9.779 0.152 9.60 1.56 −0.00 −0.68 0.00089 0.466
16072 SDSS 0.277 0.27549 10.64 0.0065 10.93 0.48 0.00 0.67 0.00757 0.593

(This table is available in its entirety in machine-readable form.)
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curve fitting and model training inside UNITY. This allows the
population parameters (which could vary with redshift) to be
applied as priors for the SNe where the rise and fall are not
independently measured. The unexplained dispersion could also
be retrained at the same time. With the light curve fitting and
training marginalized directly during the cosmology fit, uncer-
tainties would be more easily characterized without the need for
posterior distribution approximations. Such a model is computa-
tionally expensive, but worth exploring. Evaluating the best light-
curve model, including the importance of the rise time, could be
explored within a single framework.

We thank Kyle Barbary for helpful comments regarding
integration of the SALT2X model with sncosmo. We also thank
Greg Aldering and Kyle Boone for useful discussions throughout
the analysis. We acknowledge support from NASA through the
WFIRST Science Investigation Team program. This research used
resources of the National Energy Research Scientific Computing
Center, a DOE Office of Science User Facility supported by the
Office of Science of the U.S. Department of Energy under
Contract No. DE-AC02-05CH11231. This work was also partially
supported by the Office of Science, Office of High Energy
Physics, of the U.S. Department of Energy, under contract no.
DE-AC02-05CH11231.

Appendix
Comparison of Standardization Relation with

Hayden et al. 2010

As mentioned in Section 8, in Hayden et al. (2010; H10) the
authors found 0.42a a g+ =( ) , and based on the χ2 of the
fit and the rms of the residuals, determined that no significant
preference for rise stretch (timescale) was detected. Since there
is significant overlap with the JLA SDSS sample, the difference
in conclusion in this work bears investigation.

There are many significant differences between the
SALT2X analysis presented here and the H10 Hubble residual
analysis (e.g., using the full light-curve information, rather
than rest-frame B and V, and the UNITY framework for
standardization). Here we demonstrate how the lack of off-
diagonal covariance terms from the light-curve fits in the H10
Hubble residual analysis (source: B. Hayden, common author)
acts as a prior pushing toward α=γ.

We construct a pseudo-χ2 for a representative single SN
both with and without the covariance between the rise and fall
width measurements as follows,

C C C

1
11

x xH10
2

other 2 2f r
1 1

c
a g

µ
+ +

( )

C C C C

1

2
, 12

x x x xHRS
2

other 2 2 ,f r r f
1 1 1 1

c
a g a g

µ
+ + +

( )

where we use representative values for the covariance of a normal
SN: C C 0.5x xf r

1 1= = , C 0.25x x,r f
1 1 = - , and C 0.02other = ,

which represents the combined covariance of the other terms like
Cc2b and Cm

B. In Figure 6, we show H10
2

HRS
2c c- versus α.

Removal of the covariance term has a large effect, reducing the
value of H10

2c most at a g= where C2 x x,r f
1 1a g is at an

extremum. The measurement of 0.42a a g+ =( ) in H10 is
thus a combination of the data preferring a low α and this prior-

like χ2 difference due to the large (almost always negative) rise
and fall covariance from the light-curve fits.
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