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Abstract

Massive stars present strong stellar winds that are described by the radiation driven wind theory. Accurate mass-
loss rates are necessary to properly describe the stellar evolution across the Hertzsprung–Russel Diagram. We
present a self-consistent procedure that coupled the hydrodynamics with calculations of the line-force, giving as
results the line-force parameters, the velocity field, and the mass-loss rate. Our calculations contemplate the
contribution to the line-force multiplier from more than ∼900,000 atomic transitions, an NLTE radiation flux from
the photosphere and a quasi-LTE approximation for the occupational numbers. A full set of line-force parameters
for Teff�32,000 K, surface gravities higher than 3.4 dex for two different metallicities are presented, with their
corresponding wind parameters (terminal velocities and mass-loss rates). The already known dependence of line-
force parameters on effective temperature is enhanced by the dependence on glog . The terminal velocities present
a stepper scaling relation with respect to the escape velocity, this might explain the scatter values observed in the
hot side of the bistability jump. Moreover, a comparison of self-consistent mass-loss rates with empirical values
shows a good agreement. Self-consistent wind solutions are used as input in FASTWIND to calculate synthetic
spectra. We show, comparing with the observed spectra for three stars, that varying the clumping factor, the
synthetic spectra rapidly converge into the neighborhood region of the solution. It is important to stress that our
self-consistent procedure significantly reduces the number of free parameters needed to obtain a synthetic
spectrum.
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1. Introduction

The study of massive stars (i.e., stars with M*>10Me) is a
relevant topic in the framework of stellar astrophysics, because
these stars exhibit some of the most extreme physical
conditions, such as the hottest temperatures, the highest
outflows of matter, and a complex nucleosynthesis.

Strong outflowing stellar winds of massive stars eject high
amounts of matter that contribute to the chemical enrichment of
the ISM in a relatively short timescale. Moreover, it has been
found that differences on a factor of two in the mass-loss rate
considerably affects the final fate of a star (Meynet et al. 1994;
Smith 2014). Therefore, a better understanding about massive
stars and their evolution strongly requires accurate determina-
tion of their fundamental parameters, with the mass-loss rate
being the most relevant (Kudritzki & Puls 2000; Puls et al.
2008).

Lucy & Solomon (1970) described the mechanism that
drives the strong stellar winds observed in hot stars: the so-
called radiation driven winds. According to these authors, the
absorption and further reemission of photons by UV resonance
lines is the wind-driven mechanism for hot stars, that produces
an outward line-force. The foundation of the theory of radiation
driven winds was later developed by Castor et al. (1975,
hereafter CAK theory), who, based on the Sobolev and the
point-star approximations, modeled the line-acceleration ana-
lytically in terms of the acceleration produced by electron
scattering times a force multiplier factor. This factor represents

the contribution of absorption and reemission processes
depending on the optical depth only, and it was parameterized
by two constant parameters through the wind, namely k and α.
Later, Abbott (1982) performed a detailed calculation of

these line-force parameters taking into account the contribution
of a full set of atomic line transition data for elements from
hydrogen to zinc. Due to the point-star approximation the
derived hydrodynamical values for mass-loss rates were
overestimated; Pauldrach et al. (1986) and Friend & Abbott
(1986) relaxed this approximation and considered the finite-
disk shape of the star. With this modified theory (hereafter m-
CAK), they solved the equation of motion and obtained
improved theoretical results, in better agreement with the
observed mass-loss rates.
Due to scarce works concerning NLTE (nonlocal thermo-

dynamic equilibrium) calculations of the line-force parameters
(Pauldrach et al. 1986; Puls et al. 2000; Kudritzki 2002;
Pauldrach 2003; Noebauer & Sim 2015), it was difficult to
obtain from the m-CAK hydrodynamics the velocity profiles and
mass-loss rates; thus, the massive star community started to use
the so-called β-law velocity profile. This simplified description
of the velocity field is widely used as input in radiative transfer
and NLTE model-atmosphere codes such as FASTWIND
(Santolaya-Rey et al. 1997; Puls et al. 2005) or CMFGEN
(Hillier 1990; Hillier & Miller 1998; Hillier & Lanz 2001) to
calculate synthetic spectra. In this procedure, stellar and wind
parameters (terminal velocity and mass-loss rates) are treated as
free and are determined by varying them to adjust synthetic to
observed line profiles. Kudritzki & Puls (2000) argued that the
use of β-law for the velocity field is only justified a posteriori
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once the fit is achieved. There are other approaches that coupled
the hydrodynamics with comoving frame radiative transfer, see,
e.g., Sander et al. (2017) or Krtička & Kubát (2010, 2017), that
do not use a β-law velocity profile.

Calculations of line-force wind parameters coupled with
hydrodynamics are necessary to derive self-consistent velocity
profiles and mass-loss rates. Moreover, they depend nonlinearly
on the stellar parameters, chemical abundances, and atomic data
via the wind-driven mechanism. To obtain the line-force
parameters it is necessary to calculate the total acceleration
produced by the contribution of hundreds of thousands of lines
participating in the absorption and reemission processes (here-
after line-acceleration gline). Thus, having reliable atomic data is
essential to perform line-statistics calculations.

The number of contributing lines to the driven line-
acceleration depends on the wind opacity and it is strongly
coupled to the wind density and velocity profiles. To solve this
highly nonlinear problem an iterative procedure is required to
satisfy both: line-statistics and m-CAK hydrodynamics.

In this work, we calculate self-consistent solutions to obtain
accurate m-CAK line-force parameters (k, α, δ) and wind
properties of hot massive stars. The hydrodynamics is provided
using our code HYDWIND (Curé 2004), whereas abundances
have been updated from Asplund et al. (2009). Final self-
consistent line-force values correspond to a unique solution
obtained when line-force parameters, velocity profile, and mass-
loss rate converged. Hence, we present here a new set of m-CAK
self-consistent line-force parameters for Teff>32,000 K and
log g�3.4, with the corresponding velocity profile and mass-
loss rate. These line-force parameters are compared with
previous numerical studies. Furthermore, with these new results
we calculate synthetic spectra with FASTWIND contrasting
them with observations. We show that applying few times our
procedure we obtain a very good fit of the observed line profile.
Furthermore, we derived (i) an alternative recipe for the mass-
loss rate, which only depends on the stellar parameters and the
abundance; (ii) the ratio vinf/vesc as given by Equation (18) now
depends not only on the line-force parameter α but also on glog .

This paper is organized as follows: The theoretical formula-
tion of m-CAK theory is given in Section 2. Section 3 describes
the methodology used, explaining the iterative procedure and
how convergence is assured. Section 4 shows results for the
calculation of the line-force multiplier using the standard
solution, together with a detailed analysis about under what
conditions (k, α, δ) can be treated as constants. In Section 5, we
calculate synthetic spectra based on our self-consistent procedure
and compare them with observations. A discussion about
the results is given in Section 6. Finally, our conclusions are
presented in Section 7.

2. Theoretical Formulation

The m-CAK theory (Castor et al. 1975; Friend & Abbott
1986; Pauldrach et al. 1986) describes in spherical coordinates
a stationary, nonrotating, expanding atmosphere, taking into
account the line-acceleration gline. The equation of momentum
and equation of continuity respectively read:

v
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Here, Ṁ is the mass-loss rate, v(r) is the radial velocity field, ρ
(r) is the mass density, P is the gas pressure, and M*(1−Γe)
corresponds to the effective stellar mass, where Γe is the
radiative acceleration caused by Thomson scattering in terms of
gravitational acceleration.
Introducing the following dimensionless variables: r r R*=ˆ ,

v v a=ˆ , and v v a 2crit esc=ˆ , where the escape velocity is
defined as v G M2esc
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line*=ˆ ( ) . We have used the equation of state of
an ideal gas, P=a2ρ, with a being the isothermal sound speed:
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with μ being the mean atomic weight.
The line-acceleration can be defined in terms of the radiative

acceleration due to electron scattering g R a ge e
2

*=ˆ ( ) , multi-
plied by t g geline =( ) ˆ ˆ , called the line-force multiplier
factor. t( ) corresponds to the sum of spectral lines that
contribute to drive the wind:
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with ΔνD being the line broadening due to Doppler effects. Fν

and F are the monochromatic and total stellar flux, respectively,
and ηline is the absorption coefficient. Castor (1974) para-
meterized t( ) in terms of the optical depth t, which depends
on the wind structure only:
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with vth being the mean hydrogen thermal velocity.
Then, Castor et al. (1975) proposed the following analytical

expression for t( ):
t k t , 7 = a-( ) ( )

where the parameters k and α are the so-called line-force
multiplier parameters (or line-force parameters). Abbott (1982)
added a third line-force parameter called δ, being the exponent
of the diluted-electron number density, Ne/W (where W is the
dilution factor). With these three line-force parameters (k, α, δ),

t( ) becomes:

t k t
N

W
10 . 8e11 = a

d
- -⎜ ⎟⎛

⎝
⎞
⎠( ) ( )

The physical interpretation of the line-force parameters (see,
e.g., Puls et al. 2000) are as follows:

1. The k parameter is directly proportional to the effective
number of driving lines, and is related to the fraction of
the photospheric flux, which would have been blocked by
all lines if they were optically thick and overlapping
effects were not considered. Higher values of k are
obtained at higher densities and, therefore, higher mass-
loss rates. In addition to the dependency of ρ(r), k
presents also a strong dependence with metallicity and
temperature due to the large number of driving lines: a
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lower temperature implies lower ionization stages, and
thus more lines; therefore, a higher t( ). More lines
(above a given threshold line strength) are also present for
higher metallicities.

The overlapping of two or more spectral lines
produces an overestimation in the calculated value of k.
On the other hand, k is underestimated when multiscattering
effects are not taken into account (i.e., the summation in

t( ) considers only direct photospheric radiation, and not
radiation reprocessed in the wind). As was pointed out by
Puls (1987), the inclusion of both effects might cancel, at
least for O stars, and the effective k becomes moderately
reduced. In this work, we have not considered these effects;
therefore, our k values should be maximum.

2. The α parameter is related to the exponent of the line-
strength distribution function, and quantifies also the ratio
of the line-acceleration from optically thick lines to the
total one (for details, see Puls et al. 2008).

3. The δ parameter represents the change in the ionization
throughout the wind. It has been found that, high values
of δ (0.25) “slow” the wind, yielding a different wind
solution (Curé et al. 2011).

Some studies have pointed out that the line-force parameters
are a function of radius (Schaerer & Schmutz 1994) or can be
considered in a piecewise constant structure (Kudritzki 2002).
Nevertheless, in this work, we will consider k, α, and δ as
constants throughout the wind (see Section 4.2).

3. Calculation of the t( ) Factor
To calculate the t( ) factor, we include different improve-

ments: (i) a larger line list, (ii) a quasi-NLTE approach for the
ionization equilibrium, (iii) an NLTE radiative stellar flux, and
(iv) an optical depth range in concordance with the wind
structure. Then we test it for one single-step and also the whole
iteration procedure until convergence of line-force parameters,
velocity profile, and mass-loss rate is achieved.

3.1. Selection of Atomic Database

To calculate the line-acceleration and obtain a proper value
of t( ), Abbott (1982) established that it is necessary to sum
the contribution of hundreds of thousands of spectral lines
participating in the line-acceleration processes. Therefore,
aiming to get the most accurate value of t( ), we decided
to employ around ∼900,000 line transitions. These atomic data
were obtained (and modified in format) from the atomic
database list used by the code CMFGEN6 (Hillier 1990; Hillier
& Miller 1998). Specifically, we have extracted information
related to energy levels, degeneracy levels, partition functions,
and oscillator strengths fl, which are necessary to calculate the
absorption coefficient ηline of each line in terms of lower (l) and
upper (u) level populations nl and nu, and their statistical
weights gl and gu. The absorption coefficient ηline is given by:
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Elements and ionization stages considered in this work are
listed in Table 1.

3.2. Ionization Equilibrium

Line-acceleration is calculated over the contribution of
numerous transitions for every element at every ionization
stage present in the wind. Abbott (1982) determined the
ionization degrees using the Saha’s equation for extended
atmospheres (Mihalas 1978), namely:
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where TR, Te are the radiation and electron temperatures,
respectively, and Ei is the ionization energy from stage i to
i+1. More precise treatment called approximate NLTE
(hereafter quasi-NLTE) has been used by, e.g., Mazzali &
Lucy (1993) and Noebauer & Sim (2015). Here the ionization
balance is determined by the application of the modified
nebular approximation (Abbott & Lucy 1985). Following this
treatment, the ratio of number densities for two consecutive
ions can be expressed in term of its LTE value, multiplied by
correction effects due to dilution of radiation field and
recombinations:
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where ζi represents the fraction of recombination processes that
go directly to the ground stage. Equation (11) is an alternative
description to the one given by Puls et al. (2005), who included
a different radiative temperature dependence in the wind, which
is especially important in the far-UV region of the spectrum
that is not optically thick.
Modifications in the treatment of atomic populations Xi, with

i being the excitation level, are also based on the work of
Abbott & Lucy (1985). It is necessary to make a distinction
between metastable levels (with no permitted electromagnetic
dipole transitions to lower energy levels) and all the other ones:
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Atomic partition functions, Ui (necessary for Saha’s equation
and the calculation of atomic populations), are calculated

Table 1
Atomic Elements and Ionization Stages Used to Calculate t( )

Elem. Ions Elem. Ions

H I He I−II
Li I−III Be I−IV
B I−V C I−IV
N I−VI O I−VI
F I−VI Ne I−VI
Na I−VI Mg I−VI
Al I−VI Si I−VI
P I−VI S I−VI
Cl I−VI Ar I−VI
K I−VI Ca I−VI
Sc I−VI Ti I−VI
V I−VI Cr I−VI
Mn I−VI Fe I−VI
Co I−VI Ni I−VI

6 Atomic data used here are those which were updated by DJH in 2016 (http://
kookaburra.phyast.pitt.edu/hillier/cmfgen_files/atomic_data_15nov16.tar.gz).
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following the formulation of Cardona et al. (2010), i.e.,

U U G e
m

n e
3

343 , 12i i jk
T E T
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3jk n jk*= + + -e- -( ) ( )ˆ

where Ui,0 are the constant partition functions, En jk*
ˆ is the

mean excitation energy of the last level of the ion, n is the
maximum excitation stage to be considered, while Gjk, εjk, and
m are parameters tabulated by Cardona et al. (2010).

The advantage of this treatment is that it provides values for
atomic partition functions explicitly as a function of temperature
and implicitly of electron density, giving a more accurate
ionization balance. Following Noebauer & Sim (2015), the
temperature will be treated as a constant (TR=Te=Teff). Then,
for a specific value of (Teff, Ne), the ratio between number
densities of ionization stages j and i (for a specific Z-element) is
calculated by a matrix (hereafter ionization matrix) given by:
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In reference to the abundances of the different chemical
elements, these were adopted from the solar abundances given
by Asplund et al. (2009). However, these can be easily modified
to evaluate stars with nonsolar metallicity (see Section 4).

At this point, it is necessary to remark that previous authors
(Abbott 1982; Noebauer & Sim 2015) have considered the
diluted-electron density Ne/W as constant throughout the wind.
Nevertheless, to calculate δ, t( ) must be evaluated
considering changes in the ionization stages, and therefore
Ne(r)/W(r). Since, the calculation of electron density depends
on the ionization stages of each species which in turn are
functions of Ne, we deal with a coupled nonlinear problem. To
obtain a solution, we use the following formula to calculate (as
an initial value) the electron number density:
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with mH being the hydrogen atom mass, and XH and XHe the
abundances of hydrogen and helium, respectively.

We used this initial electron density to start calculating the
ionization matrix and to recalculate both atomic populations
and electron density iteratively:
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Convergence of Ne is easily obtained after just a few
iterations (see Figure 1). It is important to remark that even
when we use Ne,0 as a constant value (not described by
Equation (14)), the final converged value for Ne is the same.

3.3. Radiation Field

Together with an accurate treatment of atomic populations
and electron density, Equation (5) requires as an input the
radiation field in the term Fν/F.

Abbott (1982) used the radiation fields from Kurucz’ models
(Kurucz 1979), whereas Noebauer & Sim (2015) from a
blackbody. In this work, we use the radiation field calculated
by the NLTE line-blanketing plane-parallel code TLUSTY
(Hubeny & Lanz 1995; Lanz & Hubeny 2003).

The overlap effects among tens of thousands of spectral lines
are not considered when we sum the contributions to the force
multiplier t( ) across the wind. However, line-blanketing
effects are partially considered as we are using the TLUSTY
radiation field in the calculations of t( ).

3.4. Determination of the Optical Depth Range

Previous studies by Abbott (1982) and Noebauer & Sim
(2015) have considered a fixed range for the optical depth t to
fit the force multiplier (Equation (8)).
However, given the definition of t (Equation (6)), it is clear

that the optical depth range is constrained by the physical
properties of the stellar wind (density and velocity profiles). For
this reason, calculations presented in this work are constrained
inside the wind, characterized by this range of t.
Because m-CAK theory is based upon Sobolev approximation

(Sobolev 1960; Lamers & Cassinelli 1999) in this work we will
use as upper and lower limits of t its values at the sonic point and
at infinity (usually r∼100 R*), respectively. It is important to
remark that although t decreases outward it never reaches zero.
Therefore, it is always possible to define a proper range.

3.5. Iterative Procedure

Velocity profile and Ṁ from hydrodynamics is required in
order to calculate the line-acceleration gline. At the same time,
line-force parameters fitted from gline, are necessary to solve the
m-CAK hydrodynamic equations and obtain the mass-loss rate
and velocity profile. Therefore, a self-consistent iterative
procedure should be implemented to solve this coupled
nonlinear problem.
Our procedure is the following: (i) using a β-law profile with a

given mass-loss rate, initial values for the line-force parameters
(k0, α0, δ0) are calculated; (ii) a numerical solution of the
equation of motion (Equation (3)) is obtained with HYDWIND,7

Figure 1. Final value of Ne/W(r) as a function of stellar radius even when Ne,0

is set as a constant input (black solid line), after one iteration (single dashed
line), after two iterations (dashed–dotted line), and after five iterations (red
solid line).

7 This code solves the m-CAK equation of motion with an eigenvalue that
depends on the mass-loss rate. At the location of the singular point, both
solution branches (singular point to stellar surface and singular point to infinity)
are smoothly merged to obtain the velocity profile, see Pauldrach et al. (1986),
Friend & Abbott (1986), and Curé (2004) for details.
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getting an improved hydrodynamics: v(r) and M ;˙ (iii) a new
force multiplier is calculated; (iv) new line-force parameters (ki,
αi, δi) are fitted from t( ); and (v) steps ii–iv are iterated.
Convergence is usually obtained after ∼4–5 iterations (see
Figure 2), independently on the initial values. Our criterion for
convergence is when two consecutive iterations (i, i+1) get a
value for p p p 10i i1 3D = -+ -    , where p is a line-force
parameter and this condition should be satisfied for each one of
these parameters.

Figure 3 shows the convergence of the mass-loss rate (top
panel) and the terminal velocity (lower panel) as a function of

the procedure’s iterations. Both values depend nonlinearly on
the stellar and line-force parameters.

3.6. A Single-step Test

To compare our line-force parameters with the results
obtained by Abbott (1982) and Noebauer & Sim (2015), we
use one single-step only. Following these authors, δ and Ne/W
are set as input and the optical depth range is fixed between

t6 log 1- < < - . The selection of a fixed interval of tlog
does not require any velocity field structure. Furthermore, we
have considered Kurucz’ and blackbody fluxes to reproduce
Abbott (1982) and Noebauer & Sim (2015) calculations,
respectively. Then, starting from a β-law and a Ṁ , we calculate
k1 and α1 (single-step). These results are shown in Table 2. The
coefficients of determination, R-Squared, for α and k
(respectively) between previous and our single-iteration results
are (i) R 0.872 =a and R 0.93k

2 = for Teff�40,000 K; (ii)
R 0.42 =a and R 0.81k

2 = for Teff�30,000 K. We conclude
that our calculations reproduced previous results, now using a
modern atomic database and abundances.

4. Results

4.1. Self-consistent Calculations

The following results are computed self-consistently with the
methodology detailed in Section 3.
Self-consistent solutions for a grid of models are presented in

Table 3. The effective temperature ranges from 32 to 45 kK and
log g from 3.4 to 4.0 dex. This grid considers different stellar
radii and two abundances: 1 and 1/5 of the solar value. This
table shows the stellar parameters, the calculated t-range, and
the fitted m-CAK line-force. In addition, we calculated the
corresponding wind solution using HYDWIND, and their error
margins were derived considering variations of ΔTeff=±500,

glog 0.05D =  , and ΔR*=±0.1 Re in the stellar radius,
keeping constant the line-force parameters.
Convergence has been checked for each solution. Figure 4

shows the last iteration of t( ) for four models from Table 3
with different ranges of t. Due to the quasilinear behavior of the
logarithm of the force multiplier, parameters k and α are easily
fitted and their values can be considered constant throughout the
wind (see Section 4.2). To fit δ in the t( )–Ne/W plane, it is
necessary to perform an extra calculation of t( ) using a
slightly different value for the diluted-electron density. Last
column of this table shows the ratio between our mass-loss rate
and the one calculated using Vink’s recipe (Vink et al. 2001),
with v v 2.6esc =¥ and rescaled to current abundances (Asplund
et al. 2009). The mean value of M M 0.98 0.2SC Vink = ˙ ˙ . As
we have not included in our procedure multi-line nor line-
overlapping processes, we support Puls’ (1987) conclusion that
these effects are somewhat canceled, because we do not observe
relevant discrepancies in the mass-loss rates when a comparison
with Vink’s recipe is performed.
In Figure 5, we observe clear trends for the behavior of the

(k, α, δ) parameters with Teff, glog , and Z. While k increases
and δ decreases as a function of the effective temperature, for
both metallicities. It is interesting to remark the influence of the
surface gravity on the resulting line-force parameters, values
for k and δ decrease as the gravity decreases. Notice that
globally our line-force parameter results are similar to the
values obtained in previous works (Puls et al. 2000;
Kudritzki 2002; Noebauer & Sim 2015). However, we found

Figure 2. Values of α, k, and δ as a function of the iteration number, starting
from different initial values. Different initial values (iteration 0, not shown)
converge to the same final self-consistent solution.
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an important dependence on log g as a result of the
hydrodynamic coupling in the self-consistent procedure.

On the other hand, the behavior of α depends on the
metallicity, it increases with effective temperature for solar
abundance, but for low abundance and low gravities, it slowly
decreases with temperature. Moreover, the change in α is more
significant for log g than for Teff: a difference in glogD 
0.2 dex produces a Δα∼0.04, whereas variations on ΔTeff=
±2000 K, might produce Δα∼0.02.

Figure 6 shows the results for the mass-loss rates as a
function of the effective temperature, for different gravities and
metallicities. The upper panel shows the results from our self-
consistent procedure and the bottom panel shows the result
using Abbott’s methodology (a single iteration) to calculate
line-force parameters and apply them in our hydrodynamic
code HYDWIND (hereafter Abbott’s procedure). We found that
Ṁ increases with effective temperature and metallicity and
decreases with gravity. This behavior is similar to the one
obtained using Abbott’s procedure, but the self-consistent
calculated mass-loss rates are about 30% larger.
From the mass-loss results tabulated in Table 3, a simple

relationship for solar-like metallicities (with a coefficient of
determination or R-squared, R2=0.999) reads:

M
T

g

R R

log 10.443 log
1000 K

1.96 log
0.0314
15.49, 16

Z 1.0
eff

*

= ´

- ´
+ ´
-

=



⎜ ⎟⎛
⎝

⎞
⎠˙

( )
( )

and for metallicity Z/Ze=0.2 the relationship reads (with
R2=0.999):

M
T

g

R R

log 11.668 log
1000 K

2.126 log
0.04
17.63, 17

Z 0.2
eff

*

= ´

- ´
+ ´
-

=


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where Ṁ is given in M10 yr6 1- -
 . These relationships could

be considered analogous to that given by Vink et al. (2000) to
obtain theoretical mass-loss rates for solar-like metallicities.
However, the advantage of our description is that it depends
only on stellar parameters and we do not need to consider the
value of v vesc¥ . It is important to remark, however, that this
formula has been derived for the following ranges:

1. Teff=32–45 kK
2. glog =3.4–4.25
3. M*/Me�25.0.

Concerning terminal velocities, see Figure 7, self-consistent
calculations (top panel) show that v¥ is almost constant with
respect to the effective temperature, but it decreases as a
function of glog and Z. On the other hand, Abbott’s procedure
results do not show the same behavior and exhibit a maximum
in the Teff interval.

4.2. Range of Validity for Line-force Parameters

It is important to remember that the range of optical depths
used to calculate our self-consistent line-force parameters is
defined along almost all the atmosphere of the star, i.e.,
downstream from the sonic point. This procedure improves the
criterion used by Abbott (1982), who determined the
parameters at t=10−4. This value sometimes lays outside
the optical depth range here defined, as shown in Figure 4.
To analyze the change on the line-force parameters due to

the selection of the t-range, we define four different intervals
inside the whole range of t, and compute these parameters in
each range. Table 4 summarizes these calculations. Regarding
the uncertainties of our procedure in the terminal velocities,

Figure 3. Same as Figure 2, but for the mass-loss rate and terminal velocity.

Table 2
Comparison of k and α Parameters from Abbott (A) and Noebauer & Sim (N),

with Our One Single-step Results

Previous
Studies Present Work

Teff Ne/W δ k α k1 α1

(kK) (cm−3)

A 30 1.0×108 0.12 0.093 0.576 0.062 0.661
A 30 1.0×1011 0.12 0.156 0.609 0.097 0.611
A 30 1.0×1014 0.12 0.571 0.545 0.487 0.450
A 40 1.8×108 0.12 0.051 0.684 0.072 0.639
A 40 1.8×1011 0.12 0.174 0.606 0.120 0.609
A 40 1.8×1014 0.12 0.533 0.571 0.289 0.552
N 42 1.0×1015 0.0 0.381 0.595 0.376 0.572
A 50 3.1×108 0.092 0.089 0.640 0.148 0.611
A 50 3.1×1011 0.092 0.178 0.606 0.196 0.595
A 50 3.1×1014 0.092 0.472 0.582 0.289 0.566
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these are of the same order as the uncertainties owed to the
errors in the determination of the stellar parameters in the range
32,000 K<Teff<40,000 K, while, the uncertainties in Ṁ are
much lower than the ones produced by variations of stellar
parameters. These small uncertainties indicate that it is a good
approximation to consider line-force parameters as constants
throughout the wind. Due to the fact that the entire t-range
represents the physical conditions of almost all the wind, we
recommend using the complete optical depth range to derive
the line-force parameters.

For Teff<30,000 K, we found that tlog( ) is no longer
linear with respect to tlog and the corresponding line-force
parameters can be approximated to a linear piecewise
description. Due to this reason, we establish that our set of
self-consistent solutions describes stellar winds for effective
temperatures and glog in the range 32,000–45,000 K and
3.4–4.0 dex, respectively.

5. Synthetic Spectra

In order to know whether our calculations reproduce realistic
physical features observed in hot stars, we calculate synthetic
spectra for three O-type stars using FASTWIND. We select
some stars in the range of the considered Teff, trying to cover
the extreme cases of temperature and glog . We choose first the

O4 I(n)fp star ζ-Puppis (HD 66811) because it has been
extensively studied (Puls et al. 1996, 2006; Repolust et al.
2004; Sota et al. 2011; Bouret et al. 2012; Noebauer &
Sim 2015). Mentioned authors have independently adopted
different sets of stellar and wind parameters, which are
summarized in Table 5. Here, the wind parameters were
determined by Repolust et al. (2004). Puls et al. (2006) has
used their parameters and derived clumped mass-loss rates
from Hα, IR, and radio, using analytical expressions for the
corresponding opacities, whereas Bouret et al. (2012) used
CMFGEN. Both calculations include clumping, so these results
correspond to a clumped mass-loss rate.8 On the other hand, the
mass-loss rate given by Noebauer & Sim (2015) was obtained
using their Monte-Carlo radiation hydrodynamics (MCRH)
method assuming a homogeneous media ( fcl=1.0).
Particularly, we compare our results with those given by Puls

et al. (2006), who did an exhaustive analysis of the clumping
throughout the wind. Two different values for mass-loss rate
are given by these authors, because they considered different

Table 3
Self-consistent Line-force Parameters (k, α, δ) for Adopted Standard Stellar Parameters, Together with the Resulting Terminal Velocities and Mass-loss Rates (MSC˙ )

Teff glog R*/Re Z/Ze tlog in tlog out k α δ vSC
¥ MSC˙ M MSC Vink˙ ˙

(kK) (km s−1) (10−6 Me yr−1)

45 4.0 12.0 1.0 −0.31 −4.53 0.167 0.600 0.021 3 432±240 2.0 0.5
0.65 1.00

45 4.0 12.0 0.2 −0.77 −4.85 0.142 0.493 0.017 2 329±210 0.38 0.11
0.15 0.74

45 3.8 16.0 1.0 0.28 −4.07 0.135 0.648 0.022 3 250±300 6.4 1.3
1.6 0.84

45 3.8 16.0 0.2 −0.06 −4.28 0.114 0.545 0.014 2 221±230 1.7 0.45
0.6 0.88

42 3.8 16.0 1.0 −0.10 −4.36 0.137 0.629 0.027 3 235±300 3.4 0.7
0.9 0.94

42 3.8 16.0 0.2 −0.55 −4.73 0.108 0.534 0.019 2 313±230 0.73 0.21
0.3 0.79

42 3.6 20.4 1.0 0.70 −3.80 0.122 0.671 0.039 2 738±230 11 2.5
3.5 0.74

42 3.6 20.4 0.2 0.37 −4.09 0.091 0.586 0.022 2 043±200 3.1 0.75
1.2 0.82

40 4.0 12.0 1.0 −0.88 −4.97 0.164 0.581 0.027 3 300±220 0.66 0.15
0.19 1.17

40 4.0 12.0 0.2 −1.43 −5.44 0.133 0.492 0.038 2 329±160 0.11 0.03
0.05 0.76

40 3.6 20.4 1.0 0.42 −3.96 0.118 0.659 0.044 2 813±290 6.6 1.4
1.8 0.89

40 3.6 20.4 0.2 −0.05 −4.40 0.091 0.572 0.025 2 116±230 1.7 0.4
0.5 0.90

40 3.4 18.0 1.0 1.30 −3.14 0.099 0.715 0.094 1 548±240 14.5 3.5
5.0 0.73

40 3.4 18.0 0.2 1.90 −3.50 0.073 0.650 0.047 1 334±230 4.7 1.3
2.4 0.92

38 3.8 16.0 1.0 −0.63 −4.79 0.130 0.610 0.036 3 153±240 1.2 0.25
0.3 1.10

38 3.8 16.0 0.2 −1.18 −5.28 0.091 0.542 0.033 2 473±300 0.25 0.06
0.08 0.89

36 4.0 12.0 1.0 −1.45 −5.50 0.132 0.580 0.036 3 314±200 0.21 0.05
0.065 1.17

36 4.0 12.0 0.2 −1.97 −5.97 0.101 0.517 0.068 2 402±140 0.036 0.01
0.014 0.78

36 3.6 20.4 1.0 −0.29 −4.55 0.104 0.644 0.062 2 809±240 2.2 0.5
0.7 1.12

36 3.6 20.4 0.2 −0.87 −5.09 0.071 0.581 0.033 2 534±220 0.5 0.13
0.17 1.00

36 3.4 18.0 1.0 1.78 −3.77 0.091 0.686 0.116 1 708±170 4.4 1.0
1.6 1.13

36 3.4 18.0 0.2 0.41 −4.21 0.072 0.607 0.048 1 566±160 1.0 0.25
0.4 1.01

34 3.8 16.0 1.0 −1.27 −5.37 0.103 0.604 0.043 3 093±210 0.34 0.07
0.1 1.12

34 3.8 16.0 0.2 −1.93 −5.94 0.069 0.555 0.028 2 791±180 0.074 0.018
0.025 0.95

34 3.6 20.4 1.0 −0.61 −4.82 0.095 0.637 0.074 2 732±180 1.2 0.3
0.4 1.25

34 3.6 20.4 0.2 −1.29 −5.46 0.058 0.590 0.031 2 642±180 0.25 0.05
0.07 1.03

32 3.4 18.0 1.0 0.37 −4.30 0.078 0.675 0.159 1 653±190 1.3 0.3
0.5 1.67

32 3.4 18.0 0.2 −0.70 −4.15 0.053 0.610 0.052 1 847±140 0.23 0.05
0.075 1.16

Note. Ratios between self-consistent mass-loss rates and Vink’s recipe values (rescaled to match metallicity from Asplund et al. 2009) using v v 2.6esc =¥ are shown
in the last column. Error margins for mass-loss rates and terminal velocities are derived over a variation of ±500 for effective temperature, ±0.05 for logarithm of
surface gravity, and ±0.1 for stellar radius.

8 FASTWIND uses the clumping factor fcl�1 (with fcl=1 representing the
smooth limit), where fcl=1/f if the inter-clump medium was void (Sundqvist
& Puls 2018). On the other hand, CMFGEN-clumping is represented by the so-
called volume filling factor f, which scales homogeneous and clumped mass-
loss rates under the relationship M M fhom clump=˙ ˙ (notice that this f takes
values between 0 and 1).
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stellar radii depending on the assumed distance for ζ-Puppis:
(i) the “conventional” (d=460 pc) and (ii) the one given by
Sahu & Blaauw (1993, d=730 pc). We examine here the

Figure 4. Force multiplier t( ) as function of t for some stellar models
presented on Table 3 with Teff=45,000 K and glog 4.0= (blue),
Teff=40,000 K and glog 3.6= (cyan), Teff=36,000 K and glog 3.4=
(green), and Teff=32,000 K and glog 3.4= (red). Colored areas below
curves indicate the range of t, where the fits for (k, α, δ) have been adjusted.

Figure 5. Behavior of line-force parameters (k, α, δ) as a function of the
effective temperature (in kK), for different surface gravities and metallicities.
Circles represent models with glog 4.0= , squares: glog 3.8= , stars:

glog 3.6= , and triangles: glog 3.4= . Black dashed lines are for models
with solar metallicity and gray dashed lines for Z=Ze/5.
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“conventional” case with R*/Re=18.6. We can observe from
Table 5 (last row), that our new calculated mass-loss rate agree
quite well with the value from Puls et al. (2006).

Figure 8 shows the observed spectra (kindly provided by D.
J. Hillier) and the resulting synthetic spectra for ζ-Puppis.
Stellar parameters are taken from Puls et al. (2006, see Table 5)
and wind parameters from our self-consistent procedure
(M M4.6 10 yrSC

6 1= ´ - -
˙ ). We calculated three synthetic

spectra with different clumping factors: fcl=1.0 (homoge-
neous), fcl=5.0, and fcl=9.0. The best fit is for fcl=5.0,
which is the same clumping factor found by Puls et al. (2006)
with their M 4.2 10 6= ´ -˙ Me yr−1. Moreover, we also
include the synthetic spectra obtained with the self-consistent
solution (see Figure 9), calculated using the stellar parameters
given by Bouret et al. (2012, see Table 5) and Najarro et al.
(2011). The best fit is achieved when we use a clumping factor

of fcl=5.0. These results suggest that the real stellar
parameters lie in the neighborhood given by Puls et al.
(2006) and Najarro et al. (2011).
The observed spectrum for HD 163758 (O9 I) has been

obtained from the UVES-POP database.9 We calculated the
synthetic spectra for this star (see Figure 10) using stellar
parameters from Bouret et al. (2012) and wind self-consistent
parameters (see Table 6) with different clumping factors, the
best fit is for fcl=6.0.
Last spectrum corresponds to the O3.5 V star HD 164794,

also obtained from the UVES-POP database. Stellar parameters
were extracted from Krtička et al. (2015), as shown in Table 6.
Contrary to previous cases, the best fit is obtained for the
homogeneous model ( fcl=1.0, see Figure 11).
In view of these first results, our self-consistent iterative

procedure takes us quickly into the neighborhood of the solution
that reproduces the observed wind spectra for O-type stars.

Figure 6. Behavior of mass-loss rate as a function of effective temperature (in
kK) for different abundances and gravities. Top panel is for self-consistent
calculations and bottom panel is for Abbott’s procedure, now including the
finite-disk correction factor. Symbol description is the same as that in Figure 5.

Figure 7. Same as Figure 6, but for the terminal velocities.

9 http://www.eso.org/sci/observing/tools/uvespop/field_stars_uptonow.html
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6. Discussion

We have developed a self-consistent methodology to
calculate the line-force parameters and derived consequently
mass-loss rates and velocity profiles. We found that mass-loss
rate is about 30% larger than the one obtained using Abbott’s
procedure (non-self-consistent calculation).

6.1. Terminal Velocity

It is well known that the scaling relation for the terminal
velocity in the frame of the line-driven wind theory. This
relation (Puls et al. 2008) reads:

v v2.25
1

. 18esc
a
a

»
-

¥ ( )
This is an approximation of the formula found by Kudritzki
et al. (1989, their Equations (62) to (65)).

In Figure 12 we have plotted v vesc¥ versus 1a a-( )
using the results from Table 3. Contrary to the expected result
(Equation (18)) for solar abundances, we find a different
linear behavior that strongly depends on the value of glog .
This is a new result that comes from applying our self-

consistent procedure. The m-CAK equation of motion shows
an interplay between the gravity ( glog ) and the line-force
term. This balance of forces defines the location of the
singular point and therefore fixes the value of Ṁ . As a
consequence, the velocity profile depends also on the value of

glog . This result cannot be obtained from Equation (18)
which is an oversimplification of this nonlinear coupling.
However, Equation (18) presents a fair fit when Z=Ze/5,
where the dependence of the slope on glog is weak because
the radiation force is driven by fewer ions.
The dependence of v vesc¥ on glog yield that stars with

solar abundances present an intrinsic variations of v vesc¥ in
the range of 2.4–3.7, as shown in Figure 12. This range might
explain the scatter observed on the hot side of the bistability
jump shown by Markova & Puls (2008, in their Figure 12).

6.2. Mass-loss Rate

In this section we want to compare our theoretical results
with the ones obtained from line-profile fittings for homo-
geneous (unclumped) winds with a β-law, and the mass-loss
(recipe) from Vink et al. (2000).

Table 4
Influence of the Optical Depth Interval on the Line-force Parameters for Some Reference Models Given in Table 3

Teff glog tlog in tlog out k α δ vD ¥∣ ∣ MD∣ ˙ ∣
(km s−1) (10−6 Me yr−1)

45,000 4.0 −0.31 −2.03 0.099 0.686 0.037 780 0.23
−0.31 −2.87 0.107 0.650 0.029 600 0.30
−0.31 −3.71 0.120 0.638 0.027 420 0.21
−0.31 −4.55 0.167 0.600 0.021 0 0

40,000 4.0 −0.87 −2.50 0.099 0.633 0.040 521 0.09
−0.87 −3.32 0.099 0.634 0.036 610 0.07
−0.87 −4.14 0.107 0.621 0.026 594 0.07
−0.87 −4.96 0.164 0.581 0.027 0 0

40,000 3.6 0.08 −1.44 0.095 0.666 0.090 247 0.58
0.08 −2.28 0.098 0.680 0.075 75 0.13
0.08 −3.12 0.101 0.692 0.067 323 0.92
0.08 −3.96 0.118 0.659 0.044 0 0

36,000 3.6 −0.29 −2.00 0.084 0.637 0.112 520 0.58
−0.29 −2.85 0.092 0.648 0.078 114 0.15
−0.29 −3.70 0.089 0.668 0.075 267 0.01
−0.29 −4.55 0.104 0.644 0.062 0 0

32,000 3.4 0.37 −1.49 0.066 0.630 0.251 631 0.77
0.37 −2.43 0.075 0.636 0.221 457 0.57
0.37 −3.37 0.079 0.662 0.179 168 0.11
0.37 −4.31 0.078 0.675 0.159 0 0

Note. Absolute values of the differences in the resulting Wind parameters with respect to the reference solution are presented.

Table 5
Stellar and Wind Parameters for ζ-Puppis from Previous Studies Compared with Our Self-consistent Results

Previous Studies Present Work

Reference Teff glog R*/Re Ṁ v¥ k α δ MSC˙ vSC
¥

(kK) (10−6 Me yr−1) (km s−1) (10−6 Me yr−1) (km s−1)

Noebauer & Sim (2015) 42 3.6 19.0 45.0 881 0.120 0.678 0.041 11.0 3.0
3.5 2 500±280

Bouret et al. (2012) 40 3.64 18.7 2.0 2300 0.120 0.655 0.039 5.2 1.2
1.6 2 700±300

Puls et al. (2006) 39 3.6 29.7 8.5 2250 0.115 0.654 0.044 9.3 2.2
2.9 3200±350

39 3.6 18.6 4.2 2250 0.114 0.658 0.049 4.6 1.1
1.3 2 570±300

Note. Line-force parameters are also listed.
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Table 7 shows our results for the only two O-type star reported
by Bouret et al. (2005): HD 96715, Teff=43.5 kK, glog 4.0= ,
and HD 1904290A, Teff=39 kK, glog 3.6= . These results
were obtained for the self-consistent solution together with the
ones after just one iteration starting from a β-law. It is observed
that models starting from a β-law largely overestimate the
terminal velocity and slightly underestimate the mass-loss rate.

Self-consistent calculations find a fairly good agreement to both:
the observed mass-loss rate and terminal velocity. For the mass-
loss rate in this figure, we have included the result calculated
using Vink et al.’s (2000) recipe. It is clear that our self-consistent
method gives values of Ṁ much closer to the observed ones.
We also apply our self-consistent procedure to objects

analyzed by means of FASTWIND adopting unclumped winds.

Figure 8. Resulting FASTWIND spectra for ζ-Puppis with Teff=39 kK, glog 3.6= , R*/Re=18.6, and M 4.6 10 6= ´ -˙ Me yr−1. Clumping factors are fcl=1.0
(red, homogeneous), fcl=5.0 (blue), and fcl=9.0 (green).

Table 6
Same As Table 5, but for HD 163758 and HD 164794

Previous Studies Present Work

Name Teff glog R*/Re Ṁ v¥ k α δ MSC˙ vSC
¥

(kK) (10−6 Me yr−1) (km s−1) (10−6 Me yr−1) (km s−1)

HD 163758 34.5 3.41 21.0 1.6 2100 0.087 0.679 0.112 3.3±0.8
1.1 2040±280

HD 164794 43.8 3.92 13.1 2.9 3090 0.141 0.614 0.020 2.3 0.5
0.6 3 304±400

Note. Stellar and wind parameters are from Bouret et al. (2012) and Krtička et al. (2015) respectively.
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For that purpose, we also examine some field Galactic O-type
stars from Markova et al. (2018). Table 8 summarizes our
results. We found a fair agreement between observed and
calculated mass-loss rates (see Figure 13). These results
confirm that our methodology delivers the proper mass-loss
rate for the ranges in Teff and glog given above. Below these

thresholds, mass-loss rates present larger values compared with
both: observational and Vink’s theoretical values. This is
probably due to the fact that the line-force multiplier is no
longer a linear function of t (in the log-log plane, see Figure 4),
and the line-force parameters are not constant throughout
the wind.

Figure 9. Resulting FASTWIND spectra for ζ-Puppis with Teff=40 kK, glog 3.64= , R*/Re=18.6, and M 5.2 10 6= ´ -˙ Me yr−1. Clumping factors are
fcl=1.0 (red, homogeneous), fcl=5.0 (blue), and fcl=9.0 (green).

Table 7
Comparison of Self-consistent with β-law (Single-step) Models for the Two Stars Analyzed By Bouret et al. (2005)

Model Teff glog R*/Re k α δ v¥ Ṁ
(kK) (km s−1) (10−6 Me yr−1)

Self-Consistent 43.5 4.0 11.9 0.159 0.603 0.032 3 342±240 1.55 0.3
0.45

β=1.0 43.5 4.0 11.9 0.118 0.647 0.021 4 187±290 1.45 0.25
0.35

Self-Consistent 39 3.6 19.45 0.116 0.657 0.079 2 412±210 5.8 1.3
2.0

β=0.8 39 3.6 19.45 0.039 0.815 0.062 6 789±570 4.2 0.7
0.9

Note. Self-consistent models reproduce better the line-fitted Wind parameters obtained by these authors (β=1: v 3000=¥ km s−1, M 1.8 10 6= ´ -˙ Me yr−1, and
β=0.8: v 2300=¥ km s−1, M 6 10 6= ´ -˙ Me yr−1).
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However, it is important to remark that uncertainties of
ΔTeff∼±1000 K and glog 0.1D ~  dex, produce uncer-
tainties in the mass-loss rates up to a factor of 2 (see blue error
bar in the top panel of Figure 13), which can be considered as
the upper threshold for the mass-loss rate. Hence, even though
our self-consistent hydrodynamics gives confident values for
Ṁ , these good results are strongly dependent on the assumed
stellar parameters.

7. Conclusions

In the present work we have presented a treatment to calculate
self-consistent line-force parameters coupled with the hydro-
dynamics in the frame of the radiation driven wind theory.
Thanks to this procedure, we achieve a unique well-converged
solution that does not depend on the chosen initial values. This is
important because it reduces the number of free parameters (now
β, v¥, and Ṁ are no more input parameters) to be determined by
fitting synthetic spectra against observed ones.

Our calculations contemplate the contribution to the line-
force multiplier from more than ∼900,000 atomic transitions,
an NLTE radiation flux from the photosphere and a quasi-LTE
approximation for the occupational numbers. We have to notice
that for Teff>30,000 K the line-force parameters can be
confidently used as constants throughout the wind.

The set of solutions given in Table 3 differs from previous
line-force parameter calculations performed by Abbott (1982)
and Noebauer & Sim (2015). With these new values, we found
a different scale relation for the terminal velocity that is steeper
than the usually accepted one. This new relation might explain
the observed scatter found in the terminal velocity from
massive stars located at the hot side of the bistability jump
(Markova & Puls 2008).

Concerning the wind parameters derived from modeling
O-type stars with homogeneous winds, our mass-loss rates are
in better agreement with the predicted ones given by the Vink
et al. (2000) formula.

For the calculation of synthetic spectra for O-type stars (ζ-
Puppis, HD 163758, and HD 164794), we conclude that our
procedure’s values for mass-loss rate and hydrodynamics
reproduce the observed line profiles when an adequate value
for the clumping factor is chosen.

Even knowing the limitations of the m-CAK theory, this
remains an extremely useful framework to get an approach

about the real parameters of stellar winds on massive stars. In
spite of the approximations assumed under this theory, we
obtain reliable values for mass-loss rates and self-consistent
hydrodynamics in a short period of time with a great CPU time
savings (compare with big efforts made by, e.g., Mokiem et al.
2005 or Fierro-Santillán et al. 2018).
Our new self-consistent procedure can be used to derive

accurate mass-loss rates and (i) study evolutionary tracks,
where a high precision on terminal velocities is not required,
and (ii) derive trusty clumping factors via line-profile fittings.

We sincerely thank J. Puls for helpful discussions that
improved this work and for having put at our disposal his code
FASTWIND. We thank the anonymous referee for useful
comments. We are very grateful to D.J. Hillier for allowing us
to use CMFGEN-atomic-data and providing us with the
observed spectrum of ζ-Puppis. We also thank C. Arcos for
her help with the code TLUSTY. A.C.G.M. has been financially
supported by the PhD Scholarship folio N° 2116 1426 from
National Commission for Scientific and Technological Research
of Chile (CONICYT). A.C.G.M. is also thankful for support
from the Chilean Astronomical Society (SOCHIAS). A.C.G.M.
and M.C. acknowledge support from Centro de Astrofísica de
Valparaíso. M.C. thanks the support from FONDECYT project
1190485. M.C. and L.S.C. are thankful for support from the
project CONICYT+PAI/Atracción de Capital Humano Avan-
zado del Extranjero (Folio PAI80160057). L.S.C. acknowledges
financial support from the Universidad Nacional de La Plata
(Programa de Incentivos G11/137), the CONICET (PIP 0177),
and the Agencia Nacional de Promoción Científica y Tecnoló-
gica (Préstamo BID, PICT 2016/1971), Argentina. R.O.J.V. is
thankful for financial support from the UNLP under program
PPID/G004. This project has received funding from the
European Unionʼs Framework Programme for Research and
Innovation Horizon 2020 (2014–2020) under the Marie
Skłodowska-Curie grant Agreement No. 823734.
Software:HYDWIND (Curé 2004), CMFGEN (Hillier 1990;

Hillier & Miller 1998; Hillier & Lanz 2001), TLUSTY (Hubeny
& Lanz 1995), FASTWIND (Santolaya-Rey et al. 1997; Puls
et al. 2005).

Appendix
FASTWIND Spectra

Table 8
Resulting Self-consistent Wind Parameters (vSC

¥ and MSC˙ ) Calculated for Stars Analyzed by Markova et al. (2018)

Field Star Teff glog R*/Re k α δ vSC
¥ Ṁ M MSC obs˙ ˙ M MSC Vink˙ ˙

(kK) (km s−1) (10−6 Me yr−1)

HD 169582 37 3.5 27.2 0.102 0.668 0.063 3017±700 7.1 2.4
3.6 1.10 1.26

CD-43 4690 37 3.61 14.1 0.105 0.653 0.058 2 310±540 1.5 0.55
0.9 1.22 1.16

HD 97848 36.5 3.9 8.2 0.123 0.601 0.034 2532±470 0.17 0.06
0.09 0.89 0.95

HD 69464 36 3.51 20.0 0.099 0.664 0.076 2412±580 3.2 1.2
1.9 1.14 1.30

HD 302505 34 3.6 14.1 0.092 0.643 0.077 2331±460 0.68 0.26
0.42 1.24 0.98

HD 148546 31 3.22 24.4 0.073 0.718 0.243 1300±350 5.3 2.5
4.7 0.94 2.24

HD 76968a 31 3.25 21.3 0.071 0.711 0.248 1212±300 3.5 1.7
3.3 1.43 2.11

HD 69106 30 3.55 14.2 0.068 0.644 0.149 1455±300 0.21 0.09
0.16 1.48 1.78

Note. Error margins presented here for Wind parameters are undergone from uncertainties of ±1000 for Teff and ±0.1 for log g. The last two columns show the ratio
between self-consistent and observed mass-loss rates and the ratio between self-consistent and Vink’s mass-loss rates.
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Figure 10. Resulting FASTWIND spectra for HD 163758 with Teff=34.5 kK, glog 3.41= , R*/Re=21.0 (see Bouret et al. 2012), and M 3.3 10 6= ´ -˙ Me yr−1.
Clumping factors are fcl=5.0 (red), fcl=6.0 (blue), and fcl=7.0 (green).
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Figure 11. Resulting FASTWIND spectra for HD 164794 with Teff=43.8 kK, log g=3.92, R*/Re=13.1 (stellar parameters taken from Krtička et al. 2015), and
M 2.3 10 6= ´ -˙ Me yr−1. Clumping factors are fcl=5.0 (red), fcl=2.0 (blue), and fcl=1.0 (homogeneous, green).
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Figure 12. v vesc¥ vs. 1a a-( ) . For each set of glog values there is a
linear dependence for Ze. Slope 2.25 of Equation (18) is also displayed. For
subsolar abundance there is a unique linear relationship (see the text for
details). Symbol description is the same as that in Figure 5.
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