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Abstract

By fitting synthetic spectral models computed via the TLUSTY code, we examine how the spectra from thin
accretion disks are expected to vary in accreting black hole systems. We fit color-corrected blackbody models to
our synthetic spectra to estimate the spectral hardening factor f, which parameterizes the departure from blackbody
and is commonly used to help interpret multitemperature blackbody fitting results. We find we can define a
reasonably robust f value to spectra when the effects of Compton scattering dominate radiation transfer. We
examine the evolution of f with black hole mass and accretion rate, typically finding a moderate variation
( f∼ 1.4–2) for accretion rates between 1% and 100% of the Eddington rate. Consistent with most previous work,
we find that f tends to increase with accretion rate, but we also infer a weaker correlation of f with black hole mass.
We find that f is rarely much larger than 2 unless the disk becomes photon starved, in contention with some
previous calculations. Significant spectral hardening ( f> 2) is only found when the disk mass surface density is
lower than expected for α-disk models unless α is near unity or larger.
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1. Introduction

It is widely believed that the soft X-ray spectral component
in black hole X-ray binaries is thermal emission from an
optically thick, geometrically thin accretion disk (Shakura &
Sunyaev 1973). This component is generally present in high
count rate phases of X-ray transients in low mass X-ray
binaries, when the source is said to be in a high/soft (thermal
dominant) or steep power-law (very high, intermediate, soft/
intermediate) state (Remillard & McClintock 2006; Done
et al. 2007). Spectral modeling of this component can (in
principle) tell us many things about the properties of
the accretion flow and black hole. We can look for changes
in the flow structure and geometry as other properties (e.g.,
the luminosity) of the source vary. If the spectrum of this
component and its variations are well-matched by an
accretion disk model based on numerical simulations or
analytic calculations, then it may even be possible to infer
properties (e.g., spin) of the black hole itself (McClintock
et al. 2011).

The simplest way to turn an accretion flow model into a
spectrum is to assume blackbody emission from the photo-
sphere of an optically thick disk. A range of disk models with
varying levels of complexity and different disk structures
have adopted this assumption, with the DISKBB model
(Mitsuda et al. 1984) from Xspec (Arnaud 1996) being the
most widely used to model accretion disk emission.
However, it is well understood that electron scattering plays
an important role in radiation transfer at the characteristic
photon energies and temperatures, and generically leads to
deviations from blackbody emission (e.g., Madej 1974).
Hence, one might expect blackbodies to be a generically poor
approximation in this limit. Fortunately, the exchange of
energy between electrons and photons that are inelastically
scattered (i.e., Compton scattered) generally enforces a Wien
tail at the high energy end of the spectrum (Shimura &
Takahara 1995, ST95 hereafter). ST95 showed that the
resulting spectra can be approximately modeled by a color-

corrected (or diluted) blackbody
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where Iν is the specific intensity, ν is frequency, k is
Boltzmann’s constant, h is Planck’s constant, c is the speed
of light, and T is the temperature. The key difference from a
normal blackbody is the presence of f, which is commonly
referred to as the color correction or spectral hardening factor.
(For the remainder of the paper, we will refer to this spectral
shape as a color-corrected blackbody but refer to f as the
spectral hardening factor.) It is the multiplicative factor by
which spectral features are shifted to higher energies. The
factor of f−4 keeps the frequency integrated flux fixed.
This concept is particularly useful when paired with a

multicolor (or multitemperature) disk blackbody model with a
power-law dependence of flux on radius. The most popular
example is the DISKBB model in Xspec, which assumes that
flux F scales with radius r according to F∝r−3. This self-
similar model only has two free parameters, a normalization and
the innermost disk temperature. If one assumes all emission
regions have the same associated f value, then one can use
DISKBB to fit for the innermost disk temperature and treat the
best-fit value as a type of color temperature, which is divided by
f to obtain an effective temperature. Hence, a common use of f is
to color-correct the best-fit temperature, which can be used along
with the best-fit normalization to obtain an approximate
measurement of the inner disk radius. This radius is sometimes
compared with the innermost stable orbit of a spinning black
hole to estimate black hole spin (see, e.g., Zhang et al. 1997).
Of course, all this relies on having some mechanism for

computing f. Efforts have been made to “empirically”1 measure
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1 We put empirically in quotes because these estimates make implicit
assumptions about the emission/scattering geometry through their choice of
Comptonizing model. Although we do not view the models as empirical
estimates for this reason, they still provide a useful, independent constraint on f.

1

mailto:swd8g@virginia.edu
https://doi.org/10.3847/1538-4357/ab05c5
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ab05c5&domain=pdf&date_stamp=2019-03-18
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ab05c5&domain=pdf&date_stamp=2019-03-18


f (Cui et al. 2002), by fitting for the ratio of seed photon
energies to the final color temperature, which is obtained by
fitting a particular choice of model (e.g., COMPTT in Xspec).
For example, Pszota & Cui (2007) infer f∼1.3–1.5, broadly
consistent with models discussed below.

Several attempts to theoretically compute f have been made,
beginning with ST95, who compute one-dimensional models
of the vertical structure of the accretion disk atmosphere while
solving radiation transfer with the effects of Compton
scattering included. ST95 found that f varies only over a
relatively small range (1.7–2) for X-ray binaries accreting at
greater than a few percent of the Eddington rate. These results
were broadly supported by the work of Davis et al. (2005,
hereafter D05), who utilized the TLUSTY stellar atmospheres
code (Hubeny 1990; Hubeny & Lanz 1995) to compute models
of the vertical structure and radiation transfer in the accretion
disk annuli. D05 found consistent values for spectral hardening
factors over the range considered by ST95, with a slight
increase in f as accretion rate increased. In contrast, the models
of Merloni et al. (2000, hereafter MFR00) found a substantial
increase in f in models where a fraction of the dissipated energy
was assumed to take place in a corona, leaving only a small
amount of flux in the disk. Although D05 did not consider the
impact of dissipation in a corona, a comparison of the spectral
hardening factors at the same effective accretion rate find much
lower spectral hardening factors for the D05 models.

Although f∼1.7 is still commonly utilized for X-ray
binaries, there are several motivations to better understand
the range of f found in accretion disk models. As mentioned
above, spectral hardening factors can be used in relativistic
models of black hole accretion disks to provide spin estimates
based on continuum fitting (McClintock et al. 2011). Large
tables of spectral hardening factors have been computed for this
purpose (McClintock et al. 2006), but their general properties
have not been reported on previously.

A second consideration comes from observations of X-ray
binaries in low hard states. Although the longstanding picture is
that the inner edge of the disk moves out in these states (Esin
et al. 1997), this notion has been challenged by spectral fits
suggesting relativistically broadened Fe Kα emission and inner
disk temperatures consistent with the disk extending nearly to
the innermost stable circular orbit (Reynolds & Miller 2013).
Such observations might be reconciled if the spectral hardening
factor could increase significantly in these states, in a manner
similar to the results of MFR00.

A third consideration is the potential evolution of f for
accretion disks at larger masses, such as in the intermediate
mass black hole regime (Hui et al. 2005; Davis et al. 2011) or
in the active galactic nuclei (AGNs) regime. Although the
color-corrected blackbody is not generally expected to provide
a good fit for the optical to UV emitting regions of accretion
disks, where Compton effects are thought to be small (e.g.,
Hubeny et al. 2001), they may provide a good approximation to
the soft X-ray emission coming from the hottest, innermost
regions of relatively low mass and high accretion rate AGNs.

Hence the goal of this paper is to explore the range of f
inferred over a wider range in disk parameters encompassing
models with a larger range of accretion rates and masses. As a
basis for this study, we utilize TLUSTY based models of
accretion disk annuli that underlie the BHSPEC model (Davis
& Hubeny 2006), but have also been used with the KERRBB2

model (McClintock et al. 2006) and slim disk models (Straub
et al. 2011).

2. Model and Methods

The spectral models of Comptonized accretion disks
employed in this study were computed using the TLUSTY
stellar atmospheres code (Hubeny 1990; Hubeny & Lanz 1995).
The properties of these models are discussed in D05 and Davis
& Hubeny (2006) and we refer the reader to these earlier works
for more information.
The TLUSTY disk models each represent an individual

annulus in an axisymmetric accretion disk. The models are
computed assuming physical quantities (density, temperature,
radiation flux, etc.) only vary as a function of height within the
annulus. The lower boundary of the model corresponds to the
disk midplane and the upper boundary corresponds to a region
of low optical depth above the photosphere. Models are
computed by simultaneously solving the equations of hydro-
static equilibrium, statistical equilibrium for level populations,
conservation of energy, mass conservation, and radiation
transfer. These are solved using iterative methods (complete
linearization and accelerated lambda iteration) commonly
employed in stellar atmosphere calculations (Hubeny &
Lanz 1995). Radiation transfer is solved including the effects
of Compton scattering and opacity from free–free and bound–
free transitions of ions assuming solar metallicity, as described
in D05 and references therein.
Hydrostatic equilibrium is computed using an equation of

the form

dP

dz
Qz, 2tot r- = ( )

where z is the height above the midplane (z= 0 at the
midplane), Ptot is the sum radiation and gas pressure, ρ is
the mass density, and Q is a parameter that characterizes the
strength of vertical (tidal) gravity. For a Newtonian disk
Q;Ω2, where Ω is the Keplerian angular rotation rate within
the disk, but can differ when general relativistic effects are
included. It is often convenient to replace derivatives with
respect to z by the column mass m, defined via dm dzr= - .
The TLUSTY models are computed on a grid in m ranging
from m 10 g cm3 2= - - to m0, the maximum column mass at
the midplane.
Since each model represents an individual annulus, they are

determined by local (i.e., radially varying) disk parameters: the
mass surface density Σ (Σ= 2m0, so we will use m0 instead of
Σ hereafter), the radiative flux F or effective temperature
T Feff sb

1 4s= ( ) at the surface, and the tidal gravity parameter
Q. A global accretion disk model (such as the α-disk) can be
used to specify m0, Teff, and Q as functions of radius r and the
global parameters of black hole mass M, black hole spin a, and
accretion rate Ṁ . Our TLUSTY models are tabulated in
m g cm0

2-( ), T Keff ( ), and Q s 2-( ). We compute log Q ranging
from −10 to 11, in steps of 1 dex, log Teff from 5 to 7.5 in steps
of 0.1 dex, and log m0 at values of 2.5, 2.75, 3, 4, 5, and 6. This
range allows us to characterize the X-ray emitting regions of α-
disk accretion models for black hole masses ranging from 3Me
to 109Me, accretion rates ranging from 1% to 100% of the
Eddington accretion rate, black hole spins ranging from 0 to
0.99, and α from 0.01 to 0.1, as required by the BHSPEC
model. Each model spectrum is computed and stored as the

2

The Astrophysical Journal, 874:23 (10pp), 2019 March 20 Davis & El-Abd



value of the specific intensity Iν on a grid evenly spaced in log
ν and cos θ, where ν is the frequency and θ is the inclination
measured relative to the surface normal. Spectra are tabulated
on a grid containing 350 frequencies and 10 angles.

3. Results

3.1. Determining the Spectral Hardening Factor

Since the color-corrected blackbody is only an approx-
imation (sometimes a poor approximation), there is no unique
method for determining f for the TLUSTY models. One way to
associate an f with the models is to fit the color-corrected
blackbody form to the model specific intensity as a function of
photon energy, following ST95. However, this fit will
necessarily depend on assumptions about the energy range fit
and the relative weighting or uncertainty used for different
photon energies. For example, one could assume each photon
energy in the model has the same error or assume that the error
follows photon statistics for a photon count rate within well
defined energy bins.

Previous efforts to estimate f have employed realistic
instrumental response matrices and accounted for the impact
of interstellar absorption to closely approximate the circum-
stances of real observations and were obtained by fitting global
disk models (McClintock et al. 2006). Since we are generally
interested in the hardening factor associated with local annuli
models, we prefer to avoid adopting any instrument specific
response and instead use simpler prescriptions. Although the
precise value of f will be sensitive to any specific prescription,
we are predominantly interested in the variation in f with
physical parameters, which we expect to be less sensitive to the
details of our fitting procedure. In order to test this, we consider
three different fitting models and use least squares fitting in
each case. We denote TLUSTY intensities as Ii on a grid of
frequencies νi, where i runs over the frequency grid and the
function I f T, ,cc n( ) is the function given by Equation (1).

The first method, which we refer to as the unweighted
method, is to simply assume each intensity has the same
uncertainty and minimize the difference I I f T N, ,i icc eff n- ( ) ,
where Teff is the effective temperature of the annulus being fit.
N is a normalization parameter that accounts for the fact that
the spectra can be rather anisotropic (limb darkened) due to the
effects of electron scattering. This gives us two best-fit
parameters, N and f, for each angle (fit separately) for each
model annulus. Typical values of N range from 0.8 to 1.2 and
are generally consistent with expectations from limb darkening,
with N being larger than one for face-on inclinations and lower
for edge-on inclinations. We will focus on f in this work. The
best-fit models using this method are shown as red dashed
curves in the panels of Figure 1. In all but the lower left panel,
the color-corrected blackbody provides a reasonably good
approximation to the model spectrum near the peak. In the
lower left panel, which represents an annulus with a relatively
cool photospheric temperature, absorption edges are prominent
and the spectrum deviates strongly from the color-corrected
blackbody approximation. This unweighted method tends to
underestimate the flux near the peak because frequencies near
the spectral peak receive the same weight as frequencies in the
exponential tail.

In more realistic situations, photon statistics and estimates of
systematic error in the detector determine the uncertainty in
each ordinate yi. Here we simply approximate the relative error

due to photon statistics as y1i is = . This is approximately
what one would find by integrating photon number I hnn( ( )
over bins that are logarithmically spaced in photon energy. Our
second method, which we refer to as the unabsorbed weighted
method, simply assumes yi=Ii and again minimizes
I I f T N, ,i icc eff n- ( ) . A downside of this method is that it
does not account for the fact that typical observations are
performed in the X-rays where interstellar absorption can
significantly attenuate the signal as soft X-ray energies below
∼2 keV. To gauge the impact of interstellar absorption, we
introduce an attenuation factor Aabs(ν), which corresponds to
the interstellar absorption predicted by the Xspec PHABS
model (Arnaud 1996) with NH=1020 cm−2. We then
fit for the absorbed weighted model by minimizing
A I I f T N, ,i i iabs cc effn n-( )( ( ) ) with A y1i i iabss n= ( ) . Hence,
the same attenuation factor is applied to both the model
spectrum and its best-fit color-corrected blackbody. In effect,
this acts to strongly reduce the weight of lower frequencies in
the spectral fitting due to the quasi exponential increase in
attenuation as photon energy decreases.
The weighted absorbed and weighted unabsorbed models are

shown as blue-dotted and green, dotted–dashed curves
(respectively) in Figure 1. The best-fit spectra show a high
level of agreement in all but the lower left panel. For the
models where the color-corrected blackbody provides a good
fit, the best-fit spectral hardening factors are in reasonably good
agreement between the different fitting methods. However,
when the color-corrected blackbody is a poor fit, the best-fit f
depends sensitively on the fitting method. In the lower left
panel, there is a prominent drop in flux at energies above
0.4 keV due to nitrogen and oxygen photoionization along with
weaker features due to hydrogen-like carbon. The unweighted
method falls below the model redward of the edge and exceeds
the model blueward. For the weighted unabsorbed model, the
smaller uncertainty near the peak forces a better match just
redward of the edge at the expense of greatly overpredicting the
intensity blueward of the edge. The weighted absorbed model
provides a much lower f with a huge excess at lower photon
energies. The poor fit at these energies has a low contribution to
the overall fit due to the effect of strong absorption leading to
relatively large uncertainties on these bins.
Figure 2 compares the values of f obtained from the three

different methods. In both panels, the horizontal axis is the
best-fit unweighted f and the vertical axes are the best-fit
weighted absorbed (left panel) and weighted, unabsorbed (right
panel). All points correspond to a single model viewed at 60°
from the surface normal. Blue circles show models with
spectral peak in Iν above 0.5 keV and red symbols fall below.
For models peaking above 0.5 keV the best-fit f values are
almost always in good agreement. Below 0.5 keV, models tend
to be more strongly affected by the presence of edges,
particularly for lower values of f. The weighted unabsorbed
model finds slightly larger values of f (up to f∼ 2) due to the
effect described above. The absorbed model is even more
strongly affected with harder spectra tending to provide f values
higher than the unweighted fit and softer spectra giving lower
values of f. In summary, f can be estimated rather robustly for
spectra where the color-corrected blackbody provides a good
fit. In contrast, f is sensitive to the fitting method when the
color-corrected blackbody is a poor fit.
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3.2. Spectral Hardening Variations

We adopt the results of the unweighted fitting method to
consider the evolution of f with Teff, Q, and m0. As discussed in
Section 3.1, the best-fit f is relatively insensitive to the fitting
method, when Iν peaks above 0.5 keV. Models that peak below
0.5 keV only occur for lower Teff and moderate to high values
of Q. In disks with accretion rates above about a few percent of
the Eddington rate, these annuli correspond to relatively large
radius and have relatively little impact on the global disk
spectrum. The global disk spectrum is primarily determined by
the spectral shape of the hottest, inner disk annuli, where a
color-corrected blackbody is a more suitable approximation
and f is relatively independent of the fitting method.

Figure 3 shows the variation of f as a function of Teff and Q
for three different values of m0. The best-fit f is shown for an
inclination near 60°, with f values denoted by color. To show
the trend we fix the maximum of the color bar at f=4, but
even higher values occur. Except for relatively low values
f1.4, where the color-corrected blackbody tends to be a poor
fit, contours of constant f tend to run diagonally in the Q–Teff
plane, with f generally increasing with higher Teff or lower Q.
Comparison of different panels also shows a dependence on
m0, with lower m0 corresponding to harder spectra at the same
Teff and Q.

The black dashed lines show the values of Q and Teff
computed at the radius where Teff reaches its maximum value in

a relativistic accretion disk model for various values of the
accretion rate and mass for a nonspinning black hole (Novikov
& Thorne 1973; Shakura & Sunyaev 1973). For black hole spin
a=0, Rmax=9.5rg, where r GM cg

2= is the gravitational
radius and G is Newton’s constant. We can then compute Teff,
Q, and m0 in the radiation pressure dominated limit via

T
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Here ṁ is the accretion rate scaled to M cr4 gEdd esp k h=˙ ( ), esk
is the electron scattering opacity, sbs is the Stefan–Boltzmann
constant, η is the spin dependent radiative efficiency, α is the
stress prescription parameter and r R rgmax max= . Trel, Qrel, and
m0,rel are relativistic correction factors (Novikov & Thorne
1973). The diagonal lines in each panel correspond (from left to
right) to m 0.01=˙ , 0.1, and 1. The horizontal lines correspond
(from top to bottom) to M M 10, 10 , 10 , 103 5 7= .
Since the spectral hardening factor of a global disk model

correlates closely with the value of f in the hottest annulus, this

Figure 1. Specific intensity vs. photon energy for four different spectral models corresponding to T m Qlog , log , logeff 0( ) of (5.8, 3, −3) (upper left), (6.9, 3, 6) (upper
right), (5.8, 3, 6) (lower left), and (6.9, 5, 6) (lower right). Each panel is plotted for an inclination near 60° and also showed the best-fit color-corrected blackbody fit
with the unweighted (red, dashed), weighted, absorbed (blue, dotted), and weighted, unabsorbed (green, dotted–dashed) methods. Intensities are plotted with an
arbitrary renormalization. Note that the range of the horizontal axis differs for the left and right panels.
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provides a good estimate of how f will vary for a global disk.
Increasing the black hole spin shifts the diagonal lines to the
right (i.e., toward higher Teff for a given M and ṁ). In the left
panel, we also show the variation of Teff and Q with radius in
an accretion disk for M M10=  and m 0.1=˙ as a white,
dashed curve. This shows that for a single disk model, f is
generally largest at the radius with the highest Teff.

Figure 4 shows the same quantities, but for lower values of
m0. Here the ranges of Teff and Q with valid spectral models are
narrower due to difficulties with convergence at these lower
surface densities. The diagonal and horizontal dashed lines
have the same meaning as in Figure 3, but only cover masses of
M M 10= and 1000. Comparison with Figure 3 shows an
accelerating trend for f to increase with decreasing m0.
Equation (5) shows that the value of m0 in the α-disk model
is a function radius, mass, spin, and accretion rate. It is also
sensitive to the details of the assumed stress prescription (Done
& Davis 2008) and thus likely to be the least robustly estimated
parameter.

The dominant trend in Figures 3 and 4 is for f to become
larger as ṁ increases. If we follow a line of constant M
(horizontal dashed line), f generally increases with increasing ṁ
from left to right in the figures. At fixed ṁ, there is a weaker
but still notable trend for f to increase with M, particularly for
m 1~˙ . This is most apparent for models with lower surface
densities in Figure 4 and the leftmost panel of Figure 3,
corresponding to m 10 g cm0

3 2= - . If we focus on the lines
with m 1=˙ in these three panels, we see that f increases as we
move from the upper right to lower left along the dashed line.
Hence, we expect supermassive black holes to be associated
with larger spectral hardening factors than X-ray binaries for
near Eddington accretion rates, consistent with earlier infer-
ences (Done et al. 2012).

Figures 3 and 4 show that f remains fairly modest except for
models on the extreme edge of the distribution corresponding
to the lowest Q for a given Teff. If we define extreme values of
spectral hardening as f>2.4, we see such models are only
present in the accretion disks with the highest accretion rates.
For the range of Teff and Q considered here, extreme spins are
more prevalent in models with lower m0. In fact, such large
values of f are nearly absent in the right panel of Figure 3,
corresponding to m 10 g cm0

5 2= - but prevalent for high ṁ
models with m 10 g cm0

3 2 - . A rapid increase in f occurs
near m 1~˙ in nearly all of these low m0 models. Following the
diagonal lines corresponding to m 1=˙ in each panel, we see
that spectra on the high mass end (low Teff and Q) tend to have
larger f than those at the same Eddington ratio at lower masses
(high Teff and Q). In other words, the transition to extreme f
occurs for slightly lower ṁ in models with higher black hole
mass. Comparison of the two panels in Figure 4 with the
leftmost panel of Figure 3 also indicates that these extreme
values of f occur at lower accretion rates as m0 decreases.
The black solid curves in Figures 3 and 4 approximately

demarcate the transition to extreme spectral hardening. These
curves correspond to the relation

Q
m

c

T

m
, 6

p
2

es
7 8

sb
2

0

eff
7.5

0
2.125

k s

h
= ( )

where mp is the proton mass. We also assume that the
frequency integrated free–free emissivity corresponds to

T mpff 0
1 2 2 2h h r» - , where ρ and T are suitably averaged

densities and temperatures. This relation can be derived by
setting

H T . 7ff sb eff
4h s= ( )

Figure 2. Comparison of best-fit spectral hardening factors f for different fitting methods. In both panels, the horizontal axis corresponds to the value of f obtained
from fitting using the unweighted method. The vertical axis in the left and right panels are the best-fit f obtained with the weighted absorption and weighted (no
absorption) methods, respectively. Each point corresponds to a different annulus for a viewing angle of 60°. Points are color-coded by where the spectrum peaks in Iν,
with blue circles representing models with spectral peaks above 0.5 keV and red symbols representing those peaking below 0.5 keV.
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Here H is the disk scale height, which evaluates to

H
T

cQ
, 8es sb eff

4k s
= ( )

in the radiation pressure dominated limit of an α-disk model
(Shakura & Sunyaev 1973). We approximate m H0r  and
T m Tes 0

1 4
effk ( ) to evaluate ηff. Inserting into Equation (7)

and solving for Q yields Equation (6).
Equation (7) is an approximate condition that accretion disk

produce enough photons per unit volume to provide the flux
that is required due to losses of gravitational energy and work
done by stresses in the disk. When the integrated emissivity is
lower than the radiative flux, the disk must get hotter than the
standard T∼τ1/4Teff profile to increase the emissivity. In this
regime the disk models tend toward near isothermality with
T?Teff. This “photon starved” limit occurs for Q and Teff
values falling to the lower left of the black solid curve. In this
regime, f∼T/Teff?1, leading to large spectral hardening.
Since the emissivity is strongly dependent on density, this
transition happens at lower Teff for a given Q as we go to
smaller values of m0. In other words, disks with low surface
density become photon starved most easily.

We emphasize that the large range of Q, Teff, and m0 allows
us to rule out other reasons for the transition to rapid
spectral hardening, which would give a different transition
curve. Conditions based on the effective optical depth

m3eff es abs 0t k k or simply the ratio κes/κabs give different
scalings in the Teff–Q plane that do not explain the spectral
hardening we infer.

3.3. Approximate Spectral Hardening Variation

In general, the spectral hardening factor displays a
complicated variation with Teff, Q, and m0 that is not easily
reproduced by a simple fitting function. However, if we restrict
our attention to regions of parameter space where bound–free
edges have a relatively modest impact on the spectrum and
photon starvation is not a factor, the variation of f is simpler.
We can approximately accomplish this for a nonspinning black
hole by restricting our attention regions of parameter space

where m 10 g cm0
3 2 - and m0.01 1< <˙ . Then we find that

f can be crudely approximated by linear fit to the log of Teff, Q,
and m0, with best-fit parameters

f T Q
m

1.74 1.06 log 7 0.14 log 7
0.07 log 5 , 9

eff

0

= + - - -
- -

( ) ( )
( ) ( )

where all quantities are evaluated in cgs units.
Figure 5 shows a comparison of this linear relation and our

best-fit spectral hardening factors for m 10 g cm0
5 2= - . Each

set of 19 curves represents a different value of Q, running from
(left-to-right) Q 10 8= - to 10 s10 2- incremented in powers of
10. Each set of two curves is a color-coded pair, with solid
curves representing the best-fit f and dashed lines corresp-
onding to Equation (9). We see that the approximation has
problems when m 0.01~˙ , where bound–free edges begin to
become important. We also see that the linear relation works
best for intermediate values of Q, not rising steeply enough
with Teff for low Q (higher black hole mass) and rising too
steeply for high Q (lower black hole mass).
One can use Equations (3)–(5) to replace Teff, Q, m0 with ṁ,

M, α in Equation (9). Assuming a nonspinning black hole and
that radiation pressure always dominates, we find

f m M M1.48 0.33 log 1 0.02 log 1
0.07 log 1 .

10
a

+ + + -
+ +

 ( ˙ ) ( [ ] )
( )

( )

We see that f increases with ṁ, M, and α, depending most
sensitively on ṁ and least sensitively on M.
We caution that (10) is presented only to provide a sense of

the spectral hardening evolution. There are uncertainties in the
underlying model, an assumption that radiation pressure
dominates, questions about the robustness of our fitting
procedure to estimate f, and the assumption that f for the full
disk is well-approximated by the annulus with the highest Teff.
If we accept these caveats, Figure 5 still shows the linear
relation only approximately holds over a limited range in
accretion rate, mass, and disk surface density. It also only
applies for a=0. Recomputing Equations (3)–(5) for other a
values will yield the same scalings with ṁ, m, and α, but with a

Figure 3. Table of best-fit spectral hardening factors f. The vertical axis shows the log of tidal parameter Q( 2=W for Newtonian) and the horizontal axis shows the log
of the effective temperature Teff. Each square represents one model. From left to right, the panels are evaluated for m0=103, 104, and 105 g cm 2- , respectively. The
dashed diagonal lines represent curves of constant Eddington ratio (m 0.01, 0.1, 1=˙ from left to right) and horizontal dashed curves show lines of constant mass
(M M 10, 10 , 10 , 103 5 7= from top to bottom) evaluated for the hottest annulus in the disk model. The white dashed curve in the left panel shows the Q Teff–
variation as a function of radius for a relativistic α-disk model with a=0, M M10= , and m 0.1=˙ . The thick black solid curve corresponds to an analytical estimate
(Equation (6)) of where the annulus becomes photon starved. Note that we cap the color bar at f=4 to better show the variation at lower values of f, but several of the
hardest spectral models exceed this value.
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higher spectral hardening factor. For example, if a=0.9, 1.48
is replaced by 1.56 in Equation (10).

4. Discussion and Conclusions

4.1. Origin of Extreme Spectral Hardening

Our results suggest that extreme spectral hardening can
occur in black hole accretion disks, but it generally only occurs
in regions of the disk with high effective temperature if the disk
surface density is sufficiently low. For standard disk models,
this requires super-Eddington accretion rates, which are
somewhat rarely inferred in X-ray binaries and rather
infrequently and unreliably inferred in AGN. The exception
is when the disks surface density is relatively low. If the mass
per unit area in the disk is below about 1000 g cm 2- , we find
that high spectral hardening factors occur at more modest
effective temperatures.

In a α-disk model, surface density tends to scale inversely
with α and accretion rate. For a=0, Equation (5) evaluates to
m m2 10 0.1 0.1 g cm0

5 2a= ´ -( ˙ )( ) . Surface densities of
1000 g cm 2~ - only occur for α∼1 and m 1~˙ for a=0.

However, spinning black holes can have surface densities that
are lower for the same ṁ and α. Since high Eddington ratios
seem to be rare, we expect most observed accretion disks to be
consistent with more moderate f 2 . This roughly justifies the
standard assumptions of f∼1.7–1.8 in many analyses. The
lack of strong evidence for extreme spectral hardening in most
high/soft state X-ray binaries (Dunn et al. 2011, except when
moving into or out of the high state) also suggests surface
densities consistent with lower values of α or some sort of
alternative stress prescription (Done & Davis 2008).

Some observations do infer large spectral hardening factors
in the hard state of X-ray binaries. Dunn et al. (2011) find
evidence for larger f as the disk transitions in or out of the
high/soft state. Salvesen et al. (2013) study the low hard state
in numerous observations of GX339-4 and conclude the disk
requires f∼3 in this state. Large values of f have been
attributed to energy being deposited in the corona rather than
the disk based on results by MFR00, but we believe this is a
misinterpretation of those results, as we discuss below. If the
spectral hardening factor in these disks are as high as has been

inferred, our results suggest this mostly likely corresponds to a
reduction in the disk surface density. We emphasize that the
disk need not be optically thin for such a transition to occur.
The photon starvation limit described here can easily happen in
disks with Thomson optical depths of more than 100. Hence,
reflection signatures (e.g., Fe lines) are still expected to be
present if the disk is irradiated by a corona. It must be
emphasized that our results assume a single temperature for
electrons and protons. Two-temperature accretion disk models
(e.g., advection dominated flows) may be more relevant as we
approach lower surface densities (Narayan & Yi 1994;
Narayan 1996), which require large inflow velocities. It is
not clear whether such only moderately optically thick single
temperature flows arise naturally in a quasi-steady-state
accretion flow before transitioning to optically thin, two-
temperature flows.

4.2. Comparison with Previous Work

The primary motivation for using a color-corrected black-
body comes from ST95 who showed both that the color-
corrected blackbody is a suitable approximation to the
Comptonized disk emission and concluded that f varies only
over a rather narrow range in accreting black hole sources. This
conclusion is consistent with the relatively narrow range of
parameter space considered by ST95. Our values of f
qualitatively agree with theirs in the same range. Since our
results are based on the same models as D05, they trivially
agree with D05 over the same range. The key difference here is
that we extend the exploration of the spectral hardening factor
to a much wider range of effective temperatures and
characteristic densities than considered in D05. Hence we find
a broader range of hardening factors but only because we
consider a much broader parameter space.
At lower Eddington ratios, the results of ST95 were

contradicted by the work of MFR00. MFR00 adopted the the
model of Svensson & Zdziarski (1994), which uses a two-zone
model to approximate the impact of a fraction of the energy
being dissipated in a corona rather than in the underlying disk.
In the MFR00 calculations the emission arising from the corona
is not included. In particular, there is no corresponding
irradiation of the underlying disk when a large fraction of the

Figure 4. Table of best-fit spectral hardening factors f. All curves have the same meaning as in Figure 3, but are plotted for m 10 g cm0
2.5 2= - (left) and

m 10 g cm0
2.75 2= - (right). We cap the color bar at 4, although f exceeds this value for some models.
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dissipation is assumed to occur in the corona. Hence, the
primary impact is that the flux F in the model is multiplied by
(1− χ), where χ is the fraction of energy assumed to be lost to
the corona.2

MFR00 find their highest spectral hardening for models with
large χ, corresponding to low values of F 1 c-( ), or low Teff.
Although they emphasize that large f occurs for χ0.5,
MFR00 do not present enough spectral calculations to
discriminate between the effect of increasing χ or simply
lowering the flux F. For the two pairs of models with the same
F 1 c-( ) but differing values of F and χ (their S3/S4, and
S8/S9) the resulting spectral hardening factors seem to depend
primarily on the product F 1 c-( ), rather than χ or F
independently. Hence, we assume that large f in their models is
not an effect specifically of transferring energy to a corona (i.e.,
having 0c ¹ ) but a general consequence of a lower
T F 1eff sb

1 4c s= -( ( ) ) in models with larger χ. In contrast,
we almost never find large spectral hardening for such low
effective temperatures and our models are clearly in contra-
diction with those of MFR00, as noted previously in D05.

Due to the significant differences in the calculations, it is
difficult to unambiguously determine the source of the
discrepancy. D05 speculate that it may have something to do
with the assumption of constant density in the MFR00
calculations or effect of bound–free opacities that are present
in the TLUSTY calculations but not in those of MFR00. The
S11 model of MFR00 has the highest spectral hardening, with
f=2.68 and χ=0.8. Using their expressions for ρ0, h, and
F0 (their Equations (2)–(6)), we estimate m h R0 0 Sr= =
2.3 10 g cm5 2´ - , Q 2.4 10 s5 2= ´ - , and T 2.3eff = ´
10 K6 at r R6 S= where RS is the Schwarzschild radius. We
find f=1.43 for our model with similar parameters, which is

shown in the left panel of Figure 6. For comparison, we also
compute a model with the same parameters as S11, but setting
χ=0 so no energy is dissipated in a corona. In this case, we
find m 9.1 10 g cm0

3 2= ´ - , Q 2.4 10 s5 2= ´ - , and
T 3.5 10 Keff

6= ´ at r R6 S= . Our closest model is shown
in the right panel of Figure 6 and has a best-fit spectral
hardening factor of f=1.62. Hence, for this simplified
prescription where the irradiation by the corona is not included,
a lower dissipation of energy in the disk actually makes the
disk spectrum softer, in conflict with the conclusions
of MFR00.
The left panel of Figure 6 shows that our χ=0.8 model

has moderately strong features due to bound–free opacities.
Due to the effects of Compton scattering, these features do not
show up as edges, but are more apparent as sharp changes in
the spectral slope near the transition energies. So, it is
plausible that the presence of bound–free opacity in our
models is keeping the disk closer to a blackbody spectrum
than in the MFR00 calculations, which neglect bound–free
opacity. In contrast, our χ=0 model is hotter and has a lower
surface density, leading it to be in the regime where bound–
free opacity has little effect and Compton scattering
dominates. Another concern is the treatment of Compton
scattering in these calculations. They define coherence radius
beyond which electron scattering is treated as coherent and
the effects of Comptonization (which tend to soften the
spectra) are ignored. For the highest χ models, the annuli
computed without Compton effects include the hottest annuli
in these disks. The coherence radius was chosen based on a
Compton y-parameter condition. If this choice was insuffi-
ciently conservative, it is conceivable that neglecting
Compton scattering in these annuli could have led to a
modified blackbody spectrum that is harder than if Compton
scattering had been included in all calculations, but this is
only speculation on our part.

Figure 5. Spectral hardening factor for m 10 g cm0
5 2= - . Each set of 19 curves represents a different value of Q, running from Q 10 8= - to 10 s10 2- incremented in

powers of 10. Solid curves show the values of f derived from our unweighted fitting method while dashed curves represent the linear approximation in Equation (10).
Curves are color-coded so that nearly adjacent curves with the same color represent the same Q value. The circles show where m 0.01=˙ and 1 for the linear relation.

2 Since we have already reserved f for the spectral hardening factor, we use χ
in place of f used by MFR00 for the fraction of energy lost to a corona.
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4.3. Soft X-Ray Excess

Many AGN show a soft X-ray excess, where the emission
below ∼1 keV exceeds the extrapolation of the hard >2 keV
power-law continuum. Proposals for the origin of this soft
X-ray excess include relativistically smeared reflection
(Crummy et al. 2006) or absorption (Gierliński & Done 2004).
A third possibility is that soft excess is continuum emission
from the accretion disk (e.g., Done et al. 2012). In order for the
emission scenario to work with standard disk models one
requires lower mass black holes (M few× 106Me) and
Eddington ratios near unity to obtain emission at energies as
high as ∼1 keV. In higher mass objects, it seems that the inner
disk will be too cool to explain soft-excesses, suggesting that
some warm Comptonizing region exists with characteristic
temperatures of ∼1 keV (Czerny et al. 2003).

The results here suggest that a low surface density disk
might also contribute to the soft X-ray emission in AGN. Given
the theoretical uncertainties underlying radiation dominated
regions of accretion flows, it seems plausible that real accretion
flows might have surface densities that are optically thick to
electron scattering but still well into the photon starved limit
discussed here. Since r Mg µ , Equation (3) implies
T m Meff

1 4µ ( ˙ ) . This means that a factor of 10 increase in
mass or a factor of 10 decrease in accretion rate results in a
drop of ∼1.78 in effective temperature. Hence, f would need to
increase accordingly to produce a turnover near 1 keV. The
primary question is whether such a configuration would
naturally give turnovers in the vicinity of ∼1 keV over a wide
range of masses. It is conceivable that the increased opacity due
to iron L shell transitions might lead to such a characteristic
turnover at these energies but this supposition needs further
exploration.

4.4. Model Uncertainties

The primary caveats to our conclusions are that we have to
make a number of underlying assumptions in determining the
disk vertical structure and radiation transfer. Key uncertainties
include the vertical distribution of dissipation, effects of
magnetic pressure support, and inhomogeneities (Blaes et al.
2006; Davis et al. 2009; Tao & Blaes 2013).

We also neglect the effects of bound–bound transitions and
irradiation, due either to a corona or returning radiation from
the opposite side of the accretion disk, which seems substantial

in ray tracing calculations of black hole accretion simulations
(Narayan et al. 2016; Schnittman et al. 2016). A comparison of
TLUSTY based temperature profiles with a full ray tracing
calculation through a global numerical simulation is shown in
Figure 13 of Narayan et al. (2016). Differences in the
temperature profiles are attributed primarily to a combination
of magnetic pressure support and the impact of returning
radiation. Since the deviations are mostly above the photo-
sphere, they probably have a limited effect on the spectral
shape in these conditions. However, the effects of returning
radiation may be even more substantial for the most photon
starved models where we find the strongest spectral hardening.
Models of the accretion disk that including bound–bound
transitions and irradiation (Różańska et al. 2011) do produce
notable emission lines but do not seem to yield substantial
differences in the underlying continuum. Our results are also
likely to be sensitive to our assumption of solar metallicity,
particularly in lower temperature models where bound–free
opacities are more dominant. Previous calculations with lower
metallicity suggest that decreasing the metallicity decreases the
ratio of absorption to scattering opacity and leads to somewhat
higher values of f. By the same logic, we expect increases in the
metallicity to lead to lower values of f.

4.5. Conclusions

We utilize a large table of accretion disk annuli spectra
generated with the TLUSTY code to study the variation in
spectral hardening over a wide range of accretion disk
parameters. We perform a series of fits with color-corrected
blackbody models to compute the spectral hardening factor f.
Consistent with most previous work, we find that f varies over a
somewhat narrow range f∼1.4–2 for the parameters in the
innermost regions of black hole accretion disks for typical
X-ray binary accretion rates ( m0.03 1 <˙ ) and masses.
Consistent with previous results, we find that f depends most
sensitively on the accretion rate, with higher f for higher ṁ.
Our results also show that extreme spectral hardening

(defined here as f> 2.4) can be found in accretion disks that
become photon starved. This usually only occurs for relatively
high effective temperature unless the disks have lower surface
densities than commonly inferred with α-disk models. We
suggest that observational evidence for higher values of f are
therefore best explained as coming from accretion disks with
lower surface densities, although such disks can still be quite

Figure 6. Spectrum (solid, black) and best-fit color-corrected blackbody (dashed, red) viewed at an inclination of 60°. Model parameters in the left panel correspond to
T 2.5 10 Keff

6= ´ , Q 10 s5 2= - , and m 10 g cm0
5 2= - with best fit f=1.43. The right panel shows T 3.2 10 Keff

6= ´ , Q 10 s5 2= - , and m 10 g cm0
4 2= - with

best fit f=1.62.
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Thomson thick. We argue that claims that high values of f can
be attributed to dissipation of a substantial fraction of the disks
energy in a corona are likely based on an incorrect
interpretation of previous work that is contradicted by our
results. We believe that our calculations are more credible due
to our inclusion of bound–free opacity sources, more careful
treatment of disk vertical structure, and Compton scattering
effects.

Finally, our results show that spectral hardening tends to be
larger for higher mass black holes when evaluated at the same
Eddington ratio. For lower supermassive black hole masses
M∼106Me accreting near the Eddington limit, the inner
accretion disk in α-disk model becomes hot enough to produce
substantial soft X-ray radiation. If the surface densities are
smaller than predicted by the standard α-disk model or α∼1,
it is possible that the bulk of the soft X-ray excess emission
comes from such photon starved regions of disks.
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improved the manuscript. We also thank Omer Blaes, Chris
Done, Ari Laor, Ramesh Narayan, and Greg Salvesen for
useful conversations. This work relies heavily on models
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physics Theory Program grant 80NSSC18K1018 and an Alfred
P. Sloan Research Fellowship.
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