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Abstract

The interaction of a high velocity clump of gas has been described by the plasmon model, which considers balance
between ram pressure and the internal stratified structure of the decelerated clump. In this paper we propose an
analytical model to describe the mass loss of such a clump due the interaction with the environment, describing its
influence on the plasmon dynamics. We carry out comparisons between an analytic model and axisymmetric gas
dynamic simulations of plasmon evolution. From our simulations we were able to find the values of the friction
constants α and λ. Comparing with the complete analytic model from which we can infer the position and the mass
loss of the clump as a function of the clump’s density and the environment ratio.
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1. Introduction

The problem of a wind/molecular cloud interaction has been
studied at length in the past. De Young & Axford (1967,
hereafter DA) described the motion of a clump decelerated by
the ram pressure and determined the lifetime of the plasmon.
They applied this model to Cygnus A and concluded that
analyzing the dynamics of plasmons should reduce their free
parameters. It became a very popular model to explain
confinement of radio lobes propagating through the inter-
galactic medium (Ubachukwu et al. 1991; Daly 1994), models
of radio-loud quasars (Daly 1995), and models of the optical
narrow-line regions of Seyfert galaxies (Taylor et al. 1992;
Veilleux et al. 1993). Cantó et al. (1998; hereafter C98)
rederived the plasmon solution, adding the centrifugal pressure
to obtain a modified plasmon profile.

In most cases it is difficult to calculate the real age of an
astronomical plasmon because there is no clear information
about deceleration and most plasmons are isolated so there is
not enough information about the static medium. To solve this
problem a set of several plasmons with an noticeable
deceleration moving under similar restrictions is needed.

Orion BN/KL is an ideal laboratory to prove the plasmon
solution, because it has an almost isotropic and explosive
outflow that could be produced by the nonhierarchic close
dynamic interaction of a forming multiple-star system (Zapata
et al. 2009). In this region there are more than a hundred
filamentary structures known as fingers that allow us to
estimate a dynamical age between 1000 and 500 yr, assuming
no deceleration. Nevertheless, there is observational evidence
that the longest fingers detected in H2 emission are losing
speed, probing their interaction with the environment (Bally
et al. 2011). It is a very interesting star formation region that
due to its distance, at 414pc, allows us to determine its
characteristics with enough detail. Therefore, we also can
model the physics using theoretical and numerical models,
using some observational constrains. Some of these models
have achieved important results as determining the dynamical
age and the energy of the explosive event. Nevertheless, there
are important questions that deserve attention and are not
resolved yet, such as the real age of the event, the mechanism

that can generate such distribution of the fingers, as well as
their ejection velocity since there is evidence of a drag force.
The effect of a drag force is necessary to understand the real

motion of a plasmon. Several numerical simulations have
shown a deceleration effect greater than that expected by ram
pressure (Yalinewich & Sari 2016), but it has not been deeply
analyzed since cooling effects were not included.
The destruction of the original clump was also considered in

Raga et al. (1998) in their study of the interaction of a fast wind
impinging into a compact spherical cloud. They concluded that
the motion is affected by the detachment of material of the
cloud, which results in a limited application of their model.
Then, the assumption that a clump has no deceleration or a

deceleration according to models with constant mass, can lead
to an overestimate of the age of astrophysical outflows.
In this work, we use the DA solution to propose a mass-loss

rate for a plasmon and we obtained its equation of motion. We
compare results of this analytic model with numerical
simulations using Orion BN/KL plausible ejection conditions.
We presented analytic (Section 2) and numerical (Section 3)
models of a deceleration of the clumps as a function of ratio
density when the mass-loss rate is considered. We present a
comparison between the analytic and numerical models and a
prediction of the lifetime of clumps assuming similar condi-
tions to the system Orion BN/KL in Section 4. Finally, we
present our conclusions in Section 5.

2. Analytical Model

2.1. DA’s Plasmon

DA studied the problem of a clump of gas moving through a
uniform environment. They found a solution (the “plasmon”
solution) based on the balance between the ram pressure of the
environment and the stratified thermal pressure of the
decelerating clump. For a clump of mass M, isothermal sound
speed c, moving supersonically with velocity v through a
medium of density ρa, the plasmon adopts a pressure and
density stratification given by

P P e e, , 1x h x h
0 0r r= =- - ( )

The Astrophysical Journal, 874:38 (9pp), 2019 March 20 https://doi.org/10.3847/1538-4357/ab05ca
© 2019. The American Astronomical Society. All rights reserved.

1

https://orcid.org/0000-0002-2606-8527
https://orcid.org/0000-0002-2606-8527
https://orcid.org/0000-0002-2606-8527
mailto:pedro.rivera@correo.nucleares.unam.mx
https://doi.org/10.3847/1538-4357/ab05ca
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ab05ca&domain=pdf&date_stamp=2019-03-19
https://crossmark.crossref.org/dialog/?doi=10.3847/1538-4357/ab05ca&domain=pdf&date_stamp=2019-03-19


as a function of the position x from the tip of the cloud where
the pressure is P0, the density is ρ0=P0/c

2, where c is the
isothermal speed of sound. Ram pressure with the environment
with density ρa indicates P0=ρav

2.
In Equation (1)

h
c

a
, 2

2
= ( )

is the scaleheight of the pressure distribution, and a is the
deceleration of the clump.

The balance between the internal pressure and the ram
pressure with the surrounding environment shapes the
plasmon as,

y h e2 arctan 1 . 3x h 1 2= -( ) ( )

Then, the mass of the moving clump of gas is related to the
shape by the material enclosed by y,

M y dx
v h

c
, 4a

0

2
DA
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2ò pr x
r

= =
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where 4DA 2
2x p= -p ( ).

2.2. Mass-loss Rate

We propose a mass-loss rate per unit area, μ, which depends
on the density and the internal sound speed, c,

c, 5m lr= ( )

where λ is an unknown parameter expected to be less than one.
Behind Equation (5), there is the assumption that the clump
looses mass at a rate per unit area proportional to the local mass
density, ρ, and with a subsonic velocity λc. This hypothesis has
been proposed and tested, for instance, by Kahn (1980), Cantó
& Raga (1991), and Raga et al. (1995) in their studies of the
turbulent mixing layers produced by the interaction of
interstellar outflows. An estimation of λ, in our case, is found
by comparison with our numerical simulation of the problem.

Therefore, the total mass-loss rate is given by the integration
of μ over the total surface of the plasmon,

M dA
v h

c
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2
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Dividing Equation (4) by (6) and using Equation (2) we
obtain the differential equation,

M

dM

dv c

1 8

2
. 7

l
p

=
+( )

( )

We can use a dimensionless version of Equation (7) with the
following definitions,

m M M u v v
v

c
, ,

8

2
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0a
l
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where M0 is the initial mass and v0 is the initial velocity of the
plasmon. The solution to Equation (7) is

m M e , 9u
0

1= a- - ( )( )

which relates that mass behavior as a function of the plasmon
speed with the constant α.

The equation of motion of the plasmon is,

dv

dt
a. 10= - ( )

Solving Equation (4) for h, Equation (2) for a, and
substituting in Equation (10), we find the equation of motion
in a nondimensional form

du

d

u

m
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where
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Equation (11), together with Equation (9), has the formal
solution,

u e du. 13
u

u
1

2 3 3
1òt =

a- - - ( )( )

The position of the clump after ejection R is found by
solving the kinematic equation,

dR

dt
v. 14= ( )

Defining r=R/(v0t0) and combining it with Equation (14),
we find the solution

r u e du. 15
u

u
1

1 3 3
1ò=

a- - ( )( )

Then Equations (9), (13), and (15) give the mass m, velocity
u, and position r of the clump after a time τ of ejection, using u
as the free variable in the interval [0, 1].
The clump halts at a finite time τf and finite distance rf with

finite mass mf. These limits are determined by the condition
u=0 in Equations (9), (13), and (15) and are functions of α
only. We can find useful approximations in the limits α=1:

3 1
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which are consistent with the DA solution. Furthermore, for
α=0 in Equation (13) and Equation (17) we recover the DA
solution.
Also, there are some interesting results concerning the

stopping time τf and distance rf that deserve to be highlighted.
First, we must note that independent of the physical

characteristics of the original clump (shape, density structure,
or internal sound speed), the initial interaction with the medium
through which it moves will modify these characteristics to
those of a plasmon. That is, its shape will be transformed to that
given by Equation (3), its pressure and density stratification
given by Equation (1) and so on. This transformation is actually
accomplished by a reverse shock that moves inside the original
clump, changing it into a plasmon.
As we have seen above the structure of the plasmon is highly

dependent on its internal sound speed (i.e., on its temperature).
Let us assume that the temperature of the newly formed
plasmon is the one left by the reverse shock that moved through
it. For simplicity, let us also assume that this shock is planar
and strong. In the Appendix we show that the corresponding
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isothermal sound speed is,

c v
1

2
, 180
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where a clb r r= is the square root of the ratio of the density
of the environment and the density of the original clump. Using
Equation (18) in (8) we find
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which is independent of the velocity v0 and depends only on
the ratio β. Next, let us consider the time tf for the clump to
stop. It is given by

t t , 20f f0t a= ( ) ( )

where t0 is defined by Equation (12) as,
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and corresponds to the timescale used by DA in their solution
to estimate the lifetime of a plasmon (Equation (27)).

As shown in the Appendix (see also Equation (20)) the ratio
v0/c is the only function of the contrast density β and it is
independent of the velocity v0. Thus, given the ratio β, the time
t0, and therefore the time tf for the clump to stop diminish as the
initial velocity of the clump increases. This is an unexpected
result: the time for stopping a stripping clump is inverse with its
initial velocity. Faster clumps stop earlier independent of their
size. Now, let us consider the stopping distance Rf. This is
given by,

R v t r . 23f f0 0 a= ( ) ( )

From the discussion above, the product v t0 0 results are
independent of v0, and thus Rf. Then, clumps with the same
ratio stop at the same distance from the injection point,
independent of either its initial velocity or size.

3. Axisymmetric Simulations of Plasmon Evolution

3.1. The Numerical Setup

In order to validate the analytical model, we have computed
axisymmetric numerical simulations with the full radiative gas
dynamic equations. We used the WALKIMYA 2D code (see
Esquivel et al. 2010; Castellanos-Ramírez et al. 2018) to
perform all numerical simulations. The code solves the
hydrodynamic equations and chemical networks on a two-
dimensional Cartesian adaptive mesh, using a second-order
finite volume method with HLLC fluxes (Toro et al. 1994).

The adaptative mesh consists of four root blocks of 16×16
cells, with 7 levels of refinement, yielding a maximum
resolution of 4096×1024 (axial×radial) cells. The boundary
conditions used on the symmetry axis are reflective and the
other ones are outflows. The size of the mesh is large enough so
that the choice of outer boundaries does not affect the
simulation.

The energy equation includes the cooling function described
by Raga & Reipurth (2004) for atomic gas and for lower
temperatures we have included the parametric molecular
cooling function presented in Kosiński & Hanasz (2007),

T L T L
c

T T
exp , 24mol 1 21

2

*
*




L = + -
-

⎛
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for T<5280 K, where, L1=4.4×10−67 erg cm s K3 1 1- - ,
L2=4.89×10−25 erg cm s3 1- , c*=3.18K 2- , ò1=10.73,
ò2=0.1, and T*=1. K. The total radiative energy for
temperatures lower than 5280 K is given by,

L n n T , 25rad,mol gas CO mol= * L· ( ) ( )

where ngas and nCO are the numerical density of the gas and the
CO molecule, respectively.
We have also considered the heating of the gas via cosmic

rays, using the heating rate presented in Henney et al. (2009),

n5 10 , 26crp
28

HG = ´ - ( )

where nH is the numerical density of the all the hydrogen
species.

3.2. Numerical Models of the Plasmon Evolution

In order to study the deceleration of a high velocity clump we
use compatible parameters with the ejection of Orion Fingers in
Orion BN/KL. We have run a numerical simulation assuming that
the computational domain was initially filled by a homogeneous,
stationary ambient medium with temperature Tenv=100 K and
various densities (see below). The numerical integration had a
domain with a physical size of 48,000×12,000 au on each side,
with a maximum resolution (along the two axes) of 11.7 au. We
carried out time integration from ti=0 to tf=1000 yr, and the
clump is released at z=700 au for all models. An estimation of
the initial mass in each of the clumps is mcl=0.03 Me since the
total mass of the moving gas in the∼400 fingers in OrionBN/KL
is about 8Me (Bally 2016). Also, the observed transverse size of
the fingers is about 400 au.
In the numerical models, the initial clump is imposed in a

sphere of radius Rcl=50 au, corresponding to 4pixels at the
maximum resolution of the adaptive grid and with a uniform
density of ncl=1×1010 cm−3. Since the initial clump is out
of equilibrium, it increases its size to about 400 au from the first
output, and then the density structure of a plasmon arises.
We have computed 10 simulations of the clumps, varying

the density of the interstellar medium and the velocity at which
the clump was thrown (see Table 1).
One of the main hypotheses of our analytic model is that the

early interaction of the original clump with the environment
will modify its initial characteristics (shape, density

Table 1
Initial Conditions of the Numerical Models

Models Environment Clump
na v0

(cm−3) (km s−1)

M1V300/M1V500 1.0×106 300/500
M2V300/M2V500 3.16×106 300/500
M3V300/M3V500 1.0×107 300/500
M4V300/M4V500 3.16×107 300/500
M5V300/M5V500 1.0×108 300/500
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Figure 1. Snapshots from the numerical simulations showing the numerical density. Each panel compares two models with initial velocities of 300 (left) and 500
(right) km s−1 at t=180, 360, 540, and 720 yr. Lines are the analytical fit; dashed lines are those of DA and solid lines are ours.

4

The Astrophysical Journal, 874:38 (9pp), 2019 March 20 Rivera-Ortiz et al.



stratification, or sound speed) to those of a plasmon. The sound
speed of the moving clump is calculated using the internal
temperature, which is about 15 K and is on the order of
magnitude of the sound speed obtained with Equation (42).
In order to illustrate the numerical simulation results, in

Figure 1 we present the density maps for models M3V300 and
M3V500 (left and right panels, respectively) at evolutionary
time of 180, 360, 540, and 720 yr, top left, top right, bottom
left, and bottom right panels, respectively. The solid lines, in all
the panels, are the analytical fit of the plasmon shape,
Equations (16) and (17) presented in C98 and the dashed lines
are also the plasmon shape’s fit obtained by DA in their
Equation (2). In both models, the plasmon shape expected by
the DA equation is wider than the shape of the plasmon’s head
obtained in the numerical simulations. For model M3V500 (the
right panels of Figure 1) the plasmon shape proposed by C98 is
in very good agreement with the numerical simulations, at least
up to t∼500 yr. After this time, the plasmon (of the model
M5V300) is rapidly decelerated and the bow shock changes in
a different shape than that proposed by C98. The model with
lower initial velocity, model M3V300, does not have an
appreciable deceleration and the numerical simulation shape is
in agreement with the C98 prediction.
Another prediction of our model is that the dimensionless mass

m of the clump is related to its dimensionless velocity u by
Equation (9). We can test this prediction. The top panel of
Figure 2 shows the position as a function of time by plasmon for
the models with initial velocities of 300 km s−1 (see Table 1). The
squares, asterisks, triangles, and plus and diamond symbols
represent the results obtained for the models evolving with
logarithmic interstellar medium densities of 6, 6.5, 7, 7.5, and 8,
respectively. As we can see, the position is smaller for models
evolving in denser environments, which means the deceleration or
decrease of the plasmon’s velocity, as a function of time (see the
middle panel of Figure 2), is larger in models with larger ram
pressure (Equation (34)). In the bottom panel of this figure, we
presented the mass of the clump as a function of time. We
calculated the mass, considering the gas inside the sphere of 50 au
of radii from the clump position, and we also note that the denser
interstellar medium produces a larger mass-loss rate in the clumps
moving in environments with uniform density and temperatures.
In the same way, Figure 3 shows the position, velocity, and mass
as functions of time of the numerical simulations, which we
considered for a larger initial velocity, 500 km s−1. The results of
the distance, velocity, and mass are very similar to those found in
the models with initial velocity of 300 km s−1. However, the
deceleration for the models with initial velocities of 500 km s−1 is
larger than those for the models with v0=300 km s−1, and the
lifetime of the faster clumps is smaller than those for the lower
ones, as we predicted in our Equation (22).
Using the dimensionless mass of the clump and velocity

from our numerical simulation in Equation (13) we fitted the α
value for all the numerical models. Figure 4 shows the
logarithm of the mass of the clump as a function of velocity
(dimensionless), for all the models with initial velocities of
300 km s−1, we use the same nomenclature for the symbols as
in the Figure 2, and the solid lines are the fits for the models,
M1V300, M2V300, M3V300, M4V300, M5V300, and
M6V300.

Figure 2. Top, middle, and bottom panels show the position, velocity, and
mass as functions of time by the numerical model with initial velocities of
300 km s−1, respectively. In each of the panels we plot the results obtained for
the models evolving with logarithmic interstellar medium densities of 6, 6.5, 7,
7.5, and 8 using green squares, yellow asterisks, blue triangles, magenta
crosses, and black diamond symbols, respectively.
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The α values for all the models presented here are plotted in
Figure 5. The plus and diamond symbols are the α values fitted
for modes with v0=300 and 500 km s−1, respectively. In
order to obtain the value for the constant λ (see Equation (19)),
we have fitted the α values as functions of the contrast density

β to our numerical simulation (solid line in this figure). The
best fit gives λ=0.0615. Notice that the α values are only
functions of contrast density and these values are not dependent
on the initial velocity or other parameters of the cloud, as
described by Equation (19). λ is a constant that is independent
of the physical properties of the interstellar medium or
clump gas.

Figure 3. Same as Figure 2 but for models with initial velocity of 500 km s−1.

Figure 4. Mass of the clump as a function of the clump’s velocity
(dimensionless). The nomenclature of the symbols is the same as in Figure 2
and in solid lines we plot the fit for each of the models with initial velocities of
300 km s−1.

Figure 5. Constant α as a function of contrast density (β). The plus and
diamond symbols are the α values for models with v0=300 and 500 km s−1,
respectively, and the solid line is the best fit of λ (see Equation (19)),
λ=0.0615.
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4. Prediction of Evolutionary Physical Properties of the
Plasmon

The solution for a constant mass plasmon can be found from,
Equation (13) with α=0. The results are a dimensionless
velocity

u 1
3

, 27
3t

= -⎜ ⎟⎛
⎝

⎞
⎠ ( )

and, dimensionless position

r
3

4
1 1

3
. 28

4t
= - -⎜ ⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥ ( )

Therefore, in the approximation of DA, the lifetime of a
plasmon is tf=3·t0 (see Equation (27)). When a mass-loss
rate is taken into account the plasmon’s motion is changed, and
Equation (13) can be integrated numerically to obtain u and the
dimensionless position r=x/x0 with x0=v0t0. It is important
to recall that C98 included the centrifugal pressure, which can
affect the plasmon shape. This effect was not included in DA or
our work.

Finally, we use our numerical simulations to probe our
models and their limitations. Each simulation has physical
units, so they have to be normalized with v0, t0, and x0. v0 is
obtained directly from the initial conditions, t0 is obtained from
a fit of the velocity data, and x0 comes from a similar fit of the
position data.

Figure 6 shows the dimensionless velocity as a function of
dimensionless time. From this figure, one can see that the DA
solution, represented with a dashed line, agrees τ≤0.2 to the
values obtained from the numerical model M4V300, marked as
cross symbols. However, the semianalytical solution, the solid
line, is in agreement with the numerical model up to τ=0.6.
Note that after τ=0.6 the values of u, for the numerical
simulation, tend to be constant. There are numerical

uncertainties that lead us to overestimate the velocity, since,
as the plasmon losses mass, it is difficult to determine its
position and therefore its velocity.
Figure 7 shows the dimensionless position as a function of

dimensionless time. The DA solution, semianalytic solution,
and numerical data are represented as in Figure 6. The DA
solution is similar to numerical data for τ≤0.4 while for the
semianalytical solution this time is as long as τ=0.8.
Nevertheless, semianalytic has a similar stop distance while
the DA model predicts a larger distance.
Finally, the analytic t0 and x v t0 0 0= obtained from

Equation (12) and the numerical t0 and x0, for all the models
presented in this job, are also tabulated. Tables 2 and 3
presented the final position (scale length) and lifetimes (scale
time) of our models with initial velocities of 300 and
500 km s−1, respectively.
From the analytical solution, we can see that the final

position (the scale length) is the only function of the contrast
density and it is not related to the velocity at which the clump
was thrown, see Tables 2 and 3. However, the lifetime of the
plasmon or clump is related with the initial velocity and the
density contrast, the plasmon pushed with more velocity reach
the final size before the plasmon with lower initial velocities.
That is, the plasmons that were faster initially suffer a higher
deceleration.
Nevertheless, the numerical simulation does not predict the

position of the plasmon when the velocity is equal to zero;
therefore, the x0 and t0 values follow the same trend but only in
the order of magnitude of the analytic predictions.

5. Conclusions

We have used the plasmon solution obtained by DA and the
solution presented in C98 to propose an analytical solution of
the plasmon’s deceleration when a mass-loss rate is considered.

Figure 6. Dimensionless velocity, u, vs. dimensionless time, τ, for the model
with log 1.25b = - . Solid line represents the solution to Equation (13), dashed
line is the De Young and Axford prediction in Equation (27) and crosses are the
numerical simulation data normalized with v0=300 km s−1 and t0=600 yr.

Figure 7. Dimensionless position, r, vs. dimensionless time, τ, for the model
with log 1.25b = - . The solid line represents the solution to Equation (13), the
dashed line is the De Young and Axford prediction in Equation (28) and
crosses are the numerical simulation data normalized with x0=38,000 au and
t0=600 yr.
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This leads to interpreting mass as a function of the plasmon
velocity related by a constant α. This α can be interpreted as a
friction coefficient. We calculate its dependence on the
density contrast between the plasmon and the surrounding
environment.

Several numerical simulations were performed trying to
compare the validity of our analytic model, and the constant α
and λ were obtained from the results. An estimation of
λ=0.0615 was found.

The lifetime obtained from the simple plasmon model is
greater than that expected by our losing mass considerations.
The deceleration obtained by this method is more likely to be
responsible for the age discrepancy in astronomical flows as the
Orion fingers. Also, it is important to notice that a plasmon
with greater ejection speed has a shorter lifetime, which can be
observed in simulations.

The final length of a plasmon is not related to its shape and
depends on the initial conditions of the plasmon.

We acknowledge support from PAPIIT-UNAM grants IN-
109518 and IG-100218. P.R.R.-O. acknowledges scholarship
from CONACyT-México and financial support from COZCyT.
We thank the anonymous referee for helpful comments and
corrections.

Appendix
Speed of Sound

Consider a supersonic flow with velocity v2 and density ρ2
interacting with a medium at rest with density ρ1. The
interaction produces two shocks S1 and S2 (see Figure 8).
Between the shocks there is a growing region that has an
uniform velocity vc and uniform pressure P. S1, the forward
shock, moves with velocity vS1 and runs into the medium at
rest, accelerating it to the velocity vc, while S2, the reverse
shock, moves with velocity vS2 into the impinging flow
decelerating it to the same velocity vc. The region has two

parts: one has density 2r¢ and temperature T2¢ and is filled by
shocked flow 2, while the other part is filled by shocked
medium 1 and has density 1r¢ and temperature T1¢. Note that the
pressure of both regions is, however, the same. These two
regions are separated by a contact discontinuity C. We further
assume that the shocks are strong and parallel. On a frame of
reference moving with shock S2, we can write,

1

1
, 292 2r

g
g

r¢ =
+
-

( )

v v v v v
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, 30S c S2 2 2 2

g
g

¢ =
-
+

- = -( ) ( )

and

P v v
2

1
, 31S2 2 2

2

g
r=

+
-( ) ( )

where v2¢ is the post-S2 shock flow velocity in this frame of
reference and γ is the ratio of specific heats.
Now, in a frame of reference that moves with shock S1, the

jump conditions across the shock gives,

1

1
, 321 1r

g
g

r¢ =
+
-

( )

v v v v
1

1
, 33S c S1 1 1

g
g

¢ =
-
+

- = -( ) ( )

and

P v
2

1
, 34S1 1

2

g
r=

+
-( ) ( )

where v1¢ is the post-S1 shock velocity in this frame of
reference.
From (31) and (34) we find

v v v , 35S S2 2 1b- = ( )

where 1 2
1
2b r r= ( ) .

Combining (35) with (30), (33), and (34) we find

v
v

1
36c

2

b
=

+
( )

v v
1

2 1
37S1 2

g
b

=
+
+( )

( )

v v
2 1

2 1
38S2 2

b g
b

=
+ -

+
( )

( )
( )

Table 2
Analytic and Numerical Scale Length x0 and Time t0 for Models with

v0=300 km s−1

log n

cm
a
3( )( )

Analytical Numerical

x0 t0 x0 t0
(au) (yr) (au) (yr)

6 1.14×10 6 18,369 1.2×106 18,400
6.5 363,868 5868 200,000 3000
7.0 117,000 1900 90,000 1400
7.5 38,231 616 38,000 600
8 12,762 205 18,000 250

Table 3
Analytic and Numerical Scale Length x0 and Time t0 for Models with

v0=500 km s−1

log n

cm
a
3( )( )

Analytical Numerical

x0 t0 x0 t0
(au) (yr) (au) (yr)

6 1.14×10 6 11,022 1.1×106 10,000
6.5 363,868 3500 300,000 2700
7.0 117,000 1134 90,000 850
7.5 38,231 370 40,000 400
8 12,762 123 19,000 165

Figure 8. Scheme of the flow configuration produced by the interaction of a
highly supersonic flow 2 with a gas at rest 1.
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P v
1

2 1
39

2 1 2
2g

b
r=

+
+( )

( )

Finally, the isothermal sound speed behind shock S2 is,

c
P

402

2r
=

¢
( )

c v
1

2 1
, 412

1 2

2
g b

b
=

-
+

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟ ( )

where we have used (29) and the definition of β.
We can use Equation (40) to estimate the sound speed of the

gas that was left behind by the reverse shock (shock S2); that is
the sound speed inside the plasmon. For this, we identify the
impinging flow in the model presented in this with the original
clump. So, if v0 and ρcl are the launch velocity and density of
the clump, respectively, then, we take, v2=v0, ρ2=ρcl, and
ρ1 equal to the density of the ambient medium through which
the plasmon is moving ρa. Then, c2 will be the sound speed
inside the plasmon c, while vc (from Equation (36)) will be the
initial velocity of the plasmon v0. Substituting in Equation (41)
we find,

c v
1

2
. 420

1 2g
b=

-⎜ ⎟⎛
⎝

⎞
⎠ ( )
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