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Abstract

Superluminous supernova (SLSN) light curves exhibit superior diversity compared to their regular-luminosity
counterparts in terms of rise and decline timescales, peak luminosities, and overall shapes. It remains unclear
whether this striking variety arises due to a dominant power input mechanism involving many underlying
parameters or due to contributions by different progenitor channels. In this work, we propose that a systematic
quantitative study of SLSN light-curve timescales and shape properties, such as symmetry around peak luminosity,
can be used to characterize these enthralling stellar explosions. We find that applying clustering analysis to the
properties of model SLSN light curves, powered by either a magnetar spindown or a supernova ejecta–
circumstellar matter interaction mechanism, can yield a distinction between the two, especially in terms of light-
curve symmetry. We show that most events in the observed SLSN sample with well-constrained light curves and
early detections are strongly associated with clusters dominated by circumstellar interaction models. Magnetar
spindown models also show association at a lower degree but have difficulty in reproducing fast evolving and fully
symmetric light curves. We believe this is due to the truncated nature of the circumstellar interaction shock energy
input compared to decreasing but continuous power input sources like magnetar spindown and radioactive 56Ni
decay. Our study demonstrates the importance of clustering analysis in characterizing SLSNe based on high-
cadence photometric observations that will be made available in the near future by surveys like the Large Synoptic
Survey Telescope, Zwicky Transient Facility, and Panoramic Survey Telescope and Rapid Response System.
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1. Introduction

Superluminous supernovae (SLSNe; Gal-Yam 2012, 2018;
Moriya et al. 2018b) possess a striking diversity in terms of
photometric and spectroscopic properties. SLSNe are often
divided into two classes based on the presence of hydrogen (H)
in their spectra: H-poor (SLSN-I) and H-rich (SLSN-II) events.
In terms of photometry, SLSNe are characterized by reaching
very high peak luminosities (�1044 erg s−1) over timescales
ranging from a few days to several months. The overall evolution
and shape of SLSN light curves (LCs) can significantly vary from
one event to another. Some SLSN LCs appear to have a
symmetric, bell-like shape around peak luminosity (Barbary et al.
2009; Quimby et al. 2011), while others are highly skewed with a
fast rise followed by a slow, long-term decline (Drake et al. 2011;
Lunnan et al. 2016). Most SLSNe appear to be hosted in low-
metallicity dwarf galaxies similar to long-duration gamma-ray
bursts (LGRBs) (Neill et al. 2011; Lunnan et al. 2014).

Several power input mechanisms have been proposed to
interpret the extreme peak luminosities and diverse observa-
tional properties of SLSNe. Most SLSNe-II show robust signs
of circumstellar interaction with a hydrogen medium in their
spectra, indicating that effective conversion of shock heating to
luminosity can reproduce their LCs (Smith & McCray 2007;
Chatzopoulos et al. 2013). SLSNe-I, on the other hand, do not
show the usual signatures of circumstellar interaction and are
often modeled by magnetorotational energy release due to the
spindown of a newly born magnetar following a core-collapse
supernova (CCSN) explosion (Kasen & Bildsten 2010; Woosley
2010; Inserra et al. 2013).

Nonetheless, the association between power input mech-
anism and SLSN type is still ambiguous. The magnetar
spindown model is occasionally invoked as an explanation for

SLSNe-II that exhibit P-Cygni Hα line profiles, like
SN2008es, (Kasen & Bildsten 2010; Dessart 2018). On the
other hand, circumstellar interaction cannot be completely
ruled out for SLSN-I events because H lines may be hidden,
due to complicated circumstellar matter geometries (Kleiser
et al. 2018; McDowell et al. 2018), details of nonlocal thermal
equilibrium line transfer physics in nonhomologously expand-
ing shocked, dense regions still unexplored by numerical
radiation transport models (Chatzopoulos et al. 2013; Dessart
et al. 2015) or, simply, interaction with a H-deficient medium
(Chatzopoulos & Wheeler 2012a; Chatzopoulos et al. 2016;
Sorokina et al. 2016). A subclass of SLSNe is found to
transition from SLSN-I at early times to SLSN-II of Type IIn at
late times indicating late-time interaction adding to the
complexity of the problem (Yan et al. 2017).
Breaking the degeneracy between SLSNe powered by

magnetar spindown, circumstellar interaction, and other
mechanisms will help address a variety of important questions
surrounding massive stellar evolution and explosive stellar
death: the link between LGRBs and SLSNe, the formation of
extremely magnetized stars following CCSNe and their effect
on the dynamics of the expansion of the supernova (SN) ejecta,
the mass-loss history of massive stars in the days to years prior
to their explosion and how their environments affect the
radiative properties of their explosion, to name a few.
The advent of automated, wide-field, high-cadence transient

surveys like the Panoramic Survey Telescope and Rapid
Response System, Pan-STARRS (Kaiser et al. 2002); the
Zwicky Transient Facility, ZTF (Bellm et al. 2019), and, of
course, the Large Synoptic Survey Telescope, LSST (Ivezic
et al. 2008) will significantly enhance the SLSN discovery rate
and equip us with more complete photometric coverage that
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includes detections shortly after the SN explosion, tightly
constraining the LCs of these events.

This work aims to illustrate how well-sampled LCs can be
used to unveil the power input mechanism of SLSNe. This is
done by quantitatively characterizing several key properties of
SLSN LCs such as rise and decline timescales (Nicholl et al.
2015a) and LC symmetry around peak luminosity. Using the
power of machine learning and k-means clustering analysis, we
are able to distinguish between groups of LC shape parameters
corresponding to different power input mechanisms and
calculate their association with the properties of observed
SLSN LCs.

Our paper is organized as follows: Section 2 presents the
observed SLSN LC sample that we use in this work and
introduces the LC shape properties that are utilized in our
analysis. Section 3 introduces the SLSN power input models
adopted to obtain large grids of semianalytic LCs across the
associated parameter spaces. Section 4 introduces the k-means
clustering analysis method that we employ to characterize
observed and model SLSN LCs, and Section 5 details the
results of this analysis. Finally, Section 6 summarizes our
discussion.

2. Observed SLSN Light-curve Sample

We use the Open Supernova Catalog (OSC; Guillochon et al.
2017) to access publicly available photometric data on a sample
of 126 events that are spectroscopically classified as SLSN-I
(68% of the sample) or SLSN-II (32% of the sample).

For events with available redshift measurements, we
compute pseudo-bolometric LCs using the SuperBol3 code
(Nicholl 2018). SuperBol is a user-friendly Python software
instrument that uses the available observed fluxes in different
filters to fit blackbodies to the spectral energy distribution
(SED) of an SN. The resulting pseudo-bolometric SN LCs can
also be corrected for time dilation and distance, and converted
to the rest frame (K-correction). Using extrapolation techni-
ques, missing near-infrared and ultraviolet (UV) flux can also
be accounted for. Subsequently, all rest-frame LCs are
translated in time so that t=0 is coincident with the time
corresponding to peak luminosity (t0=tmax) and scaled by the
peak luminosity (Lmax).

For the purposes of our study, we select a subsample of
SLSNe defined by rest-frame LCs with near-complete temporal
photometric coverage, which we define as including observed
data in the range Lmax/e<L(t)<Lmax (or 1/e<L(t)<1 in
the scaled form). Thus, we only focus on SLSN LCs with
observed evolution within one e-folding timescale from the
peak luminosity, ensuring that our analysis relies only on real
data and not approximate, often model-based, extrapolations to
explosion time (see Section 2.1). In this regard, our sample
selection criterion for LC coverage is similar to that used in
Nicholl et al. (2015a; hereafter referred to as N15) but our
SLSN sample is larger than their “gold” sample by eight
events, due to our inclusion of SLSN-II events and the
availability of more SLSN discoveries since their publication.
This process leaves us with a reduced sample of 25 SLSNe
with well-covered LCs: 21 SLSN-I and 4 SLSN-II events.
Table 1 presents the details of the SLSN sample used in our
analysis, including the photometric band with the longest (in

time) LC coverage that was used in generating their pseudo-
bolometric LC.

2.1. Quantitative Properties of SLSNe LC Shapes

In order to quantitatively constrain the shapes of SLSN LCs,
we define the following scaled luminosity thresholds:

1. Primary luminosity threshold: L1=1.0/e or 36.79% of
the peak luminosity.

2. Secondary luminosity threshold: L2=1.0/(0.5e) or
73.58% of the peak luminosity.

3. Tertiary luminosity threshold: L3=1.0/(0.4e) or 91.97%
of the peak luminosity.

At each luminosity threshold, we can compute a “rise time” to
peak luminosity and a “decline time” from peak. As such, we
accordingly define the primary, secondary, and tertiary rise (tr1,
tr2, tr3) and decline (td1, td2, td3) timescales. It is evident that t
[d, r]3<t[d, r]2<t[d, r]1, and that all of the SLSNe in our
selected LC sample have observations that include these
timescales. We note that our choice for the primary luminosity
threshold and corresponding rise and decline timescales is the
same as the one used in N15 to study how closely these
timescales correlate with different power input models.
Next, for the sake of quantifying how symmetric an LC is

around peak luminosity, we define three corresponding “LC
symmetry” parameters: s1,2,3=tr1,2,3/td1,2,3. The closer these
parameters are to unity, the more symmetric the LC is at the
corresponding luminosity threshold. Obviously, to consider an
LC as “fully symmetric,” all of the three LC symmetry
parameters need to be close to unity. For the purposes of this
study, we define a symmetric LC, one that satisfies the criterion
0.9<s1,2,3<1.1. For the remainder of this paper, we refer to
the nine (tr1,2,3, td1,2,3, s1,2,3) LC parameters as “LC shape
parameters.”
We have developed a Python script that fits a high-degree

polynomial to the scaled observed LCs of the SLSNe in our
sample. This provides us with interpolation between missing
photometric data points and an accurate measurement of the LC
shape parameters discussed above. An example of such fit is
shown in Figure 1 for SN2006, inarguably one of the most
well-observed SLSN-II of Type IIn (Smith et al. 2007). In this
figure, the light blue horizontal lines show the three luminosity
thresholds that were introduced earlier. Based on these
thresholds, we find tr1=41.0days and td1=54.3days for
this SN, implying primary symmetry s1=0.76. The rest of the
LC shape parameters for SN2006gy are given in Table 1.
Table 2 lists the main LC shape statistical properties of the
observed SLSNe-I and SLSNe-II in our sample. The SLSN-II
sample only includes four events, thereby preventing us from
performing an accurate statistical comparison against the
SLSN-I sample to look for potential systematic differences in
the two distributions.
Our sample overlaps with that presented in Table 3 of N15

for 11 SLSNe: SN2011ke, SN2013dg, LSQ14mo, LSQ13bdq,
PTF12dam, CSS121015:004244+132827, PS1-11ap, SCP
06F6, PTF09cnd, PS1-10bj, and iPTF13ajg. This is due to
the fact that for the purposes of our study, we decided to
include only events with real detections shortly after the
explosion and a good coverage of the LC in order to tightly
constrain their LC shape parameters. N15, on the other hand,
opted to use polynomial extrapolation to earlier times for some
of the SLSNe in their sample in order to obtain estimates for tr1

3 https://github.com/mnicholl/superbol
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and td1. For objects where this extrapolation is done only by a
few days, this may not be a bad approximation; however, the
LCs for cases like SN2007bi (Gal-Yam et al. 2009), SN2005ap
(Quimby et al. 2007), and PS1-10ky (Chomiuk et al. 2011), tr1
is poorly constrained using this method.

For the 11 events that are common between our sample and
that of N15, we calculate the mean value of tr1 to be 27.2days
versus 25.7days in their case, and the mean value of td1 to be
42.8days compared to 51.6days in their case. Although our
results are consistent in terms of tr1, the discrepancy observed
in td1 could be due to a variety of reasons including different

combinations of filters used to calculate the rest-frame pseudo-
bolometric LC of each event. In our work, we have used all
available filters with more than two data points for each event
to construct LCs using SuperBol as described earlier. We
caution that more accurate consideration for near-IR and IR
fluxes may lead to the flattening of the true bolometric LC at
late times and therefore longer primary decline timescales.
We note that comparing the mean tr1 and td1 values of our

entire sample (tr1=30.8 days, td1=43.9 days from Table 2)
against those of the full SLSN sample of N15 (their Table 3;
tr1=22.9 days, td1=46.4 days), the agreement is somewhat
better, within uncertainties. We also derive a linear fit for the
observed tr1 and td1 values of the form:

td tr , 11 0 1 1g g= + ´ ( )

where γ0=−1.962 and γ1=1.489 (see also Figure 5). In
contrast, N15 derived a steeper correlation for their “gold”
SLSN sample with γ0,N15=−0.10 and γ1,N15=1.96.
An investigation of Table 1 reveals yet another interesting

property of our observed SLSN sample: five SLSN-I events
SN2010md, PTF09atu, PS1-10pm, SNLS 07D2bv, and SCP
06F6) or, equivalently, 23.81% of the entire SLSN-I sample
have fully symmetric LCs around peak luminosity, following
the criterion we established earlier for full LC symmetry
(0.9<s1,2,3<1.1). This can be said for more certainty for
SN2010md and PTF09atu (with redshifts 0.098 and 0.5
accordingly) compared to the other three events with large
redshifts (>1), because in this case the observed band

Table 1
The SLSN LC Sample Used for This Work

SLSN Reference z Filtersa tr1 td1 s1 tr2 td2 s2 tr3 td3 s3

SLSN-I

PTF09cnd Quimby et al. (2011) 0.258 UBgRi 29.5 56.3 0.52 18.9 26.9 0.7 10.6 12.9 0.82
SN2011kg Inserra et al. (2013) 0.192 UBgrizJ 20.5 30.0 0.68 12.5 15.9 0.79 6.9 7.9 0.88
SN2010md Inserra et al. (2013) 0.098 UBgriz 30.4 31.9 0.95 16.1 16.6 0.97 8.4 8.4 1.0
SN2213-1745 Cooke et al. (2012) 2.046 g′r′i′ 10.4 25.5 0.41 6.7 8.6 0.78 3.7 4.3 0.87
PTF09atu Quimby et al. (2011) 0.501 gRi 48.8 50.9 0.96 29.9 30.2 0.99 16.4 16.0 1.02
iPTF13ajg Vreeswijk et al. (2014) 0.740 uBgRsiz 21.9 28.8 0.76 14.3 16.4 0.87 8.0 8.6 0.93
PS1-10pm McCrum et al. (2015) 1.206 griz 27.9 25.4 1.1 14.9 15.0 0.99 7.9 7.9 1.0
PS1-14bj Lunnan et al. (2016) 0.522 grizJ 81.6 138.2 0.59 49.2 64.9 0.76 27.2 32.4 0.84
SN2013dg Nicholl et al. (2014) 0.265 griz 15.6 29.7 0.52 10.4 14.0 0.74 5.9 6.8 0.87
iPTF13ehe Yan et al. (2015, 2017) 0.343 gri 53.4 62.1 0.86 32.2 35.4 0.91 18.1 18.1 1.0
LSQ14mo Leloudas et al. (2015) 0.253 Ugri 16.2 25.3 0.64 10.9 14.0 0.78 6.2 7.1 0.87
PS1-10bzj Lunnan et al. (2013) 0.650 griz 14.6 22.5 0.65 10.3 13.8 0.75 6.1 7.2 0.84
DES14X3taz Smith et al. (2016) 0.608 griz 31.9 41.8 0.76 19.9 23.0 0.87 11.0 11.7 0.94
LSQ14bdq Nicholl et al. (2015b) 0.345 griz 54.6 90.2 0.61 37.1 48.8 0.76 21.7 24.4 0.89
SNLS 07D2bv Howell et al. (2013) 1.500 griz 18.9 17.7 1.07 12.5 12.8 0.98 7.1 7.0 1.01
SNLS 06D4eu Howell et al. (2013) 1.588 griz 15.0 17.6 0.85 9.4 10.6 0.89 5.3 5.7 0.92
PTF12dam De Cia et al. (2018) 0.107 UBgVrizJHK 46.2 75.0 0.62 28.8 37.5 0.77 16.6 18.3 0.91
SN2011ke De Cia et al. (2018) 0.143 UBgVriz 22.1 26.6 0.83 12.3 13.8 0.97 6.8 7.0 0.97
PTF12gty De Cia et al. (2018) 0.177 gri 46.4 65.9 0.70 24.9 27.0 0.92 14.0 15.2 0.92
PS1-11ap Lunnan et al. (2018a) 0.524 grizy 26.7 52.5 0.51 18.5 26.3 0.71 11.0 12.9 0.85
SCP 06F6 Barbary et al. (2009) 1.189 iz 31.8 32.7 0.97 19.5 19.5 1.0 10.6 10.4 1.02

SLSN-II

SN2006gy Smith et al. (2007) 0.019 BVR 41.0 54.3 0.76 24.4 27.8 0.88 13.3 14.1 0.94
CSS121015:004244+132827 Benetti et al. (2014) 0.287 UBVRGI 20.3 30.9 0.66 12.5 15.2 0.82 7.0 7.6 0.92
SN2016jhn Moriya et al. (2018c) 1.965 GI2zY 12.4 27.0 0.46 10.3 20.7 0.5 6.3 10.6 0.6
SDSSII SN2538 Sako et al. (2018) 0.530 u′g′r′i′z′ 31.6 37.8 0.84 19.0 19.2 0.99 10.0 10.0 1.0

Notes. The SLSN LC data were collected from the Open Supernova Catalog (Guillochon et al. 2017) database. All timescales are in units of days.
a This column lists the filters used to compile the pseudo-bolometric LC of each SLSN in our sample.

Figure 1. Polynomial fit (red curve) to the observed scaled pseudo-bolometric
LC of Type II SN2006gy (blue circles). An eighth-degree polynomial is used
for the fit. The primary, secondary, and tertiary luminosity thresholds are
shown as horizontal light blue lines.
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correspond to near-UV fluxes in the rest frame. Bias toward
UV fluxes may correspond to faster post-maximum decline rate
and thus steeper, more symmetric LCs. Nevertheless, we have
attempted to account for this effect by making use of
approximate extrapolations to the IR flux by using the
techniques available in SuperBol.

The upper left panel of Figure 4 shows two examples of
SLSNe with “fully symmetric” LCs. Given that symmetric LCs
are present in about a quarter of our SLSN-I sample, a
considerable fraction of LC models corresponding to the
proposed power input mechanisms must be able to reproduce
this observation. This raises the question of whether LC
symmetry is a property shared among all the proposed power
input mechanisms for different combinations of model
parameters or is uniquely tied to one power input mechanism.
In the latter case, we can use photometry alone to characterize
the nature of SLSNe.

Lastly, another LC shape property that will be interesting to
constrain with future, high-cadence photometric follow-up of
SLSNe would be the convexity (second derivative) of the
bolometric LC during the rise to peak luminosity (Wheeler
et al. 2017). Given the low temporal resolution of the observed
LC in our sample, we opt to not provide estimates of the
percentages of concave-up and concave-down LCs, yet we
briefly discuss the predictions for these parameters coming
from semianalytical models in the following section.

3. SLSN Power Input Models

A number of models have been proposed to explain both the
unprecedented peak luminosities but, more importantly, the
striking diversity in the observed properties of SLSNe, both
photometrically (LC timescales and shapes) and spectro-
scopically (SLSN-I versus SLSN-II class events). The three
most commonly cited SLSN power input mechanisms are the
radioactive decay of several masses of 56Ni produced in a full-
fledged pair-instability supernova explosion (PISN; Gal-Yam
et al. 2009; Chatzopoulos & Wheeler 2012b; Chatzopoulos
et al. 2015), the magnetorotational energy release from the
spindown of a newly born magnetar following a core-collapse
SN (Kasen & Bildsten 2010; Woosley 2010), and the
interaction between SN ejecta and massive, dense circumstellar
shells ejected by the progenitor star prior to the explosion
(Smith & McCray 2007; Smith et al. 2008; Chatzopoulos et al.
2016; Wheeler et al. 2017).

We have decided to leave the PISN model outside of our
analysis because of several reasons that make it unsuitable for
contemporary SLSNe. First, given that the known hosts of
SLSNe have metallicities Z>0.1 (Lunnan et al. 2013, 2014),
very massive stars that formed in these environments are likely
to suffer strong radiatively driven mass loss, preventing them
from forming the massive carbon–oxygen cores (�40–60Me,
depending on the zero age main sequence rotation rate;
Chatzopoulos & Wheeler 2012b) required to encounter pair
instability (Langer et al. 2007). Second, the majority of PISN
models do not yield superluminous LCs. Yet even many of the
PISN superluminous LCs require total SN ejecta masses that
are comparable to—or smaller than in some cases—to the
predicted 56Ni mass needed to explain the high peak luminosity
(Chatzopoulos et al. 2013). Finally, while radiation transport
models of PISNe can reproduce superluminous LCs and
provide good fits to the LCs of some SLSNe (Gal-Yam et al.
2009; Gilmer et al. 2017), the model spectra are too red
compared to the observed SLSN spectra at contemporaneous
epochs (Dessart et al. 2013; Chatzopoulos et al. 2015). Full-
fledged PISNe may, however, still be at play in lower
metallicity environments and massive, Population III primor-
dial stars. For an alternative perspective on the viability of low-
redshift full-fledged PISNe, we refer to Kozyreva et al. (2014).
We add that a model that is recently gaining popularity is

energy input by fallback accretion into a newly formed black
hole following core collapse (Dexter & Kasen 2013). One
caveat of this model is that unrealistically large accretion
masses are needed in order to fit the observed LCs of SLSNe
given a fiducial choice for the energy conversion efficiency for
the most cases (Moriya et al. 2018a). While the fallback
accretion model is a very interesting suggestion that may be
relevant to a small fraction of SLSNe, we opt to exclude it from
our model LC shape analysis at least until it is further
investigated in the literature. This leaves us with two main
channels to power SLSNe often discussed today, the magnetar
spindown and the circumstellar interaction model. Hereafter,
we refer to the magnetar spindown model as “MAG” and to the
SN ejecta–circumstellar matter interaction model as “CSM.”
For both the MAG and the CSM models, we adopt the

semianalytic formalism presented in Chatzopoulos et al. (2012,
2013, hereafter C12, C13) and based on the seminal works of
Arnett (1980, 1982) on modeling the LCs of SNe Ia and SNe II.
While these models invoke many simplifying assumptions
(centrally concentrated input source—in terms of energy

Table 2
Main Statistical Properties of the Observed SLSN LC Sample Used in This Work

Parameter μ M σ max min μ M σ max min

SLSN-I SLSN-II

tr1 31.6 27.9 17.3 81.6 10.4 26.3 25.9 10.9 41.0 12.4
td1 45.1 31.9 28.5 138.2 17.6 37.5 34.3 10.4 54.3 27.0
s1 0.74 0.70 0.19 1.10 0.41 0.68 0.71 0.14 0.84 0.46
tr2 19.5 16.1 10.5 49.2 6.7 16.6 15.8 5.6 24.4 10.3
td2 23.4 16.6 13.6 64.9 8.6 20.7 19.9 4.5 27.8 15.3
s2 0.85 0.87 0.10 1.00 0.70 0.80 0.85 0.18 0.99 0.50
tr3 10.9 8.4 5.9 27.2 3.7 9.1 8.5 2.8 13.3 6.2
td3 11.9 8.6 6.7 32.4 4.3 10.6 10.3 2.3 14.1 7.6
s3 0.93 0.92 0.06 1.02 0.82 0.86 0.93 0.16 1.00 0.60

Note. The parameters μ, M, σ, max, and min correspond to the values of the mean, median, standard deviation, maximum, and minimum of the sample accordingly.
All timescales are in units of days.
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density, homologous expansion of the SN ejecta, and constant
Thompson-scattering opacity for the SN ejecta, to name a few),
they remain a powerful tool to study the LC shapes of SNe,
assuming different power inputs because of their ability to
provide reasonable estimates of the associated physical
parameters when fit to observed data. In addition, these
semianalytic models are numerically inexpensive to compute,
allowing us to compute large grids of LC models throughout
the associated multidimensional parameter space. As such, they
remain a popular SN LC modeling tool with a few codes that
have been made publicly available to compute them, such as
TigerFit (Wheeler et al. 2017) and MOSFiT (Guillochon et al.
2018). We caution, however, that comparisons against rigorous,
numerical radiation transport models have shown that semianalytic
SLSN LC models have their limitations, especially in regimes
where the SN expansion is not homologous (for example, due to
circumstellar interaction) and due to the assumption of constant
opacity in the SN ejecta and constant diffusion timescale (Moriya
et al. 2013b; Khatami & Kasen 2018). For this reason, we include
some analysis of the LC shape properties of numerically computed
SLSN LCs that are available in the literature for both the MAG
and the CSM models.

3.1. The SN Ejecta–Circumstellar Matter Interaction
Model (CSM)

Massive stars can suffer significant mass-loss episodes,
especially during the late stages of their evolution, due to a
variety of mechanisms: super-Eddington strong winds during a
luminous blue variable (LBV) stage similar to η Carina (Smith
& McCray 2007; Smith et al. 2011; Jiang et al. 2018; Smith
et al. 2018), gravity-wave-driven mass loss excited during
vigorous shell Si and O shell burning (Quataert & Shiode 2012;
Shiode & Quataert 2014; Fuller 2017), binary interactions
(Woosley et al. 1994) or a softer version of PISN that does not
lead to the complete disruption of the progenitor star
(pulsational pair-instability supernova or PPISN; Woosley
et al. 2007; Chatzopoulos & Wheeler 2012a; Woosley 2017).
PPISNe originate from progenitors less massive than those
from which full-fledged PISNe originate and can thus occur in
the nearby universe, offering a channel to produce a sequence
of SLSN-like transients originating from the same progenitor as
successively ejected shells can collide with each other before
the final CCSN takes place (Chatzopoulos et al. 2016;
Woosley 2017; Lunnan et al. 2018b).

As a result, both observational evidence and theoretical
modeling suggest that the environments around massive stars
can be very complicated with diverse geometries (circumstellar
(CS) spherical or bipolar shells, disks, or clumps) and, in some
cases, very dense and at the right distance from the progenitor
star that a violent interaction will be imminent following the
SN explosion. This SN ejecta–circumstellar matter interaction
(CSI) leads to the formation of forward and reverse shocks and
the efficient conversion of kinetic energy into luminosity
(Chevalier & Fransson 1994; Chevalier & Irwin 2011) that can
produce superluminous transients with immense diversity in
their LC shapes and maybe even spectra (Moriya & Tominaga
2012; Moriya et al. 2013a; Dessart et al. 2016; Kleiser et al.
2018).

C12 combined the self-similar CSI solutions presented by
Chevalier & Fransson (1994) with the Arnett (1980, 1982) LC
modeling formalism to compute approximate, semianalytical
CSM models that were then successfully fit to the LCs of

several SLSN-I and SLSN-II events in C13. Given an SN
explosion energy (ESN), SN ejecta mass (Mej), the index of the
outer (power-law) density profile of the SN ejecta (n, related to
the progenitor radius), the distance of the CS shell (RCS), the
mass of the CS shell MCS, the (power-law) density profile of
the CS shell (s), and the progenitor star mass-loss rate (Ṁ ), a
model semianalytic CSM LC can be computed. The energy
input originates from the efficient conversion of the kinetic
energy of both the forward and reverse shocks to luminosity.
As such, forward shock energy input is terminated when it
breaks out to the optically thin CS while reverse shock input is
terminated once it sweeps up the bulk of the SN ejecta. This is
a property unique to the CSM model and not present in other,
continuous heating sources such as radioactive decay of 56Ni
and magnetar spindown input: during CSI energy input
terminates abruptly, thus affecting the shape of the LC in a
way that can yield a faster decline in luminosity at late times.
While the CSM model can naturally explain the observed

diversity of SLSN LCs and is consistent with the observation of
narrow emission lines in the spectra of SLSN-II events of IIn
class, it has been challenged as a viable explanation for SLSNe-
I, due to the lack of spectroscopic signatures associated with
interaction (Inserra et al. 2013, N15). There is, however, a
“hybrid” class of SLSNe that transitions from SLSN-I to
SLSN-II at late times, indicating possible interaction with
H-poor material early on before the SN ejecta reach the ejected
H envelope and interact with it, producing Balmer emission
lines (Yan et al. 2015). Another concern for the CSM model is
the necessity to include many parameters in the model that can
lead to overfitting observed data and to parameter degeneracy
issues (Moriya et al. 2013b). Detailed radiation hydrodynamics
and radiation transport modeling of the CSI process across the
relevant parameter space, including in cases of H-poor CSI, are
still needed in order to resolve whether SLSNe-I can be
powered by this mechanism.

3.2. The Magnetar Spindown Model (MAG)

The spindown of a newly born magnetar following CCSN
can release magnetorotational energy that, if efficiently
thermalized in the expanding SN ejecta, can produce a
superluminous display (Kasen & Bildsten 2010; Woosley
2010). Given a dipole magnetic field for the magnetar, an initial
rotation period of Pmag in units of 1 ms and an initial magnetar
magnetic field B14,mag in units of 1014 G, the associated SN LC
can be computed by making use of Equation (13) of C12. This
model LC can also provide estimates for the SN ejecta mass,
Mej, that is controlled by the diffusion timescale (Equation (10)
of C12).
Numerical radiation transport simulations of SNe powered

by magnetars have yielded additional insights into the
efficiency of this model in powering SLSNe, primarily of the
hydrogen-poor (SLSN-I) type (Dessart et al. 2012; Metzger
et al. 2015; Dessart 2018; Dessart & Audit 2018). Some
observational evidence linking the host properties of SLSNe-I
to those of LGRBs (Lunnan et al. 2014) and the discovery of
double-peaked SLSN LCs, a feature that can be produced by
magnetar-driven shock breakout (Nicholl et al. 2015b; Kasen
et al. 2016), seem to strongly suggest that most, if not all,
SLSNe-I are powered by this mechanism. This is strengthened
by the suggestion that a lot of SLSN LCs can be successfully fit
by a semianalytical MAG LC model (Nicholl et al. 2017;
De Cia et al. 2018). There is, however, ongoing discussion on
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whether the MAG model is always efficient in thermalizing the
magnetar luminosity in the SN ejecta or even allowing for the
efficient conversion of the magnetar energy to radiated
luminosity (Bucciantini et al. 2006), instead of kinetic energy
for the inner ejecta (Wang et al. 2016). Recent 2D simulations
of magnetar-powered SNe appear to enhance these concerns
(Chen et al. 2016, 2017).

3.3. Grids of Models with the TigerFit Code

We have adapted the TigerFit code (Chatzopoulos et al.
2016; Wheeler et al. 2017) to run grids of CSM and MAG
models throughout a large parameter space in order to
systematically study the statistical LC shape properties and
determine their association with the observed SLSN sample
presented in Section 2.

For the CSM model, we consider cases with H-poor opacity
(CSM-I; κ=0.2 cm2 g−1) and H-rich opacity (κ=0.4 cm2 g−1)
and run two sets of grids: (a) CSM-Iκ/CSM-IIκ models, where
the parameter grid is identical, and (b) CSM-I/CSM-II models,
where the parameter grid is constrained in each case, motivated by
assumptions about the nature of the progenitor stars in SNe I
versus SNe II, respectively, that are further discussed later in this
section. For case (a), the ranges used for each parameter are as
follows:

1. ESN,51ä[1.0, 1.2, 1.5, 2.0], where ESN=ESN,51×1051 erg,
2. Mejä[5 ,8, 10, 15, 20, 25, 30, 40], where Mej is in units

of Me,
3. nä[7, 8, 9, 10, 11, 12],
4. RCS,15ä[10−5, 10−4, 10−3, 10−2, 10−1], where

RCS=RCS,15×1015 cm,
5. MCSä[0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 8.0], where MCS is in

units of Me,
6. M 0.001, 0.01, 0.05, 0.1, 0.2, 0.5, 1Î˙ [ ], where Ṁ is

in units of Me yr−1.

For case (b) and the CSM-I subset, the ranges used are

1. ESN,51ä[1, 1.2, 1.5, 1.75, 2],
2. Mejä[5, 8, 10, 12, 15, 20, 25, 30],
3. nä[7, 8, 9],
4. RCS,15ä[10−5, 10−4, 5×10−4, 10−3, 5×10−3, 10−2],
5. MCSä[0.1, 0.2, 0.5, 0.7, 1.0, 2.0, 5.0],
6. M 10 , 10 , 10 , 0.01, 0.1, 0.2, 0.5, 1.0, 2.05 4 3Î - - -˙ [ ],

and accordingly for the CSM-II subset,

1. ESN,51ä[1, 1.2, 1.5, 1.75, 2],
2. Mejä[12, 15, 20, 25, 30, 40, 50, 60],
3. nä[10, 11, 12],
4. RCS,15ä[0.01, 0.05, 0.08, 0.10, 0.20, 0.30],
5. MCSä[0.5, 1.0, 2.0, 5.0, 8.0, 10.0, 15.0],
6. M 10 , 10 , 10 , 0.01, 0.1, 0.2, 0.5, 1.0, 2.05 4 3Î - - -˙ [ ].

For all CSM models, we are focusing on the s=0 cases
implying a fiducial, constant-density circumstellar shell. While
the s=2 case is of interest because it implies a radiatively
driven wind structure that is common around red supergiant
stars (RSGs), we omit it in this work because it is inconsistent
with episodic mass loss, which is more likely to be the case for
luminous SNe. Also, for the vast majority of cases where the
s=2 choice yields luminous LCs, other parameters obtain
unrealistic values (for example, MCS values in excess of
∼100Me are commonly found; C13). As a result, a total of

47,040 models were generated for the CSM-Iκ/CSM-IIκ cases
and 45,360 models for the CSM-I/CSM-II cases.
Our motivation for adopting different parameter ranges for

the CSM-I and CSM-II models stems from several factors.
First, larger MCS values are possible in the CSM-II case as
suggested by spectroscopic observations of SLSNe-II of Type IIn
(Smith et al. 2010), where stronger mass loss pertains, due to LBV-
type or PPISN processes (Smith 2014). That, in turn, also implies
larger progenitor masses (and therefore Mej) for CSM-II, as in
the case for regular luminosity SNe, where LC fits imply larger
Mej, and therefore larger diffusion timescales, for Type II
events than for Type I SNe. Finally, lower values of n are more
typical of compact, blue supergiant (BSG) progenitors with
radiative envelopes while higher values imply extended, RSG-type
convective envelopes that are more appropriate for SLSNe-II
(Chevalier & Fransson 2003). In summary, the CSM-II parameters
are associated with RSG-type progenitors with extended H-rich
envelopes while the CSM-I parameters are associated with more
compact, BSG-type stars.
We caution that one potential issue with our choices for model

parameter grids is that there are no good observational
constraints yet on what the shape of the distribution of SN
ejecta and circumstellar shell masses should be, so using these
models in a clustering analysis (Section 4) might be misleading
as it can create dense clusters of models that might actually be
very sparsely populated in nature, or conversely, an underdensity
of points in regions where more MAG or CSM SNe might lie in
reality. Our grid selection for MCS is largely driven by published
observations of nebular shells around massive, LBV-type stars
indicating MCS;0.1–20Me (Smith & Owocki 2006; Groh
et al. 2009; Gvaramadze et al. 2010; Wachter et al. 2010;
Smith 2014). The ranges for Mej are within typical ranges for
stars massive enough to experience an SN, and in agreement
with observations of SN progenitor stars in pre-explosion images
and supernova remnants (Mej;8–25Me; Smartt 2009; Morozova
et al. 2018; Auchettl et al. 2019). Higher mass progenitors cannot
be excluded given observations of stars as massive as >150Me in
the Milky Way galaxy (Crowther et al. 2010).
For the MAG model, we investigate a dense grid of models

with 1012<BMAG<1015 G and 1.0<PMAG<50 ms, where
BMAG and PMAG are the magnetic field and the initial rotational
period of the magnetar, respectively. We are also varying the
diffusion timescale, td, that further controls the shape of MAG
model LCs (Equation (13) of C12), in the range 3<td<100
days. The grid resolution we use for these parameters results in
a total of 46,656 MAG model LCs generated.
A large fraction of CSM and MAG models did not produce

superluminous LCs, which we take to be those reaching
Lmax=1044 erg s−1 or more (Gal-Yam 2012). These models
are ignored from each of our CSM and MAG model samples
for further analysis. In addition, we exclude model LCs that
result in physically inconsistent parameters such as combina-
tions of BMAG and PMAG values in the MAG model that are
incompatible with the convective dynamo process in magnetars
(Duncan & Thompson 1992) and in CSM models that yield
MCS that are too large compared to the associated Mej values
that represent a measure of the total progenitor mass.
As a result, our original CSM-I/CSM-II, CSM-Iκ/CSM-IIκ,

and MAG model samples are each reduced into smaller
subsamples of nearly equal size that are then used in our final
LC shape parameter analysis. More specifically, a total of 306
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CSM-I/CSM-II, 248 CSM-Iκ/CSM-IIκ, and 304 MAG
superluminous LC models are used in this work. The statistical
properties of the LC shape parameters of all models are
summarized in Tables 3–5. Figures 2 and 3 show the
distribution of a few LC shape parameters (tr1, td1, s1, s2, s3)
for the CSM-I/CSM-II and MAG model samples, and Figure 4
shows examples of some of the most symmetric LCs in these
samples.

For comparison against our semianalytical LCs, we have
also included a sample of numerical CSM and MAG LCs
available in the literature. Table 6 lists the details of the
numerical model LCs, and Table 7 summarizes the statistics of
their shape parameters. Figure 5 is a scatter plot between tr1
and td1 for all samples in this work, including the numerical
MAG and CSM models. A linear best fit to the observed
SLSN-I and SLSN-II data is also shown (see Equation (1)).
Although we chose to not use different symbols for the CSM
models as presented in Figure 5, it is evident by inspecting
Table 4 that CSM-II models occupy the upper right corner of
this plot given their longer primary rise and decline timescales.
A few SLSNe-I thus appear to be associated with the CSM-II
data that were chosen based on assumptions for the progenitors
of H-rich SLSNe. The situation is different when looking at the
CSM-Iκ/CSM-IIκ distribution, however, where the parameter
grids are identical and the only difference is due to different SN
ejecta + CS shell opacity. In this case, the primary timescales

of the models are consistent. Very slowly evolving H-poor
SLSNe may be hard to produce under the assumption of H-
poor CSM interaction given the large, H-deficient CS shell
mass needed to account for the long primary rise and decline
timescales. Interaction with a H-poor CS shells of nonspherical
geometry in combination with viewing-angle effects may be a
way out of this apparent discrepancy (Kleiser et al. 2018).
Accordingly, Figure 6 shows a 3D scatter plot for the primary,
secondary, and tertiary LC symmetry parameter for all samples.
The superluminous LCs recovered result in the following mean
values for the parameters of each model:

1. CSM-I: ESN,51=1.75, Mej=10Me, n=8, RCS,15=
0.006, MCS=1Me and Ṁ =0.01Me yr−1,

2. CSM-II: ESN,51=2.00, Mej=13Me, n=12, RCS,15=
0.2, MCS=10Me and Ṁ =0.01Me yr−1,

3. CSM-Iκ: ESN,51=1.80, Mej=10Me, n=9, RCS,15=
0.08, MCS=2Me and Ṁ =0.15Me yr−1,

4. CSM-IIκ: ESN,51=2.00, Mej=7Me, n=9, RCS,15=
0.1, MCS=0.3 Me and Ṁ=0.3Me yr−1,

5. MAG: B 1.4 10MAG
13= ´ G and PMAG=1.3 ms.

These parameters are within the range of semianalytical and
numerical fits of the CSM and MAG models to observed SLSN
LCs commonly found in the literature.
A careful examination of the computed LC shape parameter

distributions for the CSM and MAG models reveals a lot of

Table 3
Main Statistical Properties of the CSM-I and CSM-II Model Samples Used in This Work

Parameter μ M σ max min μ M σ max min

CSM-I CSM-II

tr1 12.2 11.0 5.9 36.1 2.3 45.1 46.6 8.8 59.5 17.3
td1 29.7 28.6 13.2 82.8 4.0 72.6 69.5 16.1 101.1 44.9
s1 0.43 0.41 0.15 0.87 0.13 0.64 0.61 0.13 1.00 0.37
tr2 7.0 6.0 4.0 28.2 1.3 18.7 19.4 3.7 25.4 7.1
td2 9.1 8.4 5.0 33.3 1.5 24.4 25.9 4.7 31.7 11.8
s2 0.78 0.77 0.15 1.15 0.52 0.77 0.74 0.14 1.14 0.60
tr3 2.9 2.2 2.6 18.9 0.5 6.1 6.1 1.2 8.3 2.5
td3 3.1 2.4 3.1 24.4 0.5 7.0 7.2 1.4 10.2 3.0
s3 0.92 0.93 0.11 1.10 0.73 0.88 0.85 0.10 1.09 0.73

Figure 2. Distribution of primary rise (tr1; left panel) and decline (td1; right panel) timescales for the CSM-I (black bars), CSM-II (blue bars), and MAG (red bars)
model samples.
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interesting insights. First, the primary rise and decline
timescales appear to have a binary distribution for the CSM
models with CSM-I models typically reaching shorter tr1 and
td1 values than CSM-II models. This is both due to the
physically motivated choices for the parameter grids discussed
earlier, but also because of the opacity difference between
H-rich and H-poor models. On the other hand, the MAG
models show a more continuous and single-peaked distribution
with typical values tr1;5–15days and td1;20–30days. In
terms of LC symmetry, the majority of models do not appear to
produce symmetric LCs around the primary luminosity
threshold as 0.9<s1<1.1 values are rarely recovered. In
fact, CSM is the only set of models reaching s1 values close to
unity while MAG is unable to produce any models with
symmetric LCs both in terms of s1 and s2. Even the most
symmetric MAG LCs in our sample appear to have this issue
(Figure 4). This is an important issue for MAG models given
that a significant fraction of observed SLSNe-I are symmetric
around these luminosity thresholds (Section 2). This seems to
be the case for numerically computed MAG LC models as well,
with the most symmetric one being model RE0p4B3p5
(Dessart & Audit 2018) with s1=0.84. Numerical CSM
models tend to yield more rapidly evolving LCs than their
semianalytical counterparts. The primary source of this

difference is the assumption of a constant diffusion timescale
in the semianalytical CSM models (Moriya et al. 2013b;
Khatami & Kasen 2018).
We explore the possibility that gamma-ray leakage produces

faster declining MAG LCs, therefore enhancing symmetry, by
adopting the same formalism employed in the case of LCs
powered by the radioactive decay of 56Ni (Sutherland &
Wheeler 1984; Clocchiatti & Wheeler 1997; Valenti et al.
2008; Chatzopoulos et al. 2013). Using a fiducial SN ejecta
gamma-ray opacity of κγ=0.03 cm2 g−1 and the implied SN
ejecta mass for the two most symmetric MAG models shown in
the top right panel of Figure 4, we adjust the output luminosity
as L′(t)=L(t)(1−exp−At−2), where At−2=κγρR. The two
most symmetric MAG models with high gamma-ray leakage
are then plotted as dashed curves. Allowing for gamma-rays to
escape can increase the decline rate of the LC at late times,
leading to shorter td1 and slightly higher s1 values. The change,
however, still falls short in producing symmetric MAG LCs
because s1 only increases by 14%–22% and the maximum
value for s1�0.6.
Second, the observed tight tr1–td1 correlation in SLSN LCs

is reproduced by both CSM and MAG models. CSM models
generally predict faster evolving LCs at late times than MAG
models, consistent with the observations. This is mainly due to

Figure 3. Same as Figure 2 but for primary (s1; upper left panel), secondary (s2; upper right panel), and tertiary (s3; bottom panel) LC symmetry.
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the continuous power input in the MAG model that sustains a
flatter LC at late times while in the CSM model the energy
input is terminated abruptly, leading to rapid decline after peak
luminosity (C12). An example of an SLSN with a very flat late-
time LC is SN2015bn (Nicholl et al. 2018), indicating that this
may be a good candidate for the MAG model. The observed
LC symmetry parameter distributions (Figure 6) reveal a more
distinct dichotomy between CSM and MAG models. MAG
models fail to produce fully symmetric LCs and are clustered in
a confined region of the 3D (s1, s2, and s3) parameter space
while CSM models are more scattered.

Finally, we estimate the fraction of CSM and MAG model
SLSN LCs that have a concave-up shape during the rise to peak
luminosity or, in other words, positive second derivative for

t<tmax. An example of an observed SLSN with concave-up
LC during the rise is SN2017egm (Wheeler et al. 2017). Not a
single MAG LCs is found to be concave-up during the rise. On
the contrary, ∼20% of CSM-I, ∼60% of CSM-II, and ∼50% of
CSM-Iκ/CSM-IIκ models are found to have concave-up rise to
peak luminosity. The implication is that the shape of the rising
part of SLSN LCs may also be tied to the nature of the power
input mechanism and, specifically, the functional form of the
input luminosity. Continuous, monotonically declining power
inputs like 56Ni decay and magnetar spindown energy
correspond to concave-down SLSN LCs, while truncated
CSM shock luminosity input depends on the details of the
SN ejecta and the circumstellar material density structure and
can yield either concave-up or concave-down LCs during the
early rising phase. This further enforces the need to obtain
high-cadence photometric coverage of these events in future
transient surveys.

4. k-means Clustering Analysis

k-means clustering is a powerful machine-learning algorithm
used to categorize data via an iterative method (Lloyd 2006;
MacQueen 1967). The standard version of this algorithm finds
the locations and boundaries of “clusters” of data by repeatedly
minimizing their Euclidean distances from cluster centroids.
The user can either input the number of clusters, k, based on
some assumption about the nature of the data or can use a
density-based (“DBSCAN”) approach (Ester et al. 1996) to
determine the optimal number of clusters. While k-means
assumes clusters separated by straight-line boundaries, there
exist clustering algorithms that relax that criterion. For the
scope of this work to quantitatively characterize the LC
shape properties of CSM and MAG models and determine if

Figure 4. The most symmetric LCs of the observed SLSN sample (upper left panel), the MAG model sample (upper right panel), the CSM-I model sample (lower left
panel), and the CSM-I model sample (lower right panel). The light blue dashed lines indicate the primary, secondary, and tertiary luminosity thresholds used to
determine symmetry around peak luminosity (see Section 2.1). It can be seen that even the most symmetric MAG model LCs are still quite asymmetric at the primary
luminosity threshold. This holds even under the assumption of strong γ-ray leakage (marked by dashed curves for each MAG model).

Figure 5. Distribution of tr1 and td1 for the semianalytical MAG (orange
circles) and CSM (green circles) models compared to the observed SLSN-I
(blue circles) and SLSN-II (red triangles) sample. The green and orange star
symbols correspond to published numerical LC models (see 3). The dashed line
represents a linear fit to the observed data.
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they occupy distinct areas of the parameter space, we employ
k-means clustering analysis. More specifically, we use the
Python scikit-learn (sklearn) package.

k-means clustering analysis is often used in astronomical
applications aiming to classify astronomical objects in transient
search projects (Wozniak et al. 2001; Zhang & Zhao 2004;
Ordovás-Pascual & Sánchez Almeida 2014). Recently, it was
utilized to classify the properties of SLSNe, based on both LC
and spectroscopic features, showcasing the importance it holds
for the future of the field. Nicholl et al. (2019) presented their
work on k-means clustering analysis of SLSN nebular spectra
properties. Inserra et al. (2018) illustrated how the method can
be used to identify SLSNe-I and probe their observed diversity
and identified two distinct groups: “fast” and “slow” SLSNe-I
depending on the evolution of the LC and the implied
spectroscopic velocities and SN ejecta velocity gradients.

In this work, we use k-means clustering to investigate if the
SLSN LC shape properties implied by different power input
models (MAG, CSM-I, and CSM-II) concentrate in distinct
clusters. This may allow us to associate observed SLSNe with
proposed power input mechanisms based only on the LC
properties and thus provide a framework for SLSN character-
ization for future, big data transient searches like LSST. To do
so, we focus on different combinations of k values and LC
parameter space dimensionality (ND). Given our prior knowl-
edge that we are using LC shape parameter data from two
categories (CSM, MAG) of models, we focus on two cases:
k=2 (CSM models of both type I and II and MAG) and k=3
(distinct CSM-I, CSM-II, and MAG models). We also look at
different values for ND: 2D data sets focusing on the primary
LC timescales (tr1, td1), 3D data sets focusing on the LC

symmetry parameters (s1, s2, s3), 4D data sets focusing on the
primary and secondary LC timescales (tr1, td1, tr2, td2), and 6D
data sets focusing on the primary, secondary, and tertiary LC
timescales (tr1, td1, tr2, td2, tr3, td3), thus covering all of the LC
shape parameters defined in this work (given the six timescales,
the symmetry parameters can be constrained). Although we
only opted to perform clustering analysis for k=2, 3 based on
prior knowledge of the number of models used in the data sets,
we also estimated the optimal number of clusters in all cases
using the “elbow” method (Nche Tuma et al. 2009). This
method is based on plotting the normalized squared error of
clustering (EN; defined in the next paragraph) as a function of k
and finding the value of k that corresponds to the sharpest
gradient. This test confirmed that the optimal number of
clusters for all data sets is k=2.
While for the 2D and the 3D clustering we can provide

visual representations of the clusters, that is impossible for the
4D and the 6D cases. For this reason, and in order to quantify
the quality and accuracy of our clustering results, we use
silhouette analysis (Rousseeuw 1987). Silhouette analysis
yields a mean silhouette score, S̄ , and silhouette diagrams that
visualize the sizes of the individual clusters and the S score
distribution of the individual data within each cluster. Negative
values of S correspond to falsely classified data while values
closer to unity indicate stronger cluster association. Silhouette
diagrams with clusters of comparable width and with S values
above the mean are indicative of accurate clustering. An
example silhouette diagram for the k=2, 3 and ND=4 case
we study in this work is shown in Figure 7. Figures 8 and 9
show the distribution of the computed clusters in the ND=2
and ND=3 cases for k=2 with the SLSN-I/SLSN-II
observations overplotted for comparison. The cluster centroids

Table 4
Main Statistical Properties of the CSM-Iκ and CSM-IIκ Model Samples Used in This Work

Parameter μ M σ max min μ M σ max min

CSM-Iκ CSM-IIκ

tr1 15.1 12.6 8.3 50.3 2.5 11.9 11.5 3.5 22.1 3.3
td1 32.2 30.5 16.0 83.2 3.3 25.3 22.9 10.7 49.7 5.0
s1 0.50 0.48 0.18 1.03 0.16 0.52 0.48 0.16 0.86 0.26
tr2 7.7 6.1 5.4 39.3 1.7 6.8 6.3 3.5 20.8 2.2
td2 10.4 8.5 6.4 38.9 1.9 8.4 7.5 4.0 22.3 1.9
s2 0.75 0.72 0.26 1.16 0.53 0.82 0.80 0.16 1.15 0.55
tr3 3.1 2.3 3.4 26.3 0.6 2.6 2.1 2.4 15.2 0.9
td3 3.6 2.5 4.2 32.5 0.6 2.9 2.5 2.9 18.6 1.0
s3 0.90 0.89 0.10 1.10 0.74 0.90 0.89 0.10 1.09 0.74

Figure 6. Same as Figure 5 but for s1, s2, and s3.

Table 5
Main Statistical Properties of the MAG Model Samples Used in This Work

Parameter μ M σ max min

MAG

tr1 22.8 18.7 14.3 64.4 4.9
td1 50.8 43.3 28.4 123.9 10.7
s1 0.44 0.46 0.08 0.54 0.20
tr2 15.2 12.5 9.3 41.4 3.3
td2 22.2 18.4 13.0 56.4 4.7
s2 0.68 0.69 0.05 0.78 0.52
tr3 8.8 7.2 5.3 23.5 1.9
td3 10.5 8.7 6.4 27.1 2.06
s3 0.85 0.84 0.07 1.09 0.73
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Figure 7. Silhouette analysis for the 4D (tr1, td1, tr2, td2; upper panels) and 6D (tr1, td1, tr2, td2, tr3, td3; lower panels) clustering done on the CSM-I/CSM-II/MAG
data set. The k=2 results are shown in the left column and the k=3 results in the right column for both cases.

Table 6
The Numerical Models Sample

Model ID Reference Model Type tr1 td1 s1 tr2 td2 s2 tr3 td3 s3

B3 Dessart et al. (2016) CSM-I 5.9 43.0 0.14 4.3 9.8 0.44 2.7 3.9 0.70
T130D-b Woosley (2017) CSM-I 6.9 11.9 0.59 4.3 5.8 0.75 2.3 2.9 0.80
D2 Moriya et al. (2013b) CSM-II 29.9 50.1 0.60 19.0 22.7 0.84 10.5 11.3 0.93
F1 Moriya et al. (2013b) CSM-II 33.5 82.0 0.41 23.3 43.1 0.54 13.7 18.8 0.73
R3 Dessart et al. (2016) CSM-II 5.4 11.4 0.47 3.7 5.7 0.65 2.0 2.7 0.75
T20 Woosley (2017) CSM-II 10.7 20.0 0.53 7.0 9.8 0.71 3.7 4.7 0.80

KB 1 (Black curve) Kasen & Bildsten (2010) MAG 21.4 38.5 0.56 13.7 18.8 0.73 7.7 9.4 0.82
KB 2 (Red curve) Kasen & Bildsten (2010) MAG 38.5 117.9 0.33 25.37 40.9 0.62 14.7 18.0 0.82
Model 2 Kasen et al. (2016) MAG 48.2 100.3 0.48 33.6 49.3 0.68 20.2 24.1 0.84
RE3B1 Dessart & Audit (2018) MAG 58.8 96.7 0.61 46.5 43.9 1.06 31.1 19.2 1.62
RE0p4B3p5 Dessart & Audit (2018) MAG 57.3 68.0 0.84 34.8 35.6 0.97 19.0 18.6 1.02

Table 7
Main Statistical Properties of the Numerical Models

Parameter μ M σ max min μ M σ max min

CSM-I/CSM-II MAG

tr1 15.4 8.8 33.5 5.4 11.7 44.8 48.2 58.8 22.4 13.8
td1 36.4 31.5 82.1 11.4 25.2 84.3 96.7 117.9 38.5 28.0
s1 0.46 0.50 0.60 0.14 0.16 0.56 0.56 0.84 0.33 0.17
tr2 10.3 5.7 23.3 3.7 7.9 30.8 33.6 46.5 13.7 10.9
td2 16.13 9.8 43.1 5.7 13.3 37.7 40.9 49.3 18.8 10.5
s2 0.66 0.68 0.84 0.44 0.133 0.81 0.73 1.06 0.62 0.17
tr3 5.8 3.2 13.7 2.7 4.6 18.5 19.0 31.1 7.7 7.7
td3 7.4 4.3 18.8 2.7 5.9 17.9 18.6 24.1 9.4 4.8
s3 0.79 0.78 0.93 0.70 0.07 1.02 0.84 1.62 0.82 0.31
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are also marked with black star symbols. Table 8 presents the
results of clustering analysis for each k–ND combination that
we investigated, including the normalized classification error
(EN; the square-root of the sum of squared distances of samples
to their closest cluster center divided by the cluster size) and Ŝ ,
as well as the computed cluster compositions (percentage of
CSM-I/CSM-II and MAG models within each cluster) and
observed SLSN-I/SLSN-II cluster associations.

5. Results

5.1. ND=2

Our clustering analysis on the primary LC timescales (tr1, td1)
reveals a clear dichotomy between H-rich and H-poor CSM

models in the CSM-I/CSM-II case where the first cluster (C0) is
composed by CSM-I (and, respectively, CSM-Iκ) models by
almost 100%. The observed SLSN-I and SLSN-II sample is not
clearly associated with either cluster in the CSM-I/CSM-II case.
For all combinations of model data sets and values of k, we find
the k=2 choice to correspond to more accurate clustering
(higher S̄ scores). This is indicative that the value k=2 may be
optimal in distinguishing between CSM-type models of either
type against MAG models. The CSM-I/CSM-II/MAG, k=2
case has the highest S̄ score and yields the first cluster (C0)
dominated by MAG models (∼76% of the cluster data) and the
second cluster (C1) dominated by CSM-I/CSM-II models
(∼60% of the cluster data). Nearly ∼75% of observed SLSNe-
I/SLSNe-II are associated with C1 implying that, practically,
both CSM- and MAG-type models can reproduce SLSN LCs in
terms of the primary LC timescales. As such, the ND=2 case
does not represent a robust way to distinguish between SLSNe
powered by either the CSM or the MAG mechanism.

5.2. ND=3

In this case, we explore clustering for the three main LC
symmetry parameters as defined in Section 2.1. As can be seen
in Tables 8, the k=2 cases have, in general, better S̄ scores
than the k=3 cases. Another interesting outcome is the very
low normalized mean error (<0.01) for all cases suggesting that
clustering based on the [s1, s2, s3] data set yields denser, more
concentrated clusters around the computed centroids.
Regardless, the most important result in this case is the strong

association of observed SLSN symmetries with C1: ∼75%–76%
of SLSNe-I and SLSNe-II are associated with C1 in the CSM-I/
CSM-II/MAG, k=2 case. In addition, C1 is almost entirely

Figure 8. Clustering (k=2) for the 2D CSM-I/CSM-II data set (upper left panel), the 2D CSM-Iκ/CSM-IIκ data set (upper right panel), the 2D CSM-I/CSM-II/
MAG data set (lower left panel), and the 2D CSM-Iκ/CSM-IIκ/MAG data set (lower right panel). In each panel, the star symbols correspond to the cluster centroids,
the blue circles to the observed SLSN-I sample, and the red triangles to the observed SLSN-II sample. For the 2D (tr1, td1) case, k-means clustering is unable to find
clusters that significantly overlap with the MAG and CSM models (see Section 4).

Figure 9. Same as in Figure 8 but for the 3D (s1, s2, s3) CSM-I/CSM-II/MAG
data set. The computed clusters associate with the underlying model categories
better than in the 2D case (see Section 4).
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composed of CSM models (∼98%). This strengthens our
previous suggestion (Section 3.3) that CSM models are superior
to MAG models in reproducing the observed SLSN LC
symmetry properties, including some fully symmetric LCs.
The same result holds in the CSM-Iκ/CSM-IIκ/MAG, k=2

case with more than half of observed SLSN LCs associated with
the cluster that is mostly composed of CSM models. This result
appears to hold up in the k=3 cases. Overall, CSM and MAG
models appear to be clearly distinguishable in terms of LC
symmetry properties (Figure 6). This indicates that LC shape

Table 8
Details of the Clustering Analysis

Data Sets Parameters ND
a k EN S̄ C0

b C1
b C2

b

CSM-I/CSM-II/MAG tr1, td1 2 2 0.62 0.66 5.95/18.45/75.6 59.28/0.68/40.05 L
33.33/25.00 66.67/75.00 L

CSM-I/CSM-II/MAG tr1, td1 2 3 0.46 0.58 61.11/0.00/38.89 27.70/12.16/60.14 0.00/19.05/80.95
57.14/50.00 28.57/50.00 14.29/0.00

CSM-I/CSM-II tr1, td1 2 2 0.77 0.63 99.59/0.41 48.44/51.56 L
57.14/75.00 42.86/25.00 L

CSM-Iκ/CSM-IIκ/MAG tr1, td1 2 2 0.68 0.65 44.61/11.03/44.36 11.19/0.00/88.81 L
66.67/75.00 33.33/25.00 L

CSM-Iκ/CSM-IIκ/MAG tr1, td1 2 3 0.49 0.56 38.89/1.85/59.26 42.90/13.53/43.56 1.30/0.0/98.70
28.57/50.0 57.14/50.00 14.29/0.00

CSM-Iκ/CSM-IIκ tr1, td1 2 2 0.66 0.57 77.18/22.82 88.76/11.24 L
47.62/50.00 52.38/50.00 L

CSM-I/CSM-II/MAG s1, s2, s3 3 2 <0.01 0.43 34.55/4.07/61.38 86.44/11.86/1.69 L
23.81/25.00 76.19/75.00 L

CSM-I/CSM-II/MAG s1, s2, s3 3 3 <0.01 0.32 26.19/4.76/69.05 82.35/17.65/0.00 71.34/2.44/26.22
28.57/25.00 71.43/75.00 0.00/0.00

CSM-I/CSM-II s1, s2, s3 3 2 <0.01 0.33 82.31/17.69 93.75/6.25 L
80.95/75.00 19.05/25.00 L

CSM-Iκ/CSM-IIκ/MAG s1, s2, s3 3 2 <0.01 0.60 31.12/5.81/63.07 73.33/26.67/0.00 L
42.86/25.00 57.14/75.00 L

CSM-Iκ/CSM-IIκ/MAG s1, s2, s3 3 3 <0.01 0.33 42.31/7.69/50.00 24.67/5.26/70.07 75.00/25.00/0.00
47.62/25.0 52.38/75.00 0.00/0.00

CSM-Iκ/CSM-IIκ s1, s2, s3 3 2 <0.01 0.50 84.18/15.82 73.77/26.23 L
38.10/25.00 61.90/75.00 L

CSM-I/CSM-II/MAG tr1, td1, tr2, td2 4 2 0.71 0.66 2.44/18.90/78.66 60.09/0.67/39.24 L
38.10/25.00 61.90/75.00 L

CSM-I/CSM-II/MAG tr1, td1, tr2, td2 4 3 0.54 0.56 0.00/16.47/83.53 61.97/0.00/38.03 26.17/13.42/60.41
19.05/0.00 52.38/50.00 28.57/50.00

CSM-I/CSM-II tr1, td1, tr2, td2 4 2 0.84 0.63 46.77/53.23 99.59/0.41 L
42.86/50.00 57.14/50.00 L

CSM-Iκ/CSM-IIκ/MAG tr1, td1, tr2, td2 4 2 0.77 0.64 44.81/11.14/44.05 11.56/0.00/88.44 L
61.90/75.00 38.10/25.00 L

CSM-Iκ/CSM-IIκ/MAG tr1, td1, tr2, td2 4 3 0.57 0.54 38.18/2.42/59.39 43.88/13.61/42.52 2.41/0.00/97.59
33.33/50.0 47.62/50.00 19.05/0.00

CSM-Iκ/CSM-IIκ tr1, td1, tr2, td2 4 2 0.76 0.55 88.51/11.49 77.48/22.52 L
61.90/75.00 38.10/25.00 L

CSM-I/CSM-II/MAG tr1, td1, tr2, td2, tr3, td3 6 2 0.74 0.65 60.00/0.67/39.33 3.03/18.79/78.18 L
61.90/75.00 38.10/25.00 L

CSM-I/CSM-II/MAG tr1, td1, tr2, td2, tr3, td3 6 3 0.57 0.55 62.11/0.26/37.63 0.00/15.48/84.52 24.66/13.70/61.64
52.38/50.00 19.05/0.00 28.57/50.00

CSM-I/CSM-II tr1, td1, tr2, td2, tr3, td3 6 2 0.86 0.62 46.77/53.23 99.59/0.41 L
42.86/50.00 57.14/50.00 L

CSM-Iκ/CSM-IIκ/MAG tr1, td1, tr2, td2, tr3, td3 6 2 0.80 0.64 45.11/11.03/43.86 9.79/0.00/90.21 L
61.90/75.00 38.10/25.00 L

CSM-Iκ/CSM-IIκ/MAG tr1, td1, tr2, td2, tr3, td3 6 3 0.60 0.52 37.65/2.35/60.00 2.38/0.00/97.62 44.44/13.89/41.67
28.57/50.00 23.81/0.00 47.62/50.00

CSM-Iκ/CSM-IIκ tr1, td1, tr2, td2, tr3, td3 6 2 0.82 0.54 77.18/22.82 88.76/11.24 L
33.33/25.00 66.67/75.00 L

Notes.
a Normalized error (EN) values have been rounded to two decimal points.
b The variables C0, C1, and C2 correspond to cluster associations with SLSN LC models and the observed SLSN sample. The top line corresponds to percentages of
model data, in the same order as shown in the “Models” column, that are assigned to the cluster. The bottom line corresponds to the percentage of SLSNe-I and
SLSNe-II (in the “% SLSN-I/% SLSN-II” format) that are assigned to the cluster.
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symmetry may be critical in identifying the power input
mechanism associated with observed SLSNe, based only on
photometry.

5.3. ND=4

In this case, we investigate k-means clustering for the
primary and the secondary rise and decline timescales. We elect
to focus on the k=2 cases because, again, they yield higher S̄
scores. Clear distinction is recovered between H-poor and
H-rich CSM models in the CSM-I/CSM-II and the CSM-Iκ/
CSM-IIκ cases: ∼100% of H-poor CSM models constitute the
C1 data in the CSM-I/CSM-II case and ∼89% of H-poor CSM
models constitute the C0 data in the CSM-Iκ/CSM-IIκ case.

For the CSM-I/CSM-II/MAG data set, we recover a cluster
that is mostly composed of CSM-type models (C1; 60% CSM-
I/CSM-II models and 40% MAG models) and a cluster that is
dominated by MAG models (C0; ∼20% CSM-I/CSM-II
models and ∼80% MAG models). The majority (∼66%–

75%) of SLSNe-I/SLSNe-II are associated with C1, indicating
preference toward CSM models, although the correlation is not
as strong as in the ND=3 case.

5.4. ND=6

The last clustering analysis was performed on a six-
dimensional data set comprised of the primary, secondary,
and tertiary rise and decline timescales. This is the most
complete LC shape parameter data set we investigate because it
encapsulates the three LC symmetry values, uniquely defined
by their corresponding timescales. Furthermore, the use of all
relevant LC shape parameters yields the highest S̄ scores (∼0.8
in some cases) compared to the lower dimensionality cases. As
with all other cases, we observe that k=2 clustering leads to
more accurate classification, therefore we only focus on these
results for our discussion.

Our results are consistent with those of the ND=4 case,
yielding a cluster dominated by CSM-type models (60%) and a
cluster dominated by MAG models (∼80%) with the majority
of SLSNe-I/SLSNe-II associated with the former in the CSM-
I/CSM-II/MAG case. In particular, ∼66%–75% of observed
SLSN LCs are associated with the CSM-dominated cluster.

In summary, we find that clustering of LC shape properties
generally favors the CSM power input mechanism although the
MAG mechanism cannot be ruled out. While clustering on LC
timescales supports this result, it is even more robust in the
clustering of LC symmetry parameters.

6. Discussion

In this paper, we explored how high-cadence photometric
observations of SLSNe detected shortly after explosion can be
used to characterize their power input mechanism. In particular,
we constrained the LC shape properties of a set of observed
SLSNe-I and SLSNe-II, focusing only on events with complete
photometric coverage and searched for possible correlations
with semianalytic model LC shapes assuming either a magnetar
spindown (MAG) or an SN ejecta–circumstellar matter interac-
tion (CSM) power input (Chatzopoulos et al. 2012, 2013).

We reiterated that there is a number of simplifying
assumptions in using these semianalytical models, including
issues with the approximation of centrally located heating
sources and homologous expansion in cases like shock heating,
where the power input can occur close to the photosphere, the

assumption of constant opacity, and model parameter degen-
eracy (Chatzopoulos et al. 2013; Moriya et al. 2013b; Khatami
& Kasen 2018). In addition, models predict bolometric LCs
while the observed, rest-frame SLSN LCs are pseudo-
bolometric LCs computed by fitting the SED of each event
based on available observations in different filters. Regardless
of all these caveats, semianalytic models still constitute a
powerful tool to study SLSNe, providing us with the potential
to investigate LC shape properties across the associated
parameter space for each power input by computing a large
number of models. Nevertheless, we have supplemented our
study with data sets of numerical MAG and CSM model SLSN
LCs available in the literature.
To quantitatively determine whether the main proposed

SLSN power input mechanisms yield model LCs with different
shape properties (rise and decline timescales and symmetry
around peak luminosity), we applied k-means clustering
analysis for different combinations of parameters and model
data sets and computed cluster associations for the observed
SLSN sample. We highlight the main results of our analysis
below:

1. SLSNe exhibit a strong correlation between their primary
rise (tr1) and decline (td1) timescales. Although this
correlation is reproduced by both MAG and CSM power
input models, the larger scatter found in CSM models
overlaps better with the SLSN-I/SLSN-II data.

2. CSM models generally correspond to faster evolving LCs
in agreement with observations of some SLSNe-I.

3. MAG models fail to produce fully symmetric LCs around
peak luminosity. In particular, MAG models are never
found to be symmetric around the first luminosity
threshold (s1,max=0.54), including in cases of high
gamma-ray leakage.

4. While the majority of CSM models also fail to produce
fully symmetric LC shapes, there is a small fraction of
them that do. This is consistent with ∼24% of SLSN-I
LCs in our sample that are measured to be fully
symmetric.

5. Symmetric SLSN LCs favor a truncated power input
source that leads to faster LC decline rates past peak
luminosity. The CSM model naturally provides such a
framework because forward and reverse shock power
inputs are terminated. An alternative truncated input
could be energy release by fallback accretion.

6. MAG models fail to produce LCs with a positive second
derivative during the early rise to peak luminosity
(concave-up). CSM models can produce both concave-
up and concave-down LCs.

7. k-means clustering analysis suggests that most observed
SLSN LCs are associated with CSM power input yet the
MAG model cannot be ruled out. A multiple formation
channel is therefore possible for SLSNe of both spectro-
scopic types.

8. The most distinct clustering between MAG and CSM
data is found in the 3D LC symmetry parameter space (s1,
s2, s3). In this case, the majority (>75%) of SLSNe are
strongly associated with the CSM-dominated cluster.

9. LC symmetry properties, together with the shape of the
LC at early times, may be key in distinguishing between
different power input mechanisms in SLSNe.
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Our results illustrate the importance of early detection and
high-cadence multiband photometric follow-up in determining
the nature of SLSNe. As transient search surveys like LSST,
ZTF, and Pan-STARRS usher in the new era of big data
transient astronomy, a larger number of well-constrained SLSN
LCs will become available, providing the opportunity to use
photometry to characterize their power input mechanisms. This
is of critical importance in the study of luminous and
uncharacteristic transients in general, as photometry will be
more readily available than spectroscopy in most cases.

We have shown that machine-learning approaches like k-means
clustering can be instrumental in helping us characterize SLSNe
based on their LC properties, namely rise and decline timescales
and LC symmetry. This is made possible by comparing against
the LC shape properties of different power input mechanisms
using semianalytic or numerical models. As such, it is of great
importance to enhance our numerical modeling efforts for all
proposed power input mechanisms and survey a large fraction of
the model parameter space. In addition to aiding with SLSN and
luminous transient characterization and classification, this will
provide us with constraints on the physical domains that enable
these extraordinary stellar explosions.
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