The tribological characteristics of diamond-like carbon (DLC) films have been studied by lateral force microscopy (LFM). Specimens from two fabrication routes, ion-beam assisted deposition and chemical vapour deposition, have been investigated. Thick (micrometres) and thin (a few nanometres) films from both routes have been considered, as have the service environments of ambient air and vacuum. Lateral force data were calculated from `friction loops', obtained as functions of load, surface topography, scan speed and service environment. An identical methodology and LFM probe were used throughout the series of measurements in order to ensure internal consistency, and the validity of the methodology was checked against measurements on epitaxially grown Si. A linear dependence was observed between lateral force and force loading up to ca
, in accord with a multi-asperity model, thus allowing determination of coefficients of friction that ranged from 0.05 to 0.15. The results showed that adhesive interactions contributed up to
to the overall dynamic load. Meniscus interaction played a minor role in comparison to that from tribo-generated electrostatic forces. The experiments show that LFM methodologies have value and relevance to the science and technology of tribology, especially when the required spatial resolution cannot be obtained with the traditional macroscopic techniques.