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Abstract
The load–deflection relationship of the uniformly loaded rectangular cross-section cantilever is
analysed by a modified mechanical model, which exhibits its conformity to the physical
situation by considering both the tangential and normal surface stresses. The analytical
solution of the modelling equation is solved and presented in terms of the first and the second
kinds of the Airy functions in association with Scorer’s function. The resultant deflection
profile contains an inflection point due to the restoring bending moment contributed by the
critical surface loadings. The relationships of the tip deflection and the loading scenario are
investigated, which reveal the fact that various loading scenarios can result in different
deflection profiles, albeit with the same tip deflection. A numerical algorithm is given in the
appendix to solve the loading scenario, by which the surface loadings can formally be
determined for the designated applications for the devices utilizing the cantilever structure.

1. Introduction

Cantilever-based devices have been exploited as sensors [1–9]
in the last decade by detecting the deflection and calculating
the surface stresses induced by the interaction between the
cantilever and the surroundings. For most of the applications,
the classical Stoney’s equation and its modifications are
employed for the designated purposes by detecting the tip
deflection and analysing the corresponding surface loadings
[3, 4, 7–20]. The feature of the Stoney-type models is that the
cantilever is deflected by nothing but the loadings parallel to the
surface, concentrated or distributed [11, 21], and the resultant
deflection profile is a monotonic increasing or decreasing
function without being inflected. However, interactions in
the normal direction should be taken into account, by which
the restoring bending moment can be initiated from any kind
of disturbances in practical situations, such as, the gravity
of the overlying objects, the differential pressure from the
ambient medium, and the immobilization of the analyte
molecules binding on the cantilever surfaces. Otherwise, any
minute repulsive perturbation will detach everything from the
cantilever surface and eventually fail the designated purpose
since nothing is detected by the device.

Another issue should be considered. From the
experimental perspective, the quality and the quantity as
well of a cantilever-based measurement are dependent on the
parameters of the underlying mechanical model employed to
characterize the deflection. For the Stoney-type model and
the model studied in this work, the deflection is characterized
by two kinds of parameters: the exerted surface loadings and
the location of the neutral surface. As mentioned above,
the loading scenario is analysed by the tip deflection for
most applications. However, such a measurement may lead
to ambiguity since different loading scenarios can bend the
cantilever with the same tip deflection, especially for the
devices deflected by distributed surface loadings. Therefore,
measurements in addition to the tip deflection are required to
correctly determine the loading scenario.

This paper investigates the load–deflection relationship
of the rectangular cross-section cantilever by a modified
mechanical model, which takes both the tangential and the
normal surface stresses into consideration. The resultant
deflection profile contains an inflection point due to the
intrinsic restoring bending moment contributed by the critical
surface loadings. In section 2, the modelling equation is
developed by the principle of virtual work (PVW) [21–23] and
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is presented as a non-dimensional inhomogeneous fourth-order
linear ordinary differential equation with boundary conditions.
The deflection and curvature profiles are analytically solved
and expressed in terms of the first and second kinds of
the Airy functions, Ai(X) and Bi(X), in association with
Scorer’s function Gi(X) [24–26]. The series solution is
provided in the appendix for [27]. In section 3, the critical
loading scenario and the inflection point for the deflection
profile are solved from the intrinsic bending moment. The
relationships of the tip deflection and the loading scenarios
are analysed and demonstrated by numerical examples, which
reveal the fact that various loading scenarios can achieve the
same tip deflection albeit with different deflection profiles.
A numerical algorithm assuming that the whole deflection
profile is measurable is given in the appendix to solve the
loading scenario by the analytical solution developed in
section 2. It is to be emphasized that to the authors’ knowledge
the whole cantilever deflection profile is yet unavailable.
Therefore, the algorithm is just proposed without experimental
verification.

2. Mechanical model and the analytical solution

This section develops the modified model for the deflection of
the rectangular cross-section cantilever originally proposed by
Zhang et al [21]. The analytical solution to the modelling
equation is derived and is used to investigate the load–
deflection relationship in the following section.

2.1. Development of the mechanical model

As illustrated in figure 1, the rectangular cantilever is of length
L, width w and thickness t and is loaded on the top surface by
a uniformly distributed normal surface stress σn and tangential
surface stress σt , as shown in figure 1. The dimension
of the exerted surface stresses is force per unit area. The
downward normal and the tangential tensile surface stresses
and the convex bending moment are designated as positive
for sign convention. The modelling differential equation of
the deflection and the corresponding boundary conditions at
equilibrium can be derived by PVW [21–23] as follows. The
elastic strain energy V stored in the deflected cantilever beam
is given as

V =
∫ L

0

E∗IN

2

(
d2y

dx2

)2

dx,

where E∗ = E/(1 − µ) is the biaxial modulus [15], E and µ

are Young’s modulus and Poisson’s ratio, respectively and IN

is the area moment of inertia with respect to the neutral surface
at the depth tN. The external work done on the stressed beam
can be presented as

W = −
∫ L

0

σtw

2
(L − x)

(
dy

dx

)2

dx

+
∫ L

0

[
σttNw(L − x) +

σnw

2
(L − x)2

] (
d2y

dx2

)
dx.

By applying PVW, δ(V − W) = 0, the differential equation
and the boundary conditions characterizing the load–deflection

Figure 1. Schematic diagram of the cantilever beam dimensions,
coordinates and the loading scenarios of the present model
[21, 24, 27].

relationship are derived as

E∗IN
d4y

dx4
− σtw(L − x)

d2y

dx2
+ σtw

dy

dx
= σnw

for 0 � x � L, (1)

y(0) = dy

dx
(0) = d2y

dx2
(L) = E∗IN

d3y

dx3
(L) + σttNw = 0. (2)

Equation (1) and boundary conditions (2) can be non-
dimensionalized as an inhomogeneous fourth-order linear
ordinary differential equation with four boundary condi-
tions [24, 27]:

Y (4) − β(1 − X)Y (2) + βY (1) = γ, 0 � X � 1, (3)

Y (0) = Y (1)(0) = Y (2)(1) = Y (3)(1) + αNβ = 0, (4)

where X ≡ x/L, Y (X) ≡ y(x)/L and Y (n) ≡ dnY (X)/dXn

for n = 0, 1, 2, . . ., respectively. The non-dimensional
parameters αN, β and γ are defined as

αN ≡ tN

L
, β ≡ σt

E∗
wL3

IN
, γ ≡ σn

E∗
wL3

IN
. (5)

The value of αN is dependent on the surface loadings
and is genuinely varying throughout the stressed beam, i.e.
αN = αN(X). For the sake of simplicity, αN is set as a
constant and is considered as the average locus of the neutral
surface in the following analysis. It is noted that since
modelling equation (3) is linear and boundary conditions (4)
are independent of γ , the homogeneous part of the solution of
(3) is exactly the same as that of model # 3 in [ [21]], which
will be shown in the next subsection.

2.2. Derivation of the analytical solution

The analytical solution Y (X) to (3) and (4) is derived as
follows [24]: integrating (3) in part with the boundary condition
Y (3)(1) + αNβ = 0 in (4) gives

Y (3) − β(1 − X)(Y (1) − β−1γ ) = −αNβ. (6)

2
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Let

Z(X) ≡ Y (1)(X) − β−1γ. (7)

Rewrite (6) and (4) as

Z(2) − β(1 − X)Z = −αNβ, (8)

Z(0) + β−1γ = Z(1)(1) = 0. (9)

Note that (8) can be solved and presented in terms of Airy and
Scorer’s functions [24–26]:

Z(X) = cAAi(λ(1 − X)) + cBBi(λ(1 − X))

+ cGGi(λ(1 − X)) (10)

in which λ is a scaling factor, Ai(X) and Bi(X) are the first and
second kinds of the Airy functions, respectively, and Gi(X) is
Scorer’s function defined as [25, 26]

Gi(x) = Ai(x)

∫ x

0
Bi(t) dt + Bi(x)

∫ ∞

x

Ai(t) dt . (11)

The scaling factor λ and the coefficient cG are determined by
substituting (10) and (11) into (8), which give

λ = β1/3, cG = παNβλ−2. (12)

From boundary conditions (9), the coefficients cA and cB are
solved and presented in association with cG in matrix form as

c = A−1 · u (13)

in which

c = [cA cB cG,]T ,

u =
[
−γ

β
0

παNβ

λ2
,

]T

, (14)

A =




Ai(λ) Bi(λ) Gi(λ)

Ai(1)(0) Bi(1)(0) Gi(1)(0)

0 0 1


 .

The analytical solutions for the deflection and curvature of the
stressed cantilever are calculated from (7), (10) and (11), with
the coefficients cA, cB and cG evaluated by (13) and (14), as

Y (X) =
∫ X

0
[Z(ξ) + (β−1γ )] dξ

= cA

λ

∫ λ

λη

Ai(ξ) dξ +
cB

λ

∫ λ

λη

Bi(ξ) dξ

+
cG

λ

∫ λ

λη

Gi(ξ) dξ +

(
γ

β

)
X, (15)

Y (2)(X) = Z(1)(X)

= −λ[cAAi(1)(λη) + cBBi(1)(λη) + cGGi(1)(λη)]

in which η = 1 − X.

2.3. Remarks

The deflection profile can also be solved by the series solution
method [27], by which Y (X) is presented as a convergent
infinite polynomial [28–30] in terms of the loading scenario.
Details of the coefficients of the series solution are given in
appendix A.

From (10)–(15), the deflection Y (X) can be
decomposed as

Y (X) = αNYαN(X) + γ Yγ (X). (16)

Both the reduced deflection components, YαN(X) and Yγ (X),
are functions of X and β, respectively. The linear dependence
of Y (X) on αN and γ is also manifested from the series
solution (A.2)–(A.4). It is noted that by setting γ = 0,
the inhomogeneity of the present model disappears and the
resultant homogeneous modelling equation and the solution
YH(X) are identical to model #3 proposed by Zhang et al and
the corresponding solution YZ(X) [21, 24, 27]:

YZ(X) ≡ YH(X) = αNYαN(X).

Hence, Zhang’s model can be considered as a special case
of the present model by discarding the surface loading in the
normal direction.

3. Discussions

The most distinctive feature of the present model developed
in section 2 is that the tangential and normal surface
stresses are considered, by which the resultant deflection
profile can be complicated and contain an inflection point
due to the restoring bending moment contributed by the
surface loadings in different directions. Meanwhile, for
most of the cantilever-based devices the tip deflection is
measured to evaluate the loading scenario for the designated
applications. Nonetheless, such a measurement may fail the
designated purpose since different loading scenarios can bend
the cantilever with different deflection profiles albeit with
the same tip deflection. In this section, the critical loading
scenario and the inflection point for the deflection profile
are investigated. The relationships of the tip deflection with
different loading scenarios are analysed and demonstrated
by numerical examples. A numerical algorithm is given in
the appendix to solve the loading scenario by the analytical
solution developed in section 2, by which the correct surface
loadings can be formally determined for the designated
applications of the cantilever-based devices.

3.1. The critical loadings for the deflection profile with
inflection point

According to the fundamental theories of material mechanics
and linear elasticity, the intrinsic bending moment can be
represented by Y (2)(X), which can be obtained from (6) by

3
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partial integration as

Y (2)(X) = αNβ(1 − X) +
γ

2
(1 − X)2 + m(X),

m(X) = β(1 − X)Y(X) − β

∫ 1

X

Y (u) du.

(17)

For the cantilever characterized by the present model, the
restoring bending moment inherent in (17) is admissible since
the surface stresses in two directions are considered. In
particular, due to the term m(X) in (17) it is conceivable
that the resultant Y (X) is more complicated than that by the
Stoney-type and other models [11, 21, 24]. In the meantime a
cantilever experiences the curvature change as the direction of
the intrinsic bending moment reverses at the critical point Xc;
that is,

Y (2)(Xc) = 0. (18)

The relationship of Y (2)(X) and the loading scenario with
αNβ > 0 is schematically demonstrated in figure 2(a), in
which αNβ represents the bending moment density contributed
by the tangential surface stress. The contour Y (2)(X) = 0
separates the γ –X plane into convex (Y (2)(X) > 0) and
concave (Y (2)(X) < 0) regions, indicating that the direction of
the intrinsic bending moment reverses at some critical location
Xc along the cantilever when the normal surface stress γ is less
than the critical γc, which can be evaluated by Y (2)(0) = 0 from
(16) with given αN and β as

γc = −αNY (2)
αN

(0)/Y (2)
γ (0). (19)

Figures 2(b) and (c) illustrate the deflection and curvature
profiles at different normal surface stresses, in which γc =
−0.413 is evaluated by (19) with αN = 2.5 × 10−2 and
β = 10. The solid profiles are evaluated with γ = −0.813,
along which the critical point Xc = 0.308 is evaluated by
(18) since γ � γc, as indicated by the circles in figures 2(b)
and (c), respectively. The dashed profiles are evaluated with
γ = −0.313, by which the entire cantilever is convexly bent
since γ > γc, as illustrated by the convex region in figure 2(a).
Hence, the deflection increases without being inflected since
Y (0) = Y (1)(0) = 0 and Y (2)(X) > 0 for 0 � X � 1.

The aforementioned description also applies when
αNβ < 0, with all the corresponding directions of the intrinsic
bending moment reversed associated with γ � γc and γ < γc,
as shown in figure 3(a). The solid profiles demonstrated in
figures 3(b) and (c) are evaluated with αN = 2.5 × 10−2,
β = −1 and γ = 8.13×10−2; the corresponding critical value
and the critical point are γc = 5.13 × 10−2 and Xc = 0.403,
respectively. The dashed profiles in figures 3(b) and (c)
represent the non-inflected deflection and curvature evaluated
by the same αN and β with γ = 5.03 × 10−2, respectively.

Two cases should be considered as αNβ ≈ 0: first, as
manifested from (16) and (19):

lim
αN→0

Y (X) = γ Yγ (X),

lim
αN→0

γc = 0.

Figure 2. Relationships of the deflection, the intrinsic bending
moment distribution and the loading scenario. (a) αNβ > 0.
(b) Deflection. (c) Intrinsic bending moment distribution
(αN = 2.5 × 10−2, β = 10, γc = −0.413, Xc = 0.308).
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Figure 3. Relations of the deflection, the intrinsic bending moment
distribution and the loading scenario. (a) αNβ < 0. (b) deflection.
(c) Intrinsic bending moment distribution (αN = 2.5 × 10−2,
β = −1, γc = 5.13 × 10−2, Xc = 0.403).

The cantilever is bent without being inflected since
Y (2)(X) �= 0 for 0 � X < 1 when γ �= γc, as demonstrated
in figures 4(a)–(c). The second case is that when β ≡ 0,
modelling equations (3) and (4) become the Euler–Bernoulli
beam equation loaded with a uniformly distributed normal
surface stress, which can be solved as

Y (X) = γ

24
X2(6 − 4X + X2) if β = 0.

This deflection profile is monotonic without inflection for
arbitrary normal surface stress γ since Y (2)(X) = γ

2 (1 − X)2.
Finally, the tip of the cantilever is the trivial critical point
regardless of the loading scenario since the boundary condition
Y (2)(1) = 0 in (4), as demonstrated in figures 2(c), 3(c)
and 4(c), respectively.

3.2. The relationship of the tip deflection and the surface
loadings

Figures 5(a) and 6(a) demonstrate the relationship of the tip
deflection and the loading scenario, in which the solid, dashed
and dashed–dotted contours represent the same tip deflection
evaluated at different normal surface stresses: γ < 0, γ = 0
and γ > 0, respectively. The points A, B and C in figure 5(a)
are evaluated with β > 0, while P , Q and R in figure 6(a) are
evaluated with β < 0, indicating that the depth of the neutral
surface can be lifted up or lowered down, depending on the
magnitudes and directions of the surface stresses. It is also
manifested from (16) that αN is linearly dependent on γ at
the same Y (1) and β. The deflection profiles of the same tip
deflection by different loading scenarios are demonstrated in
figure 5(b), in which the tip deflection Y (1) = 2 × 10−2, bent
by β = 1 with (γ, αN) = (−2.5, 1.002), (0, 6.748 × 10−2)

and (2.5, −0.867) for the solid, dashed and dashed–dotted
profiles, respectively. The tip deflection in figure 6(b) is
Y (1) = −2.25 × 10−2, bent by β = −1 with (γ, αN) =
(−2.5, −0.882), (0, 5.904 × 10−2) and (2.5, 1), as depicted
by the solid, dashed and dashed–dotted profiles, respectively.

All the contours and deflection profiles shown in figures 5
and 6 reveal that the designated purpose of the cantilever-based
device may fail by measuring the tip deflection to resolve
the surface loadings, since the same tip deflection can be
achieved by different loading scenarios. In fact, the quality
and quantity of the experimental measurement depend on the
parameters of the mechanical model employed to characterize
the cantilever deflection. Therefore, two more measurements
in addition to the tip deflection are required to determine the
loading scenario, since the present model characterizes the
deflection with three parameters: β, γ and αN. In appendix B,
a numerical algorithm is proposed that by assuming that the
whole deflection profile is measurable, the loading scenario can
be formally determined with the analytical solution developed
in section 2 by the deflections measured at three arbitrarily
selected locations along the cantilever.

4. Conclusion

By taking the tangential and the normal surface stresses into
consideration, the present model exhibits its conformity to
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Figure 4. Relationships of the deflection, the intrinsic bending
moment distribution and the loading scenario. (a) αN = 0.
(b) Deflection. (c) Intrinsic bending moment distribution (αN = 0,
β = 1, γc = 0).

Figure 5. Relationships of the tip deflection and the loading
scenario. (a) Contours of the same tip deflection with β > 0.
(b) Deflection profiles of the same tip deflection by different loading
scenarios.

the physical situation for the cantilever-based devices. The
modelling equation and the numerical examples manifest
that the present model comprises its predecessor proposed
by Zhang et al as a special case by discarding the normal
surface stress. The conditions for the critical surface
loadings are developed from the analytical solution of the
modelling equation, by which the restoring bending moment
deflects the cantilever with one inflection point contained
in the resultant deflection profile. The analysis of the
relationship for the tip deflection and the loading scenario
reveals the insufficiency of determining the loading scenario
from the tip deflection. Since either the present, or the Stoney-
type models adopting distributed surface loadings characterize
the cantilever deflection with more than one parameters various
loading scenarios can result in the different deflection profiles
albeit with the same tip deflection. The authors suggest
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Figure 6. Relationships of the tip deflection and the loading
scenario. (a) Contours of the same tip deflection with β < 0.
(b) Deflection profiles of the same tip deflection by different loading
scenarios.

that the whole deflection profile should be measured by any
experimental methodology to determine the loading scenario
with the proposed algorithm for the devices utilizing the
cantilever structure.

Appendix A.

The series solution for the deflection profile can be presented
as [27–30]

Y (X) =
∞∑

n=0

anX
n+2 = YH(X) + YP(X), 0 � X � 1

(A.1)

in which
an = (an)H + (an)P,

YH(X) =
∞∑

n=0

(an)HXn+2,

YP(X) =
∞∑

n=0

(an)PX
n+2.

(A.2)

The coefficients (an)H and (an)P can be presented in terms of
α, β and γ as

(a0)H = αNβ

2

∞∑
n=0

βn

(3n + 1)!

n−1∏
k=0

(3k + 1)

1 +
∞∑

n=0
βn+1

3n + 1

(3n + 3)!

n−1∏
k=0

(3k + 1)

,

(a1)H = −αNβ

6
, (a2)H = β

12
(a0)H, (A.3)

(an+3)H = β
(n + 3)!

(n + 5)!
×

[
(an+1)H − n + 2

n + 3
(an)H

]
,

n = 0, 1, 2, . . . ,

and

(a0)P = γ

2

∞∑
n=0

3n + 1

3n + 2
× βn

(3n + 1)!

n−1∏
k=0

(3k + 1)

1 +
∞∑

n=0
βn+1

3n + 1

(3n + 3)!

n−1∏
k=0

(3k + 1)

,

(a1)P = −γ

6
, (a2)P = γ

24
+

β

12
(a0)P, (A.4)

(an+3)P = β
(n + 3)!

(n + 5)!
×

[
(an+1)P − n + 2

n + 3
(an)P

]
,

n = 0, 1, 2, . . . ,

where
n∏

k=m

fk ≡
{

fm × fm+1 × · · · × fn if n > m,

1 otherwise,

m, n integers. (A.5)

Note that 00 ≡ 1 and 0n ≡ 0 if n �= 0 in (A.3) and (A.4).
Details of the derivations of (A.3) and (A.4) and the related
mathematical properties can be referred to in [27–30].

Appendix B.

As mentioned in section 3.2, the cantilever-based device
may fail the designated purpose by measuring the loading
scenario from the tip deflection, since the same tip deflection
can be achieved by various loading scenarios. In this
appendix, a numerical algorithm is proposed to formally
determine the loading scenario characterized by the present
model.

Suppose that the whole deflection profile is measurable;
so three locations X̃1, X̃2 and X̃3 along the cantilever can be

7
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selected at one’s disposal, at which the measured deflections
are denoted as Ỹ1, Ỹ2 and Ỹ3, respectively. Note that the
fixed end, X̃ = 0, should be excluded since Y (X̃) = 0
is trivial by boundary condition (4). From (16), Ỹ1 can be
presented as

Ỹ1 = αNYαN(X̃1) + γ Yγ (X̃1). (B.1)

Since Y (X) is linearly dependent on αN and γ , they can be
solved and presented in matrix form in terms of the other
measured quantities as

[
αN

γ

]
=

[
YαN(X̃2) Yγ (X̃2)

YαN(X̃3) Yγ (X̃3)

]−1

·
[
Ỹ2

Ỹ3

]
. (B.2)

Obviously, αN and γ in (B.2) are functions of β only, since
both the reduced deflections YαN(X) and Yγ (X) are functions
of X and β, respectively. Hence, the value of β can be solved
by substituting (B.2) into (B.1), from which the result can be
presented as

β = β(X̃1, X̃2, X̃3),

X̃k ≡ (X̃k, Ỹk), k = 1, 2, 3.

(B.3)

The values of αN and γ can be solved from (B.2) with (B.3),
which can be presented as

αN = αN(X̃1, X̃2, X̃3),

γ = γ (X̃1, X̃2, X̃3).

(B.4)

As shown in (B.3) and (B.4), the loading scenario is formally
solved by the deflections measured at three arbitrarily selected
locations along the cantilever.

Special case. When the critical point X̃c is detected within the
cantilever, as mentioned in section 3.1, the proposed algorithm
can be simplified as follows. Let the deflections Ỹ1 and Ỹc be
measured at X̃1 and X̃c, respectively. From (B.2)

[
αN

γ

]
=

[
YαN(X̃1) Yγ (X̃1)

YαN(X̃c) Yγ (X̃c)

]−1

·
[
Ỹ1

Ỹc

]
. (B.5)

On the other hand, Y (2)(X̃c) = αNY (2)
αN

(X̃c) + γ Y (2)
γ (X̃c) = 0

since X̃c is the critical point, from which

γ

αN
= −Y (2)

αN
(X̃c)

Y
(2)
γ (X̃c)

. (B.6)

The loading scenario can be formally solved from (B.5) and
(B.6), which can be presented as

αN = αN(X̃1, X̃c),

β = β(X̃1, X̃c),

γ = γ (X̃1, X̃c).

(B.7)
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