This volume contains the papers presented at the 70th PTB Seminar which, the second on the subject "Fundamental Constants in Physics and Metrology", was held at the Physikalisch-Technische Bundesanstalt in Braunschweig from October 21 to 22, 1985. About 100 participants from the universities and various research institutes of the Federal Republic of Germany participated in the meeting. Besides a number of review lectures on various broader subjects there was a poster session which contained a variety of topical contributed papers ranging from the theory of the quantum Hall effect to reports on the status of the metrological experiments at the PTB. In addition, the participants were also offered the possibility to visit the PTB laboratories during the course of the seminar.
During the preparation of the meeting we noticed that even most of the general subjects which were going to be discussed in the lectures are of great importance in connection with metrological experiments and should be made accessible to the scientific community. This eventually resulted in the idea of the publication of the papers in a regular journal. We are grateful to the editor of Metrologia for providing this opportunity.
We have included quite a number of papers from basic physical research. For example, certain aspects of high-energy physics and quantum optics, as well as the many-faceted role of Sommerfeld's fine-structure constant, are covered. We think that questions such as "What are the intrinsic fundamental parameters of nature?" or "What are we doing when we perform an experiment?" can shed new light on the art of metrology, and do, potentially, lead to new ideas. This appears to be especially necessary when we notice the increasing importance of the role of the fundamental constants and macroscopic quantum effects for the definition and the realization of the physical units. In some cases we have reached a point where the limitations of our knowledge of a fundamental constant and/or a physical unit have their origin in the shortcomings of our understanding of the underlying physics rather than being due to the technical problems in the experiment. In this context, it is worth mentioning that the quantum Hall effect, the discovery of which by Klaus von Klitzing was rewarded only recently by the Nobel Prize for physics, still needs further attention. We are able to reproduce experimentally resistances with an extremely high precision using this effect. Nevertheless, we have severe difficulties in our present physical understanding of the mechanism which provides the plateaux in the Hall resistance.
Lectures on "Quantum Non-Demolition" and "Determination of the Boltzmann Constant" have been included in order to show routes to "new frontiers" in metrology. Even the "conventional" metrological concepts, when combined with modern technology, can provide surprises: Although the Josephson effect is known since 1962, it was only recently that a quantized voltage in the 1-volt range could be experimentally realized. The experiment was performed by making use of modern thin-film technology. In addition to providing a simple and precise voltage standard in a practically important regime it also sets a new frontier in precision electrical metrology by demonstrating that, ultimately, the reproducibility of the unit of voltage is limited by that of the unit of time.
We are indebted to a number of people who helped to organize the Seminar as well as to prepare this volume. Especially, we would like to mention Mrs Inge Bode. Without her continuous work the 70th PTB Seminar would not have been possible in the way we all have experienced it. We appreciate also the help of R P Hudson and H Lotsch in achieving a fast publication of this volume. Financial support from the Helmholtz-Fond is gratefully acknowledged.