Brought to you by:

Table of contents

Volume 49

Number 13, 7 July 2004

Previous issue Next issue

PAPERS

2767

, , and

A tissue-mimicking phantom material has been developed for use with thermal therapy devices and techniques. This material has magnetic resonance properties (primarily T2) which change drastically upon thermal coagulation, enabling its use for device characterization and treatment verification using simple T2-weighted imaging techniques. The coagulation temperature of the phantom can be changed from 50–60 °C by adjusting the pH from 4.3 to 4.7. The energy absorption properties can be adjusted to match the acoustical and optical properties of tissues. T2 relaxation measurements are provided as a function of temperature, along with T2-weighted MR images to illustrate the visualization of heating patterns. A complete recipe for fabricating phantoms is provided.

2779

and

Magnetic resonance imaging scans impose large gradient magnetic fields on the patient. Modern imaging techniques require this magnetic field to be switched rapidly for good resolution. However, it is believed that this can also lead to the unwanted side effect of peripheral nerve stimulation, which proves to be a limiting factor to the advancement of MRI technology. This paper establishes an analytical model for the fields produced within an MRI scanner by transverse gradient coils of known current density. Expressions are obtained for the magnetic induction vector and the electric field vector, as well as for the surface charge and current densities that are induced on the patient's body. The expressions obtained are general enough to allow the study of any combination of gradient coils whose behaviour can be approximated by Fourier series. For a realistic example coil current density and switching function, it is found that spikes of surface charge density are induced on the patient's body as the gradient field is switched, as well as loops of surface current density that mimic the coil current density. For a 10 mT m−1 gradient field with a rise time of 100 µs, the magnitude of the radial electric field at the body is found to be 10.3 V m−1. It is also found that there is a finite limit to radial electric field strength as rise time approaches zero.

2799

The purpose was to introduce a novel method for computer-based classification of visual field data derived from perimetric examination, that may act as a ' counsellor', providing an independent 'second opinion' to the diagnosing physician. The classification system consists of a Hopfield-type neural attractor network that obtains its input data from perimetric examination results. An iterative relaxation process determines the states of the neurons dynamically. Therefore, even 'noisy' perimetric output, e.g., early stages of a disease, may eventually be classified correctly according to the predefined idealized visual field defect (scotoma) patterns, stored as attractors of the network, that are found with diseases of the eye, optic nerve and the central nervous system. Preliminary tests of the classification system on real visual field data derived from perimetric examinations have shown a classification success of over 80%. Some of the main advantages of the Hopfield-attractor-network-based approach over feed-forward type neural networks are: (1) network architecture is defined by the classification problem; (2) no training is required to determine the neural coupling strengths; (3) assignment of an auto-diagnosis confidence level is possible by means of an overlap parameter and the Hamming distance. In conclusion, the novel method for computer-based classification of visual field data, presented here, furnishes a valuable first overview and an independent 'second opinion' in judging perimetric examination results, pointing towards a final diagnosis by a physician. It should not be considered a substitute for the diagnosing physician. Thanks to the worldwide accessibility of the Internet, the classification system offers a promising perspective towards modern computer-assisted diagnosis in both medicine and tele-medicine, for example and in particular, with respect to non-ophthalmic clinics or in communities where perimetric expertise is not readily available.

2811

and

To study the effects of a variable relative biological effectiveness (RBE) in inverse treatment planning for proton therapy, fast methods for three-dimensional RBE calculations are required. We therefore propose a simple phenomenological model for the RBE in therapeutic proton beams. It describes the RBE as a function of the dose, the linear energy transfer (LET) and tissue specific parameters. Published experimental results for the dependence of the parameters alpha and beta from the linear-quadratic model on the dose averaged LET were evaluated. Using a linear function for alpha(LET) in the relevant LET region below 30 keV per micrometre and a constant beta, a simple formula for the RBE could be derived. The new model was able to reproduce the basic dependences of RBE on dose and LET, and the RBE values agreed well with experimental results. The model was also applied to spread-out Bragg peaks (SOBP), where the main effects of a variable RBE are an increase of the RBE along the SOBP plateau, and a shift in depth of the distal falloff. The new method allows fast RBE estimations and has therefore potential applications in iterative treatment planning for proton therapy.

2827

, , and

In this work, a procedure, based on Monte Carlo techniques, to analyse the effect on the tumour control probability of the time interval between surgery and postoperative radiotherapy is presented. The approach includes the tumour growth as well as the survival of tumour cells undergoing fractionated radiotherapy. Both processes are described in terms of the binomial distribution. We have considered two different growth models, exponential and Gompertz, the parameters of which have been fixed to reproduce the clinical outcome corresponding to a retrospective study for patients with head and neck squamous cell carcinomas. In the cases analysed, we have not found significant differences between the results obtained for both growth models. The mean doubling times found for residual clonogens after surgery are less than 40 days. The rate of decrease in local control is around 0.09% per day of delay between surgery and radiotherapy and the corresponding time factor is about 0.11 Gy per day.

2841

Dynamic and physical (hard) wedges are used in 3D conformal radiotherapy in order to improve dose distribution in patients. Unlike wedge factors for physical wedges that depend on wedge material and thickness, wedge factors for Varian dynamic wedges depend on the relationship between the position of the moving jaw and the number of delivered monitor units. In this study, we describe a new analytical model for dynamic wedge factors. We also review the existing analytical models and compare calculated and measured wedge factors. The comparison is performed for different wedge angles, symmetric and asymmetric fields and two different photon energies. The obtained results indicate that the new dynamic wedge model provides the best overall agreement (within 1%) with the measured wedge factors.

2853

, , and

This paper attempts to provide an answer to some questions that remain either poorly understood, or not well documented in the literature, on basic issues related to intensity modulated radiation therapy (IMRT). The questions examined are: the relationship between degeneracy and frequency response of optimizations, effects of initial beamlet fluence assignment and stopping point, what does filtering of an optimized beamlet map actually do and how could image analysis help to obtain better optimizations? Two target functions are studied, a quadratic cost function and the log likelihood function of the dynamically penalized likelihood (DPL) algorithm. The algorithms used are the conjugate gradient, the stochastic adaptive simulated annealing and the DPL. One simple phantom is used to show the development of the analysis tools used and two clinical cases of medium and large dose matrix size (a meningioma and a prostate) are studied in detail. The conclusions reached are that the high number of iterations that is needed to avoid degeneracy is not warranted in clinical practice, as the quality of the optimizations, as judged by the DVHs and dose distributions obtained, does not improve significantly after a certain point. It is also shown that the optimum initial beamlet fluence assignment for analytical iterative algorithms is a uniform distribution, but such an assignment does not help a stochastic method of optimization. Stopping points for the studied algorithms are discussed and the deterioration of DVH characteristics with filtering is shown to be partially recoverable by the use of space-variant filtering techniques.

2881

, , , , and

A positron emission tomograph dedicated to small animal imaging should have high spatial resolution and sensitivity, and dual layer scintillators have been developed for this purpose. In this study, simulations were performed to optimize the order and the length of each crystal of a dual layer phoswich detector, and to evaluate the possibility of measuring signals from each layer of the phoswich detector. A simulation tool GATE was used to estimate the sensitivity and resolution of a small PET scanner. The proposed scanner is based on dual layer phoswich detector modules arranged in a ring of 10 cm diameter. Each module is composed of 8 × 8 arrays of phoswich detectors consisting of LSO and LuYAP with a 2 mm × 2 mm sensitive area coupled to a Hamamatsu R7600-00-M64 PSPMT. The length of the front layer of the phoswich detector varied from 0 to 10 mm at 1 mm intervals, and the total length (LSO + LuYAP) was fixed at 20 mm. The order of the crystal layers of the phoswich detector was also changed. Radial resolutions were kept below 3.4 mm and 3.7 mm over 8 cm FOV, and sensitivities were 7.4% and 8.0% for LSO 5 mm-LuYAP 15 mm, and LuYAP 6 mm-LSO 14 mm phoswich detectors, respectively. Whereas, high and uniform resolutions were achieved by using the LSO front layer, higher sensitivities were obtained by changing the crystal order. The feasibilities for applying crystal identification methods to phoswich detectors consisting of LSO and LuYAP were investigated using simulation and experimentally derived measurements of the light outputs from each layer of the phoswich detector. In this study, the optimal order and lengths of the dual layer phoswich detector were derived in order to achieve high sensitivity and high and uniform radial resolution.

2891

, , , , and

Several reports in the literature have described the effects of radiation in workers who exposed their fingers to intense radioactive sources. The radiation injuries occurring after local exposure to a high dose (20 to 100 Gy) could lead to the need for amputation. Follow-up of victims needs to be more rational with a precise knowledge of the irradiated area that risks tissue degradation and necrosis. It has been described previously that X-band electron paramagnetic resonance (EPR) spectroscopy could be used to assess the dose in irradiated amputated fingers. Here, we propose the use of low-frequency EPR spectroscopy to evaluate non-invasively the absorbed dose. Low-frequency microwaves are indeed less absorbed by water and penetrate more deeply into living material (∼10 mm in tissues using 1 GHz spectrometers). This work presents preliminary results obtained with baboon and human fingers compared with human dry phalanxes placed inside a surface-coil resonator. The EPR signal increased linearly with the dose. The ratio of the slopes of the dry bone to whole finger linear regression lines was around 5. The detection limit achievable with the present spectrometer and resonator is around 60 Gy, which is well within the range of accidentally exposed fingers. It is likely that the detection limit could be improved in the future, thanks to further technical spectrometer and resonator developments as well as to appropriate spectrum deconvolution into native and dosimetric signals.

2899

Presented is a calculation of the most likely path for a charged particle traversing a uniform medium and suffering multiple-Coulomb scattering when the entrance and exit positions and angles are known. The effects of ionization energy loss are included and the results are verified using Monte Carlo simulation. The application to proton computed tomography is discussed.

2913

, , and

This paper concerns image reconstruction for helical x-ray transmission tomography (CT) with multi-row detectors. We introduce two approximate cone-beam (CB) filtered-backprojection (FBP) algorithms of the Feldkamp type, obtained by extending to three dimensions (3D) two recently proposed exact FBP algorithms for 2D fan-beam reconstruction. The new algorithms are similar to the standard Feldkamp-type FBP for helical CT. In particular, they can reconstruct each transaxial slice from data acquired along an arbitrary segment of helix, thereby efficiently exploiting the available data. In contrast to the standard Feldkamp-type algorithm, however, the redundancy weight is applied after filtering, allowing a more efficient numerical implementation. To partially alleviate the CB artefacts, which increase with increasing values of the helical pitch, a frequency-mixing method is proposed. This method reconstructs the high frequency components of the image using the longest possible segment of helix, whereas the low frequencies are reconstructed using a minimal, short-scan, segment of helix to minimize CB artefacts. The performance of the algorithms is illustrated using simulated data.

2933

, , , , , , , , , et al

Helical tomotherapy has been developed at the University of Wisconsin, and 'Hi-Art II' clinical machines are now commercially manufactured. At the core of each machine lies a ring-gantry-mounted short linear accelerator which generates x-rays that are collimated into a fan beam of intensity-modulated radiation by a binary multileaf, the modulation being variable with gantry angle. Patients are treated lying on a couch which is translated continuously through the bore of the machine as the gantry rotates. Highly conformal dose-distributions can be delivered using this technique, which is the therapy equivalent of spiral computed tomography. The approach requires synchrony of gantry rotation, couch translation, accelerator pulsing and the opening and closing of the leaves of the binary multileaf collimator used to modulate the radiation beam. In the course of clinically implementing helical tomotherapy, we have developed a quality assurance (QA) system for our machine. The system is analogous to that recommended for conventional clinical linear accelerator QA by AAPM Task Group 40 but contains some novel components, reflecting differences between the Hi-Art devices and conventional clinical accelerators. Here the design and dosimetric characteristics of Hi-Art machines are summarized and the QA system is set out along with experimental details of its implementation. Connections between this machine-based QA work, pre-treatment patient-specific delivery QA and fraction-by-fraction dose verification are discussed.

2955

, , and

Recently a new adjoint equation based iterative method was proposed for evaluating the spatial distribution of the elastic modulus of tissue based on the knowledge of its displacement field under a deformation. In this method the original problem was reformulated as a minimization problem, and a gradient-based optimization algorithm was used to solve it. Significant computational savings were realized by utilizing the solution of the adjoint elasticity equations in calculating the gradient. In this paper, we examine the performance of this method with regard to measures which we believe will impact its eventual clinical use. In particular, we evaluate its abilities to (1) resolve geometrically the complex regions of elevated stiffness; (2) to handle noise levels inherent in typical instrumentation; and (3) to generate three-dimensional elasticity images. For our tests we utilize both synthetic and experimental displacement data, and consider both qualitative and quantitative measures of performance. We conclude that the method is robust and accurate, and a good candidate for clinical application because of its computational speed and efficiency.

2975

, and

A finite element algorithm has been developed to solve the electroencephalogram (EEG) forward problem. A new computationally efficient approach to calculate the stiffness matrix of second-order tetrahedral elements has been developed for second-order tetrahedral finite element models. The present algorithm has been evaluated by means of computer simulations, by comparing with analytic solutions in a multi-spheres concentric head model. The developed finite element method (FEM) algorithm has also been applied to address questions of interest in the EEG forward problem. The present simulation study indicates that the second-order FEM provides substantially enhanced numerical accuracy and computational efficiency, as compared with the first-order FEM for comparable numbers of tetrahedral elements. The anisotropic conductivity distribution of the head tissue can be taken into account in the present FEM algorithm. The effects of dipole eccentricity, size of finite elements and local mesh refinement on solution accuracy are also addressed in the present simulation study.

2989

and

Injection of gas into the eye, followed by face-down positioning, is a common protocol for the reseating of the retina in posterior and superior retinal tears and breaks. The physical mechanism by which injected gas helps reattach retinal flaps is often ascribed to the 'buoyancy' force of the injected gas bubble. The various forces at play in this system (surface tension and buoyancy) were calculated and compared. The results are extended to the case in which the retina is intact (pneumatic displacement of blood) and to the use of intraocular perfluoron (n-perfluorooctane). We show that buoyancy forces are applicable only for gas or n-perfluorooctane bubbles that are smaller than the detached retina and that do not invade underneath the retina. For larger bubbles, as is normally used in reattachment protocols, we show that it is the interfacial tension that reattaches the retina. The range of angles within which patients can position, and still maintain a gas-vitreous interface along a tear is calculated as a function of the volume of injected gas and size of the tear. The maximum retinal flap size that can be reattached using surface tension forces is also estimated.

2999

, and

Short-wave diathermy (SWD), a form of radiofrequency radiation used therapeutically by physiotherapists, may be applied in continuous (CSWD) or pulsed (PSWD) mode using either capacitive or inductive methods. Stray radiation emitted by these units may exceed exposure guidelines close to the equipment. Discrepant guidelines exist on a safe distance from an operating unit for operators and other personnel. Stray electric (E-field) and magnetic (H-field) field strengths from 10 SWD units in six departments were examined using a PMM 8053 meter and two isotropic probes (EP-330, HP-032). A 5 l saline phantom completed the patient circuit. Measurements were recorded in eight directions between 0.5 m and 2 m at hip and eye levels while the units operated at maximum output and data compared to current guidelines. Results found stray fields from capacitive CSWD fell below operator limits at 2 m (E-field 4.8–39.8 V/m; H-field 0.015–0.072 A/m) and at 1 m for inductive CSWD (E-field 0–36 V/m; H-field 0.01–0.065 A/m). Capacitive PSWD fields fell below the limits at 1.5 m (E-field 1.2–19.9 V/m; H-field 0.002–0.045 A/m) and at 1m for inductive PSWD (E-field 0.7–4.0 V/m; H-field 0.009–0.03 A/m). An extra 0.5 m was required before fields fell below the guidelines for other personnel. These results demonstrate, under a worst case scenario, emissions from SWD exceed the guidelines for operators at distances currently recommended as safe. Future guidelines should include recommendations for personnel other than physiotherapists.

3017

The dependence of the photon transport parameters on the optical characteristics of diffusive media such as biological tissue with strongly forward biased scattering is examined with respect to the influence of the large angle scattering component and higher moments of the phase function. The latter are particularly significant for the temporal evolution of the angular intensity. The P3 approximation gives clear physical insight into the influence of boundaries on the radiative flux and is applied here as an analytic method of evaluating certain phase functions reported in the literature, while higher order PN approximations are used to calculate accurate time-dependent angular intensity distributions of the scattered light.

NOTES

N181

, and

In order to verify that the energies of electron beams used for external beam therapy remain constant, IPEM 81 recommends a constancy check based on the ratio of ionization chamber measurements at two depths along the central axis. Such measurements for a range of electron energies can be a time consuming process. The purpose of this study was to design a device that would use several ion chambers simultaneously to measure electron depth dose curves, and hence the electron energy. A design was developed for a device consisting of ten independent ionization chambers, shaped and arranged in a solid phantom like the steps of a spiral staircase, the axis of the staircase being coincident with the axis of the electron beam. Measurements were carried out to test the design of individual chambers and to optimize the radius of the spiral and both the depth intervals and the lateral spacing between adjacent chambers. For ranges of electron energy from 6–12 MeV and 12–20 MeV the radii of the spirals needed were found to be 36.5 mm and 30.9 mm, the angular separations between edges of the chambers were 52° and 30° and chamber depths were found to be 10, 15, 20, 25, 30, 35, 40, 45, 50, 55 mm and 20, 40, 45, 50, 55, 60, 65, 70, 75, 80 mm, respectively.

N191

, and

This note investigates temperature effects on dosimetry using a metal oxide semiconductor field effect transistor (MOSFET) for radiotherapy x-ray treatment. This was performed by analysing the dose response and threshold voltage outputs for MOSFET dosimeters as a function of ambient temperature. Results have shown that the clinical semiconductor dosimetry system (CSDS) MOSFET provides stable dose measurements with temperatures varying from 15 °C up to 40 °C. Thus standard irradiations performed at room temperature can be directly compared to in vivo dose assessments performed at near body temperature without a temperature correction function. The MOSFET dosimeter threshold voltage varies with temperature and this level is dependent on the dose history of the MOSFET dosimeter. However, the variation can be accounted for in the measurement method. For accurate dosimetry, the detector should be placed for approximately 60 s on a patient to allow thermal equilibrium before measurements are taken with the final reading performed whilst still attached to the patient or conversely left for approximately 120 s after removal from the patient if initial readout was measured at room temperature to allow temperature equilibrium to be established.

N197

, , and

Assessment of surface dose delivered from radiotherapy x-ray beams for optimal results should be performed both inside and outside the prescribed treatment fields. An extrapolation technique can be used with radiographic film to perform surface dose assessment for open field high energy x-ray beams. This can produce an accurate two-dimensional map of surface dose if required. Results have shown that the surface percentage dose can be estimated within ±3% of parallel plate ionization chamber results with radiographic film using a series of film layers to produce an extrapolated result. Extrapolated percentage dose assessment for 10 cm, 20 cm and 30 cm square fields was estimated to be 15% ± 2%, 29% ± 3% and 38% ± 3% at the central axis and relatively uniform across the treatment field. The corresponding parallel plate ionization chamber measurements are 16%, 27% and 37%, respectively. Surface doses are also measured outside the treatment field which are mainly due to scattered electron contamination. To achieve this result, film calibration curves must be irradiated to similar x-ray field sizes as the experimental film to minimize quantitative variations in film optical density caused by varying x-ray spectrum with field size.

N203

Synchrotron-generated x-ray beams for microbeam radiation therapy (MRT) are fixed in space, so three-dimensional treatment planning would require that a patient be secured to, and moved in a gantry between exposures. Two protocols for such movements are proposed: one for uniaxial opposing-fields cross-planar MRT, the other for biaxial orthogonal-fields co-planar MRT.