Table of contents

Volume 52

Number 21, 7 November 2007

Previous issue Next issue

PAPERS

6363

, and

This paper presents the first detailed simulation approach to evaluate the proposed imaging method called 'magnetic particle imaging' with respect to resolution and sensitivity. The simulated scanner is large enough to accept human bodies. Together with the choice of field strength and noise the setup is representative for clinical applications. Good resolution, fast image acquisition and high sensitivity are demonstrated for various tracer concentrations, acquisition times, tracer properties and fields of view. Scaling laws for the simple prediction of image quality under the variation of these parameters are derived.

For more information on this article, see medicalphysicsweb.org

6375

, and

When radiotherapy with photon energies greater than 10 MV is performed neutrons contaminate the photon beam. In this paper the neutron contamination of the 15 MV photon mode of the Siemens Primus accelerator was studied. The Monte Carlo code MCNPX was used for the description of the treatment head and treatment room. The Monte Carlo results were verified by studying the photon depth dose curve and beam profiles in a water phantom. After these verifications the locations of neutron production were studied and the neutron source spectrum and strength were calculated. The neutron response of the paired Mg/Ar and MgB/Ar ionization chamber system was calculated and experimentally verified for two experimental set-ups. The paired chamber system allowed us to measure neutrons inside the field borders and allowed rapid and point wise measurement in contrast to other methods of neutron detection.

6389

, , , , and

This study investigated the temperature elevation in the eye of anatomically based human head models for plane-wave exposures. The finite-difference time-domain method is used for analyzing electromagnetic absorption and temperature elevation. The eyes in the anatomic models have average dimensions and weight. Computational results show that the ratio of maximum temperature in the lens to the eye-average SAR (named 'heating factor for the lens') is almost uniform (0.112–0.147 °C kg W−1) in the frequency region below 3 GHz. Above 3 GHz, this ratio increases gradually with an increase of frequency, which is attributed to the penetration depth of an electromagnetic wave. Particular attention is paid to the difference in the heating factor for the lens between this study and earlier works. Considering causes clarified in this study, compensated heating factors in all these studies are found to be in good agreement.

6401

and

Designers of electromuscular incapacitation devices need to know efficacy. Which areas of nerve and muscle are stimulated and are these areas adequate to cause incapacitation? This paper focuses on efficacy, which used a torso-sized finite element model with a mesh of about 5 mm. To estimate the neuromuscular regions stimulated by the Taser® X26, calculations of electric current density and field strength values with 1 A inserted into the torso using the Utah 3D mesh were made. Field-times-duration values for given Taser stimulation were calculated. Then the region where the motor nerve was stimulated by the Taser was estimated by using a field-times-duration threshold from Reilly (1998 Applied Bioelectricity: From Electrical Stimulation to Electropathology (New York: Springer)). Neuromuscular stimulation occurred up to about 19 cm away from the darts and included the spinal cord. The current density at the heart for dart separation less than 10 cm was smaller than for larger dart separation. Users of finite element computer models will find information for torso models and their creation, meshing and operation.

6413

, , , and

A cataract is a clouding of the crystalline lens that reduces the amount of incoming light and impairs visual perception. Phacoemulsification is the most common surgical method for treating advanced cataracts, and determining the optimal phacoemulsification energy is dependent on measuring the hardness of the lens. This study explored the feasibility of using an ultrasonic parametric image based on the Nakagami distribution to quantify the lens hardness. Young's modulus was measured in porcine lenses in which cataracts had been artificially induced. High-frequency ultrasound at 35 MHz was used to obtain the B-mode and Nakagami images of the cataract lenses. The averaged integrated backscatter and Nakagami parameters were also estimated in the region of interest. The experimental results show that the conventional B-scan and integrated backscatter are inadequate for quantifying the lens hardness, whereas Nakagami imaging allows different degrees of lens hardening to be distinguished both globally and locally based on the concentration of fiber coemption therein.

6427

, , , and

Organ motion compensation in image-guided therapy is an active area of research. However, there has been little research on motion tracking and compensation in magnetic resonance imaging (MRI)-guided therapy. In this paper, we present a method to track a moving organ in MRI and control an active mechanical device for motion compensation. The method proposed is based on MRI navigator echo tracking enhanced by Kalman filtering for noise robustness. We also developed an extrapolation scheme to resolve any discrepancies between tracking and device control sampling rates. The algorithm was tested in a simulation study using a phantom and an active mechanical tool holder. We found that the method is feasible to use in a clinical MRI scanner with sufficient accuracy (0.36 mm to 1.51 mm depending on the range of phantom motion) and is robust to noise. The method proposed may be useful in MRI-guided targeted therapy, such as focused ultrasound therapy for a moving organ.

6439

, , and

Materials such as a-Se, a-As2Se3, GaSe, GaAs, Ge, CdTe, CdZnTe, Cd0.8Zn0.2Te, ZnTe, PbO, TlBr, PbI2 and HgI2 are potential candidates as photoconductors in direct detectors for digital mammography. The x-ray induced primary electrons inside a photoconductor's bulk comprise the initial signal that propagates and forms the final signal (image) on the detector's electrodes. An already developed model for a-Se has been properly extended to simulate the primary electron production in the materials mentioned. Primary electron characteristics, such as their energy, angular and spatial distributions that strongly influence the characteristics of the final image, were studied for both monoenergetic and polyenergetic x-ray spectra in the mammographic energy range. The characteristic feature in the electron energy distributions for PbI2 and HgI2 is the atomic deexcitation peaks, whereas for the rest of the materials their shape can also be influenced by the electrons produced from primary photons. The electrons have a small tendency to be forward ejected whereas they prefer to be ejected perpendicular (θ = π/2) to the incident beam's axis and at two lobes around φ = 0 and φ = π. At practical mammographic energies (15–40 keV) a-Se, a-As2Se3 and Ge have the minimum azimuthal uniformity whereas CdZnTe, Cd0.8Zn0.2Te and CdTe the maximum one. The spatial distributions for a-Se, a-As2Se3, GaSe, GaAs, Ge, PbO and TlBr are almost independent of the polyenergetic spectrum, while those for CdTe, CdZnTe, Cd0.8Zn0.2Te, ZnTe, PbI2 and HgI2 have a spectrum dependence. In the practical mammographic energy range and at this primitive stage of primary electron production, a-Se has the best inherent spatial resolution as compared to the rest of the photoconductors. PbO has the minimum bulk space in which electrons can be produced whereas CdTe has the maximum one.

6461

, , , and

Accurate registration of the corresponding non-enhanced and arterial-phase CT images is necessary to create temporal and dynamic subtraction images for the enhancement of subtle abnormalities. However, respiratory movement causes misregistration at the periphery of the liver. To reduce these misregistration errors, we developed a temporal and dynamic subtraction technique to enhance small HCC by 3D global matching and nonlinear image warping techniques. The study population consisted of 21 patients with HCC. Using the 3D global matching and nonlinear image warping technique, we registered current and previous arterial-phase CT images or current non-enhanced and arterial-phase CT images obtained in the same position. The temporal subtraction image was obtained by subtracting the previous arterial-phase CT image from the warped current arterial-phase CT image. The dynamic subtraction image was obtained by the subtraction of the current non-enhanced CT image from the warped current arterial-phase CT image. The percentage of fair or superior temporal subtraction images increased from 52.4% to 95.2% using the new technique, while on the dynamic subtraction images, the percentage increased from 66.6% to 95.2%. The new subtraction technique may facilitate the diagnosis of subtle HCC based on the superior ability of these subtraction images to show nodular and/or ring enhancement.

6475

, , and

Water/medium stopping-power ratios, sw,m, have been calculated for several ICRP and ICRU tissues, namely adipose tissue, brain, cortical bone, liver, lung (deflated and inflated) and spongiosa. The considered clinical beams were 6 and 18 MV x-rays and the field size was 10 × 10 cm2. Fluence distributions were scored at a depth of 10 cm using the Monte Carlo code PENELOPE. The collision stopping powers for the studied tissues were evaluated employing the formalism of ICRU Report 37 (1984 Stopping Powers for Electrons and Positrons (Bethesda, MD: ICRU)). The Bragg–Gray values of sw,m calculated with these ingredients range from about 0.98 (adipose tissue) to nearly 1.14 (cortical bone), displaying a rather small variation with beam quality. Excellent agreement, to within 0.1%, is found with stopping-power ratios reported by Siebers et al (2000a Phys. Med. Biol.45 983–95) for cortical bone, inflated lung and spongiosa. In the case of cortical bone, sw,m changes approximately 2% when either ICRP or ICRU compositions are adopted, whereas the stopping-power ratios of lung, brain and adipose tissue are less sensitive to the selected composition. The mass density of lung also influences the calculated values of sw,m, reducing them by around 1% (6 MV) and 2% (18 MV) when going from deflated to inflated lung.

6485

, , , , and

The aim of the present study was to (a) evaluate the underestimation in the value of the free-in-air (CTDIair) and the weighted CT dose index (CTDIw) determined with the standard 100 mm pencil chamber, i.e. the CTDI100 concept, for the whole range of nominal radiation beam collimations selectable in a modern multi-slice CT scanner, (b) estimate the optimum length of the pencil-chamber and phantoms for accurate CTDIw measurements and (c) provide CTDIw values normalized to free-in-air CTDI for different tube-voltage, nominal radiation beam collimations and beam filtration values. The underestimation in the determination of CTDIair and CTDIw using the CTDI100 concept was determined from measurements obtained with standard polymethyl-methacrylate (PMMA) phantoms and arrays of thermoluminescence dosimeters. The Monte Carlo N-Particle transport code was used to simulate standard CTDI measurements on a 16-slice CT scanner. The optimum pencil-chamber length for accurate determination of CTDIw was estimated as the minimum chamber length for which a further increase in length does not alter the value of the CTDI. CTDIw/CTDIair ratios were determined using Monte Carlo simulation and the optimum detector length for all selectable tube-voltage values and for three different values of beam filtration. To verify the Monte Carlo results, measured values of CTDIw/CTDIair ratios using the standard 100 mm pencil ionization chamber were compared with corresponding values calculated with Monte Carlo experiments. The underestimation in the determination of CTDIair using the 100 mm pencil chamber was less than 1% for all beam collimations. The underestimation in CTDIw was 15% and 27% for head and body phantoms, respectively. The optimum detector length for accurate CTDIw measurements was found to be 50 cm for the beam collimations commonly employed in modern multi-detector (MD) CT scanners. The ratio of CTDIw/CTDIair determined using the optimum detector length was found to be independent of beam collimation. Percentage differences between measured and calculated corresponding CTDIw/CTDIair ratios were always less than 8% for head and less than 5% for body PMMA phantoms. In conclusion, the CTDIair of MDCT scanners may be measured accurately with a 100 mm pencil chamber. However, the CTDI100 concept was found to be inadequate for accurate CTDIw determination for the wide beam collimations commonly used in MDCT scanners. Accurate CTDIw determination presupposes the use of a pencil chamber and PMMA phantoms at least 50 cm long.

6497

, , , and

Since the beam width on the helical tomotherapy machine produced by TomoTherapy Inc., is typically a few centimeters in the longitudinal direction (into the bore), the optimizer must choose to have a relatively high intensity local to the inside edge of a tumor or planning treatment volume (PTV) when avoiding an immediately adjacent organ at risk (OAR), either superior or inferior. By using a standalone version of the TomoTherapy dose calculator, a realistic beam is applied to idealized deconvolution schemes including the MATLAB Optimizer Toolbox™ for a simple one-dimensional PTV with adjacent OARs. The results are compared to a clinical example on the TomoTherapy planning station. It is learned that a Gibbs phenomenon type of oscillation in the dose within the tumor under these special circumstances is not unique to TomoTherapy, but is related to the attempt to form a sharp dose gradient—sharper than the beam profile with typical optimization constraints set to achieve a uniform dose as close as possible to the prescription. The clinical implication is that the Gibbs-induced cold spots force the dose to increase in the PTV if a typical PTV dose–volume constraint is used. It is recommended that the dose prescription be smoothed prior to optimization or the dosimetric goals for an OAR adjacent to the PTV are such that a sharp dose falloff is not demanded, especially if the user reduces the requirements that such an OAR be of both high importance and immediately adjacent to the PTV edge.

6511

, , , , , and

Major accidents can happen during radiotherapy, with an extremely severe consequence to both patients and clinical professionals. We propose to use machine learning and data mining techniques to help detect large human errors in a radiotherapy treatment plan, as a complement to human inspection. One such technique is computer clustering. The basic idea of using clustering algorithms for outlier detection is to first cluster (based on the treatment parameters) a large number of patient treatment plans. Then, when checking a new treatment plan, the parameters of the plan will be tested to see whether or not they belong to the established clusters. If not, they will be considered as 'outliers' and therefore highlighted to catch the attention of the human chart checkers. As a preliminary study, we applied the K-means clustering algorithm to a simple patient model, i.e., 'four-field' box prostate treatment. One thousand plans were used to build the clusters while another 650 plans were used to test the proposed method. It was found that there are eight distinct clusters. At the error levels of ±100% of the original values of the monitor unit, the detection rate is about 100%. At ±50% error level, the detection rate is about 80%. The false positive rate is about 10%. When purposely changing the beam energy to a value different from that in the treatment plan, the detection rate is 100% for posterior, right-lateral and left-lateral fields, and about 77% for the anterior field. This preliminary work has shown promise for developing the proposed automatic outlier detection software, although more efforts will still be required.

6525

, , , , and

Lymphedema is a common condition involving an abnormal accumulation of lymphatic fluid in the interstitial space that causes swelling, most often in the arm(s) and leg(s). Lymphedema is a significant lifelong concern that can be congenital or develop following cancer treatment or cancer metastasis. Common methods of evaluation of lymphedema are mostly qualitative making it difficult to reliably assess the severity of the disease, a key factor in choosing the appropriate treatment. In this paper, we investigate the feasibility of using novel elastographic techniques to differentiate between lymphedematous and normal tissues. This study represents the first step of a larger study aimed at investigating the combined use of elastographic and sonographic techniques for the detection and staging of lymphedema. In this preliminary study, poroelastographic images were generated from the leg (8) and arm (4) subcutis of five normal volunteers and seven volunteers having lymphedema, and the results were compared using statistical analyses. The preliminary results reported in this paper suggest that it may be feasible to perform poroelastography in different lymphedematous tissues in vivo and that poroelastography techniques may be of help in differentiating between normal and lymphedematous tissues.

6543

, , , , , , , and

Small angle x-ray scattering (SAXS) patterns of benign and malignant brain tumour tissue were examined. Independent component analysis was used to find a feature set representing the images collected. A set of coefficients was then used to describe each image, which allowed the use of the statistical technique of flexible discriminant analysis to discover a hidden order in the data set. The key difference was found to be in the intensity and spectral content of the second and fourth order myelin scattering peaks. This has clearly demonstrated that significant differences in the structure of myelin exist in the highly malignant glioblastoma multiforme as opposed to the benign: meningioma and schwannoma.

NOTE

N493

, , and

The multi-leaf collimator (MLC) of a particular linear accelerator vendor (Millennium MLC, Varian Medical Systems, Palo Alto, CA, USA) has a maximum leaf extension of 14.5 cm. To achieve intensity modulated radiotherapy (IMRT) for fields wider than 14.5 cm all closed leaf pairs are restricted to placement inside the field. Due to the rounded leaf end design of the MLC end leaf leakage will occur in the treatment field. The implementation of direct aperture optimization in the IMRT module of a radiotherapy treatment planning system (Pinnacle, Philips Radiation Oncology Systems, Milpitas, CA) has facilitated the delivery of IMRT fields wider than 14.5 cm. The end leaf leakage of the Millennium MLC has been characterized for 6 MV photons using gafchromic and radiographic film, and the accuracy of the planning system verified. The maximum leakage measured for a single field was 0.39 cGy MU−1 for a 0 mm leaf gap and 0.51 cGy MU−1 for a 0.6 mm leaf gap. For a clinical IMRT field leaf end leakage contributed an additional 2–3 Gy over the course of treatment. The planning system underestimated the magnitude of end leaf leakage by 20–40%. The ability to deliver IMRT fields wider than 14.5 cm with the Millennium MLC has improved the efficiency and flexibility of IMRT treatments; however, significant extra dose can be introduced due to end leaf leakage. Caution should be exercised when delivering wide field IMRT as it is not a complete panacea. Any significant occurrences of end leaf leakage predicted by the planning system should be independently verified prior to delivery.