Table of contents

Volume 56

Number 15, 7 August 2011

Previous issue Next issue

Editorial

E01

and

The publishers of Physics in Medicine and Biology (PMB), IOP Publishing, in association with the journal owners, the Institute of Physics and Engineering in Medicine (IPEM), jointly award an annual prize for the best paper published in PMB during the previous year.

The procedure for deciding the winner has been made as thorough as possible, to try to ensure that an outstanding paper wins the prize. We started off with a shortlist of the 10 research papers published in 2010 which were rated the best based on the referees' quality assessments. Following the submission of a short 'case for winning' document by each of the shortlisted authors, an IPEM college of jurors of the status of FIPEM assessed and rated these 10 papers in order to choose a winner, which was then endorsed by the Editorial Board.

We have much pleasure in advising readers that the Roberts Prize for the best paper published in 2010 is awarded to M M Paulides et al from Erasmus MC, Rotterdam, The Netherlands, for their paper on hyperthermia treatment:

The clinical feasibility of deep hyperthermia treatment in the head and neck: new challenges for positioning and temperature measurement M M Paulides, J F Bakker, M Linthorst, J van der Zee, Z Rijnen, E Neufeld, P M T Pattynama, P P Jansen, P C Levendag and G C van Rhoon 2010 Phys. Med. Biol.55 2465

Our congratulations go to these authors. Of course all of the shortlisted papers were of great merit, and the full top-10 is listed below (in alphabetical order).

Steve Webb Editor-in-Chief

Simon HarrisPublisher

References

Alonzo-Proulx O, Packard N, Boone J M, Al-Mayah A, Brock K K, Shen S Z and Yaffe M J 2010 Validation of a method for measuring the volumetric breast density from digital mammograms Phys. Med. Biol.55 3027

Bian J, Siewerdsen J H, Han X, Sidky E Y, Prince J L, Pelizzari C A and Pan X 2010 Evaluation of sparse-view reconstruction from flat-panel-detector cone-beam CT Phys. Med. Biol.55 6575

Brun M-A, Formanek F, Yasuda A, Sekine M, Ando N and Eishii Y 2010 Terahertz imaging applied to cancer diagnosis Phys. Med. Biol.55 4615

Eklund K and Ahnesjö A 2010 Modeling silicon diode dose response factors for small photon fields Phys. Med. Biol.55 7411

Kolb A, Lorenz E, Judenhofer M S, Renker D, Lankes K and Pichler B J 2010 Evaluation of Geiger-mode APDs for PET block detector designs Phys. Med. Biol.55 1815

Lobo J and Popescu I A 2010 Two new DOSXYZnrc sources for 4D Monte Carlo simulations of continuously variable beam configurations, with applications to RapidArc, VMAT, TomoTherapy and CyberKnife Phys. Med. Biol.55 4431

Paulides M M, Bakker J F, Linthorst M, van der Zee J, Rijnen Z, Neufeld E, Pattynama P M T, Jansen P P, Levendag P C and van Rhoon G C 2010 The clinical feasibility of deep hyperthermia treatment in the head and neck: new challenges for positioning and temperature measurement Phys. Med. Biol.55 2465

Rockne R, Rockhill J K, Mrugala M, Spence A M, Kalet I, Hendrickson K, Lai A, Cloughesy T, Alvord E C Jr and Swanson K R 2010 Predicting the efficacy of radiotherapy in individual glioblastoma patients in vivo: a mathematical modeling approach Phys. Med. Biol.55 3271

Wertz H et al 2010 Fast kilovoltage/megavoltage (kVMV) breathhold cone-beam CT for image-guided radiotherapy of lung cancer Phys. Med. Biol.55 4203

Zhang B, MacFadden D, Damyanovich A Z, Rieker M, Stainsby J, Bernstein M, Jaffray D A, Mikulis D and Ménard C 2010 Development of a geometrically accurate imaging protocol at 3 Tesla MRI for stereotactic radiosurgery treatment planning Phys. Med. Biol.55 6601

Papers

4631

, , , , and

Gold nanoparticle (AuNP) radiosensitization represents a novel approach to enhance the effectiveness of ionizing radiation. Its efficiency varies widely with photon source energy and AuNP size, concentration, and intracellular localization. In this Monte Carlo study we explored the effects of those parameters to define the optimal clinical use of AuNPs. Photon sources included 103Pd and 125I brachytherapy seeds; 169Yb, 192Ir high dose rate sources, and external beam sources 300 kVp and 6 MV. AuNP sizes were 1.9, 5, 30, and 100 nm. We observed a 103 increase in the rate of photoelectric absorption using 125I compared to 6 MV. For a 125I source, to double the dose requires concentrations of 5.33–6.26 mg g−1 of Au or 7.10 × 104 30 nm AuNPs per tumor cell. For 6 MV, concentrations of 1560–1760 mg g−1 or 2.17 × 107 30 nm AuNPs per cell are needed, which is not clinically achievable. Examining the proportion of energy transferred to escaping particles or internally absorbed in the nanoparticle suggests two clinical strategies: the first uses photon energies below the k-edge and takes advantage of the extremely localized Auger cascade. It requires small AuNPs conjugated to tumor targeted moieties and nuclear localizing sequences. The second, using photon sources above the k-edge, requires a higher gold concentration in the tumor region. In this approach, energy deposited by photoelectrons is the main contribution to radiosensitization; AuNP size and cellular localization are less relevant.

4649

, , , , and

Multi-transmit coils are increasingly being employed in high-field magnetic resonance imaging, along with a growing interest in multi-transmit body coils. However, they can lead to an increase in whole-body and local specific absorption rate (SAR) compared to conventional body coils excited in circular polarization for the same total incident input power. In this study, the maximum increase of SAR for three significantly different human anatomies is investigated for a large 3 T (128 MHz) multi-transmit body coil using numerical simulations and a (generalized) eigenvalue-based approach. The results demonstrate that the increase of SAR strongly depends on the anatomy. For the three models and normalization to the sum of the rung currents squared, the whole-body averaged SAR increases by up to a factor of 1.6 compared to conventional excitation and the peak spatial SAR (averaged over any 10 cm3 of tissue) by up to 13.4. For some locations the local averaged SAR goes up as much as 800 times (130 when looking only at regions where it is above 1% of the peak spatial SAR). The ratio of the peak spatial SAR to the whole-body SAR increases by a factor of up to 47 and can reach values above 800. Due to the potentially much larger power deposition, additional, preferably patient-specific, considerations are necessary to avoid injuries by such systems.

4661

, , and

Measurements of temperature elevations induced by sonications in a single intact cadaver skull filled with soft-tissue mimicking phantom material were performed using magnetic resonance thermometry. The sonications were done using a clinical transcranial ultrasound therapy device operating at 230 kHz and the measurements were compared with simulations done using a model incorporating both the longitudinal and shear wave propagation. Both the measurements and simulations showed that in some situations the temperature increase could be higher in the phantom material adjacent to the skull-base than at the focus, which could lead to undesired soft-tissue damage in treatment situations. On average the measurements of the sonicated locations, as well as the comparative simulations, showed 32 ± 64% and 49 ± 32% higher temperature elevations adjacent to the skull-base than at the focus, respectively. The simulation model was used to extend the measurements by simulating multiple sonications of brain tissue in five different skulls with and without correcting the aberrations caused by the skull on the ultrasound. Without aberration correction the closest sonications to the skulls that were treatable in any brain location without undesired tissue damage were at a distance of 19.1 ± 2.6 mm. None of the sonications beyond a distance of 41.2 ± 5.3 mm were found to cause undesired tissue damage. When using the aberration correction closest treatable, safe distances for sonications were found to be 16.0 ± 1.6  and 38.8 ± 3.8 mm, respectively. New active cooling of the skull-base through the nasal cavities was introduced and the treatment area was investigated. The closest treatable distance without aberration correction reduced to 17.4 ± 1.9 mm with the new cooling method. All sonications beyond a distance of 39.7 ± 6.6 mm were found treatable. With the aberration correction no difference in the closest treatable or the safety distance was found in comparison to sonications without nasal cavity cooling. To counteract undesired skull-base heating a new anti-focus within solid media was developed along with a new regularized phasing method. Mathematical bases for both the methods and simulations utilizing them were presented. It was found that utilizing the anti-focus in solid media and regularized phasing, the fraction of temperature increase of the brain tissue at the focus and the peak temperature increase adjacent to the skull-base can be increased from 1.00 to 1.95. This improves the efficiency of the sonication by reducing the energy transfer to the skull-base.

4685

, , , , and

The genipin radiochromic gel offers enormous potential as a three-dimensional dosimeter in advanced radiotherapy techniques. We have used several methods (including Monte Carlo simulation), to investigate the water equivalency of genipin gel by characterizing its radiological properties, including mass and electron densities, photon interaction cross sections, mass energy absorption coefficient, effective atomic number, collisional, radiative and total mass stopping powers and electron mass scattering power. Depth doses were also calculated for clinical kilovoltage and megavoltage x-ray beams as well as megavoltage electron beams. The mass density, electron density and effective atomic number of genipin were found to differ from water by less than 2%. For energies below 150 keV, photoelectric absorption cross sections are more than 3% higher than water due to the strong dependence on atomic number. Compton scattering and pair production interaction cross sections for genipin gel differ from water by less than 1%. The mass energy absorption coefficient is approximately 3% higher than water for energies <60 keV due to the dominance of photoelectric absorption in this energy range. The electron mass stopping power and mass scattering power differ from water by approximately 0.3%. X-ray depth dose curves for genipin gel agree to within 1% with those for water. Our results demonstrate that genipin gel can be considered water equivalent for kilovoltage and megavoltage x-ray beam dosimetry. For megavoltage electron beam dosimetry, however, our results suggest that a correction factor may be needed to convert measured dose in genipin gel to that of water, since differences in some radiological properties of up to 3% compared to water are observed. Our results indicate that genipin gel exhibits greater water equivalency than polymer gels and PRESAGE formulations.

4701

, , and

Both accuracy and efficiency are critical for the implementation of biomechanical model-based deformable registration in clinical practice. The focus of this investigation is to evaluate the potential of improving the efficiency of the deformable image registration of the human lungs without loss of accuracy. Three-dimensional finite element models have been developed using image data of 14 lung cancer patients. Each model consists of two lungs, tumor and external body. Sliding of the lungs inside the chest cavity is modeled using a frictionless surface-based contact model. The effect of the type of element, finite deformation and elasticity on the accuracy and computing time is investigated. Linear and quadrilateral tetrahedral elements are used with linear and nonlinear geometric analysis. Two types of material properties are applied namely: elastic and hyperelastic. The accuracy of each of the four models is examined using a number of anatomical landmarks representing the vessels bifurcation points distributed across the lungs. The registration error is not significantly affected by the element type or linearity of analysis, with an average vector error of around 2.8 mm. The displacement differences between linear and nonlinear analysis methods are calculated for all lungs nodes and a maximum value of 3.6 mm is found in one of the nodes near the entrance of the bronchial tree into the lungs. The 95 percentile of displacement difference ranges between 0.4 and 0.8 mm. However, the time required for the analysis is reduced from 95 min in the quadratic elements nonlinear geometry model to 3.4 min in the linear element linear geometry model. Therefore using linear tetrahedral elements with linear elastic materials and linear geometry is preferable for modeling the breathing motion of lungs for image-guided radiotherapy applications.

4715

, , , , , and

To improve cancer detection in mammography, breast examinations usually consist of two views per breast. In order to combine information from both views, corresponding regions in the views need to be matched. In 3D digital breast tomosynthesis (DBT), this may be a difficult and time-consuming task for radiologists, because many slices have to be inspected individually. For multiview computer-aided detection (CAD) systems, matching corresponding regions is an essential step that needs to be automated. In this study, we developed an automatic method to quickly estimate corresponding locations in ipsilateral tomosynthesis views by applying a spatial transformation. First we match a model of a compressed breast to the tomosynthesis view containing a point of interest. Then we estimate the location of the corresponding point in the ipsilateral view by assuming that this model was decompressed, rotated and compressed again. In this study, we use a relatively simple, elastically deformable sphere model to obtain an analytical solution for the transformation in a given DBT case. We investigate three different methods to match the compression model to the data by using automatic segmentation of the pectoral muscle, breast tissue and nipple. For validation, we annotated 208 landmarks in both views of a total of 146 imaged breasts of 109 different patients and applied our method to each location. The best results are obtained by using the centre of gravity of the breast to define the central axis of the model, around which the breast is assumed to rotate between views. Results show a median 3D distance between the actual location and the estimated location of 14.6 mm, a good starting point for a registration method or a feature-based local search method to link suspicious regions in a multiview CAD system. Approximately half of the estimated locations are at most one slice away from the actual location, which makes the method useful as a mammographic workstation tool for radiologists to interactively find corresponding locations in ipsilateral tomosynthesis views.

4731

, , , , and

Fluorescence tomography (FT) is a promising molecular imaging technique that can spatially resolve both fluorophore concentration and lifetime parameters. However, recovered fluorophore parameters highly depend on the size and depth of the object due to the ill-posedness of the FT inverse problem. Structural a priori information from another high spatial resolution imaging modality has been demonstrated to significantly improve FT reconstruction accuracy. In this study, we have constructed a combined magnetic resonance imaging (MRI) and FT system for small animal imaging. A photo-multiplier tube is used as the detector to acquire frequency domain FT measurements. This is the first MR-compatible time-resolved FT system that can reconstruct both fluorescence concentration and lifetime maps simultaneously. The performance of the hybrid system is evaluated with phantom studies. Two different fluorophores, indocyanine green and 3-3' diethylthiatricarbocyanine iodide, which have similar excitation and emission spectra but different lifetimes, are utilized. The fluorescence concentration and lifetime maps are both reconstructed with and without the structural a priori information obtained from MRI for comparison. We show that the hybrid system can accurately recover both fluorescence intensity and lifetime within 10% error for two 4.2 mm-diameter cylindrical objects embedded in a 38 mm-diameter cylindrical phantom when MRI structural a priori information is utilized.

4749

, , and

Intensity modulated proton therapy (IMPT) offers the possibility of generating excellent target coverage while sparing the neighbouring organs at risk. However, treatment plans optimized for IMPT may be very sensitive to range and setup uncertainties. We developed a method to deal with these uncertainties in the dose optimization. This method aims at two objectives: one for maintaining the dose coverage within the target, and the other for preventing undesired exposure to organs at risk. The former objective was achieved by the algorithm described in our previous paper to suppress the in-field dose gradient within the target. In this study, the latter objective was achieved by a novel algorithm in which we suppressed pencil beams with high risk to deliver undesired doses to organs at risk under conditions where range and setup uncertainties occur. We defined the risk index that quantifies the likelihood of each pencil beam delivering high doses to organs at risk, and introduced it into the objective function of dose optimizations. In order to test the algorithm's performance, this method was applied to an RTOG benchmark phantom geometry and to a cervical chordoma case. These simulations demonstrated that our method provides IMPT plans that are more robust against range and setup errors compared to conventional IMPT plans. Compared to the conventional IMPT plan, the optimization time for the robust plan increased by a factor of only 3, from 4 to 11 min.

4771

, , , and

Interstitial photodynamic therapy is becoming an interesting modality to treat some early stage prostate cancers. A light-sensitive drug is injected to the patient and activated by light using optical fibres inserted inside the prostate. In this work, we were interested in the characterization of the light action model for the WST11 (Tookad® Soluble) drug. A retrospective analysis was performed on results from 28 patients enrolled in phase I and II trials with the WST11 drug. A drug dose of 4 mg/kg patient, dose light of 200 J cm−1 and wavelength of 753 nm were used. Correlation between the illuminated volume and the obtained necrosis, measured at day 7 MR images, was clearly established. This result suggests that photodynamic therapy planning is possible based on this model.

4785

, , and

Gamma cameras based on charge-coupled devices (CCDs) coupled to continuous scintillation crystals can combine a good detection efficiency with high spatial resolutions with the aid of advanced scintillation detection algorithms. A previously developed analytical multi-scale algorithm (MSA) models the depth-dependent light distribution but does not take statistics into account. Here we present and validate a novel statistical maximum-likelihood algorithm (MLA) that combines a realistic light distribution model with an experimentally validated statistical model. The MLA was tested for an electron multiplying CCD optically coupled to CsI(Tl) scintillators of different thicknesses. For 99mTc imaging, the spatial resolution (for perpendicular and oblique incidence), energy resolution and signal-to-background counts ratio (SBR) obtained with the MLA were compared with those of the MSA. Compared to the MSA, the MLA improves the energy resolution by more than a factor of 1.6 and the SBR is enhanced by more than a factor of 1.3. For oblique incidence (approximately 45°), the depth-of-interaction corrected spatial resolution is improved by a factor of at least 1.1, while for perpendicular incidence the MLA resolution does not consistently differ significantly from the MSA result for all tested scintillator thicknesses. For the thickest scintillator (3 mm, interaction probability 66% at 141 keV) a spatial resolution (perpendicular incidence) of 147 µm full width at half maximum (FWHM) was obtained with an energy resolution of 35.2% FWHM. These results of the MLA were achieved without prior calibration of scintillations as is needed for many statistical scintillation detection algorithms. We conclude that the MLA significantly improves the gamma camera performance compared to the MSA.

4803

, , , , , , , and

In the real-time tumor-tracking radiotherapy system, fluoroscopy is used to determine the real-time position of internal fiducial markers. The pattern recognition score (PRS) ranging from 0 to 100 is computed by a template pattern matching technique in order to determine the marker position on the fluoroscopic image. The PRS depends on the quality of the fluoroscopic image. However, the fluoroscopy parameters such as tube voltage, current and exposure duration are selected manually and empirically in the clinical situation. This may result in an unnecessary imaging dose from the fluoroscopy or loss of the marker because of too much or insufficient x-ray exposure. In this study, a novel optimization method is proposed in order to minimize the fluoroscopic dose while keeping the image quality usable for marker tracking. The PRS can be predicted in a region where the marker appears to move in the fluoroscopic image by the proposed method. The predicted PRS can be utilized to judge whether the marker can be tracked with accuracy. In this paper, experiments were performed to show the feasibility of the PRS prediction method under various conditions. The predicted PRS showed good agreement with the measured PRS. The root mean square error between the predicted PRS and the measured PRS was within 1.44. An experiment using a motion controller and an anthropomorphic chest phantom was also performed in order to imitate a clinical fluoroscopy situation. The result shows that the proposed prediction method is expected to be applicable in a real clinical situation.

4815

, , and

To boost the possibilities of image guidance in radiotherapy by providing images with superior soft-tissue contrast during treatment, we pursue diagnostic quality MRI functionality integrated with a linear accelerator. Large respiration-induced semi-periodic target excursions hamper treatment of cancer of the abdominal organs. Methods to compensate in real time for such motion are gating and tracking. These strategies are most effective in cases where anatomic motion can be visualized directly, which supports the use of an integrated MRI accelerator. We establish here an infrastructure needed to realize gated radiation delivery based on MR feedback and demonstrate its potential as a first step towards more advanced image guidance techniques. The position of a phantom subjected to one-dimensional periodic translation is tracked with the MR scanner. Real-time communication with the MR scanner and control of the radiation beam are established. Based on the time-resolved position of the phantom, gated radiation delivery to the phantom is realized. Dose distributions for dynamic delivery conditions with varying gating windows are recorded on gafchromic film. The similarity between dynamically and statically obtained dose profiles gradually increases as the gating window is decreased. With gating windows of 5 mm, we obtain sharp dose profiles. We validate our gating implementation by comparing measured dose profiles to theoretical profiles calculated using the knowledge of the imposed motion pattern. Excellent correspondence is observed. At the same time, we show that real-time on-line reconstruction of the accumulated dose can be performed using time-resolved target position information. This facilitates plan adaptation not only on a fraction-to-fraction scale but also during one fraction, which is especially valuable in highly accelerated treatment strategies. With the currently established framework and upcoming improvements to our prototype-integrated MRI accelerator, we will realize more intricate MRI-guided linear accelerator control in the near future.

4827

, , and

A novel commercial medical linac system (TrueBeam™, Varian Medical Systems, Palo Alto, CA) allows respiratory-gated volumetric modulated arc therapy (VMAT), a new modality for treating moving tumors with high precision and improved accuracy by allowing for regular motion associated with a patient's breathing during VMAT delivery. The purpose of this work is to adapt a previously-developed dose reconstruction technique to evaluate the fidelity of VMAT treatment during gated delivery under clinic-relevant periodic motion related to patient breathing. A Varian TrueBeam system was used in this study. VMAT plans were created for three patients with lung or pancreas tumors. Conventional 6 and 15 MV beams with flattening filter and high-dose-rate 10 MV beams with no flattening filter were used in these plans. Each patient plan was delivered to a phantom first without gating and then with gating for three simulated respiratory periods (3, 4.5 and 6 s). Using the adapted log-file-based dose reconstruction procedure supplemented with ion chamber array (Seven29™, PTW, Freiburg, Germany) measurements, the delivered dose was used to evaluate the fidelity of gated VMAT delivery. Comparison of Seven29 measurements with and without gating showed good agreement with gamma-index passing rates above 99% for 1%/1 mm dose accuracy/distance-to-agreement criteria. With original plans as reference, gamma-index passing rates were 100% for the reconstituted plans (1%/1 mm criteria) and 93.5–100% for gated Seven29 measurements (3%/3 mm criteria). In the presence of leaf error deliberately introduced into the gated delivery of a pancreas patient plan, both dose reconstruction and Seven29 measurement consistently indicated substantial dosimetric differences from the original plan. In summary, a dose reconstruction procedure was demonstrated for evaluating the accuracy of respiratory-gated VMAT delivery. This technique showed that under clinical operation, the TrueBeam system faithfully realized treatment plans with gated delivery. This methodology affords a useful tool for machine- and patient-specific quality assurance of the newly available respiratory-gated VMAT.

4839

, , , and

Historically, the development of computational phantoms for radiation dosimetry has primarily been directed at capturing and representing adult and pediatric anatomy, with less emphasis devoted to models of the human fetus. As concern grows over possible radiation-induced cancers from medical and non-medical exposures of the pregnant female, the need to better quantify fetal radiation doses, particularly at the organ-level, also increases. Studies such as the European Union's SOLO (Epidemiological Studies of Exposed Southern Urals Populations) hope to improve our understanding of cancer risks following chronic in utero radiation exposure. For projects such as SOLO, currently available fetal anatomic models do not provide sufficient anatomical detail for organ-level dose assessment. To address this need, two fetal hybrid computational phantoms were constructed using high-quality magnetic resonance imaging and computed tomography image sets obtained for two well-preserved fetal specimens aged 11.5 and 21 weeks post-conception. Individual soft tissue organs, bone sites and outer body contours were segmented from these images using 3D-DOCTOR™ and then imported to the 3D modeling software package Rhinoceros™ for further modeling and conversion of soft tissue organs, certain bone sites and outer body contours to deformable non-uniform rational B-spline surfaces. The two specimen-specific phantoms, along with a modified version of the 38 week UF hybrid newborn phantom, comprised a set of base phantoms from which a series of hybrid computational phantoms was derived for fetal ages 8, 10, 15, 20, 25, 30, 35 and 38 weeks post-conception. The methodology used to construct the series of phantoms accounted for the following age-dependent parameters: (1) variations in skeletal size and proportion, (2) bone-dependent variations in relative levels of bone growth, (3) variations in individual organ masses and total fetal masses and (4) statistical percentile variations in skeletal size, individual organ masses and total fetal masses. The resulting series of fetal hybrid computational phantoms is applicable to organ-level and bone-level internal and external radiation dosimetry for human fetuses of various ages and weight percentiles

4881

, , and

Spatial resolution is intrinsically limited in positron emission tomography (PET) systems, mainly due to the crystal width. To increase the spatial resolution for a given crystal width, mechanical movements such as wobble and dichotomic motions are introduced to the PET systems. However, multiple sinograms obtained through such movements provide oversampled data. In this paper, to increase the spatial resolution, we present a novel super-resolution (SR) scheme that employs multiple sinograms. For SR, we first propose a blur kernel estimation scheme through a Monte Carlo simulation. Based on the estimated blur kernel, we adopt a maximum a posteriori expectation maximization method in estimating a high-resolution sinogram from multiple low-resolution sinograms. The proposed algorithm provides noticeable improvement of the spatial resolution in real PET images.

4895

, , , , and

Previous studies have shown that procedure-induced prostate edema during permanent interstitial brachytherapy (PIB) can cause significant variations in the dose delivered to the prostate gland. Because the clinical impact of edema-induced dose variations strongly depends on the magnitude of the edema, the temporal pattern of its resolution and its interplay with the decay of radioactivity and the underlying biological processes of tumor cells (such as tumor potential doubling time), we investigated the impact of edema-induced dose variations on the tumor cell survival and tumor control probability after PIB with the 131Cs, 125I and 103Pd sources used in current clinical practice. The exponential edema resolution model reported by Waterman et al (1998 Int. J. Radiat. Oncol. Biol. Phys.41 1069–77) was used to characterize the edema evolutions previously observed during clinical PIB for prostate cancer. The concept of biologically effective dose, taking into account tumor cell proliferation and sublethal damage repair during dose delivery, was used to characterize the effects of prostate edema on cell survival and tumor control probability. Our calculation indicated that prostate edema, if not appropriately taken into account, can increase the cell survival and decrease the probability of local control of PIB. The magnitude of an edema-induced increase in cell survival increased with increasing edema severity, decreasing half-life of radioactive decay and decreasing photon energy emitted by the source. At the doses currently prescribed for PIB and for prostate cancer cells characterized by nominal radiobiology parameters recommended by AAPM TG-137, PIB using 125I sources was less affected by edema than PIB using 131Cs or 103Pd sources due to the long radioactive decay half-life of 125I. The effect of edema on PIB using 131Cs or 103Pd was similar. The effect of edema on 103Pd PIB was slightly greater, even though the decay half-life of 103Pd (17 days) is longer than that of 131Cs (9.7 days), because the advantage of the longer 103Pd decay half-life was negated by the lower effective energy of the photons it emits (∼21 keV compared to ∼30.4 keV for 131Cs). In addition, the impact of edema could be reduced or enhanced by differences in the tumor characteristics (e.g. potential tumor doubling time or the α/β ratio), and the effect of these factors varied for the different radioactive sources. There is a clear need to consider the effects of prostate edema during the planning and evaluation of permanent interstitial brachytherapy treatments for prostate cancer.

4913

, , and

Sparse arrays are widely used in diagnostic ultrasound for their strong performance and relative technical simplicity. This simulation study assessed the efficacy of phased arrays of varied sparseness for thermal surgery, especially with regard to power consumption and near-field heating. It employs a linear ultrasound propagation model and a semi-analytical solution to the Pennes' bioheat transfer equation. The basic design had 4912 cylindrical transducers (500 kHz) arranged on a flat 12 cm disk (1.5 mm spacing). This array was compared to randomly-thinned sparse arrays with 75%, 50% and 25% populations. Temperature elevations of 60 and 70 °C were induced in sonication times of 5–20 s, at foci spanning depths of 50–150 mm and radii of 0–60 mm. The sparse arrays produced nearly indistinguishable focal patterns but, averaged across the foci, required 132%, 200% and 393% of the power of the full array, respectively, applied through fewer transducer elements. Comparable results were found at 1 MHz from equivalent arrays. Simulated lesions were formed (thermal dose ⩾ 240 equivalent minutes at 43 °C (T43)) and 'transition' and 'unsafe' regions (both defined as 5 min < T43 < 240 min) were identified, the former immediately surrounding the lesion and the latter anywhere else. At a depth of 100 mm, sparse arrays were found to produce comparable lesions to the full array at the focus, but 'unsafe', over-heated near-field regions after some ablated lesion volume: about 12 mL for the 25% array, around 100 mL for the 50% array, while the 75% and full arrays produced 150 mL lesions safely.

4933

, , , , , , and

Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) involves the acquisition of images before, during and after the injection of a contrast agent. In order to perform quantitative modeling on the resulting signal intensity time course, data must be acquired rapidly, which compromises spatial resolution, signal to noise and/or field of view. One approach that may allow for gains in temporal or spatial resolution or signal to noise of an individual image is to use compressed sensing (CS) MRI. In this study, we demonstrate the accuracy of extracted pharmacokinetic parameters from DCE-MRI data obtained as part of pre-clinical and clinical studies in which fully sampled acquisitions have been retrospectively undersampled by factors of 2, 3 and 4 in Fourier space and then reconstructed with CS. The mean voxel-level concordance correlation coefficient for Ktrans (i.e. the volume transfer constant) obtained from the 2× accelerated and the fully sampled data is 0.92 and 0.90 for mouse and human data, respectively; for 3×, the results are 0.79 and 0.79, respectively; for 4×, the results are 0.64 and 0.70, respectively. The mean error in the tumor mean Ktrans for the mouse and human data at 2× acceleration is 1.8% and −4.2%, respectively; at 3×, 3.6% and −10%, respectively; at 4×, 7.8% and −12%, respectively. These results suggest that CS combined with appropriate reduced acquisitions may be an effective approach to improving image quality in DCE-MRI.

4947

, and

With on-line image guidance (IG), prostate shifts relative to the bony anatomy can be corrected by realigning the patient with respect to the treatment fields. In image guided intensity modulated proton therapy (IG-IMPT), because the proton range is more sensitive to the material it travels through, the realignment may introduce large dose variations. This effect is studied in this work and an on-line adaptive procedure is proposed to restore the planned dose to the target. A 2D anthropomorphic phantom was constructed from a real prostate patient's CT image. Two-field laterally opposing spot 3D-modulation and 24-field full arc distal edge tracking (DET) plans were generated with a prescription of 70 Gy to the planning target volume. For the simulated delivery, we considered two types of procedures: the non-adaptive procedure and the on-line adaptive procedure. In the non-adaptive procedure, only patient realignment to match the prostate location in the planning CT was performed. In the on-line adaptive procedure, on top of the patient realignment, the kinetic energy for each individual proton pencil beam was re-determined from the on-line CT image acquired after the realignment and subsequently used for delivery. Dose distributions were re-calculated for individual fractions for different plans and different delivery procedures. The results show, without adaptive, that both the 3D-modulation and the DET plans experienced delivered dose degradation by having large cold or hot spots in the prostate. The DET plan had worse dose degradation than the 3D-modulation plan. The adaptive procedure effectively restored the planned dose distribution in the DET plan, with delivered prostate D98%, D50% and D2% values less than 1% from the prescription. In the 3D-modulation plan, in certain cases the adaptive procedure was not effective to reduce the delivered dose degradation and yield similar results as the non-adaptive procedure. In conclusion, based on this 2D phantom study, by updating the proton pencil beam energy from the on-line image after realignment, this on-line adaptive procedure is necessary and effective for the DET-based IG-IMPT. Without dose re-calculation and re-optimization, it could be easily incorporated into the clinical workflow.

4967

, , , , and

To avoid potentially adverse health effects of electromagnetic fields (EMF), the International Commission on Non-Ionizing Radiation Protection (ICNIRP) has defined EMF reference levels. Restrictions on induced whole-body-averaged specific absorption rate (SARwb) are provided to keep the whole-body temperature increase (Tbody, incr) under 1 °C during 30 min. Additional restrictions on the peak 10 g spatial-averaged SAR (SAR10g) are provided to prevent excessive localized tissue heating. The objective of this study is to assess the localized peak temperature increase (Tincr, max) in children upon exposure at the reference levels. Finite-difference time-domain modeling was used to calculate Tincr, max in six children and two adults exposed to orthogonal plane-wave configurations. We performed a sensitivity study and Monte Carlo analysis to assess the uncertainty of the results. Considering the uncertainties in the model parameters, we found that a peak temperature increase as high as 1 °C can occur for worst-case scenarios at the ICNIRP reference levels. Since the guidelines are deduced from temperature increase, we used Tincr, max as being a better metric to prevent excessive localized tissue heating instead of localized peak SAR. However, we note that the exposure time should also be considered in future guidelines. Hence, we advise defining limits on Tincr, max for specified durations of exposure.

4991

and

Accurate scatter correction is especially important for high-resolution 3D positron emission tomographies (PETs) such as high-resolution research tomograph (HRRT) due to large scatter fraction in the data. To address this problem, a fully 3D iterative scatter-corrected ordered subset expectation maximization (OSEM) in which a 3D single scatter simulation (SSS) is alternatively performed with a 3D OSEM reconstruction was recently proposed. However, due to the computational complexity of both SSS and OSEM algorithms for a high-resolution 3D PET, it has not been widely used in practice. The main objective of this paper is, therefore, to accelerate the fully 3D iterative scatter-corrected OSEM using a graphics processing unit (GPU) and verify its performance for an HRRT. We show that to exploit the massive thread structures of the GPU, several algorithmic modifications are necessary. For SSS implementation, a sinogram-driven approach is found to be more appropriate compared to a detector-driven approach, as fast linear interpolation can be performed in the sinogram domain through the use of texture memory. Furthermore, a pixel-driven backprojector and a ray-driven projector can be significantly accelerated by assigning threads to voxels and sinograms, respectively. Using Nvidia's GPU and compute unified device architecture (CUDA), the execution time of a SSS is less than 6 s, a single iteration of OSEM with 16 subsets takes 16 s, and a single iteration of the fully 3D scatter-corrected OSEM composed of a SSS and six iterations of OSEM takes under 105 s for the HRRT geometry, which corresponds to acceleration factors of 125× and 141× for OSEM and SSS, respectively. The fully 3D iterative scatter-corrected OSEM algorithm is validated in simulations using Geant4 application for tomographic emission and in actual experiments using an HRRT.

5011

, , , , , and

The success of prostate brachytherapy critically depends on delivering adequate dose to the prostate gland, and the capability of intraoperatively localizing implanted seeds provides potential for dose evaluation and optimization during therapy. REDMAPS is a recently reported algorithm that carries out seed localization by detecting, matching and reconstructing seeds in only a few seconds from three acquired x-ray images (Lee et al 2011 IEEE Trans. Med. Imaging29 38–51). In this paper, we present an automatic pose correction (APC) process that is combined with REDMAPS to allow for both more accurate seed reconstruction and the use of images with relatively large pose errors. APC uses a set of reconstructed seeds as a fiducial and corrects the image pose by minimizing the overall projection error. The seed matching and APC are iteratively computed until a stopping condition is met. Simulations and clinical studies show that APC significantly improves the reconstructions with an overall average matching rate of ⩾99.4%, reconstruction error of ⩽0.5 mm, and the matching solution optimality of ⩾99.8%.

5029

, , , and

The COMPASS system (IBA Dosimetry) is a quality assurance (QA) tool which reconstructs 3D doses inside a phantom or a patient CT. The dose is predicted according to the RT plan with a correction derived from 2D measurements of a matrix detector. This correction method is necessary since a direct reconstruction of the fluence with a high resolution is not possible because of the limited resolution of the matrix used, but it comes with a blurring of the dose which creates inaccuracies in the dose reconstruction. This paper describes the method and verifies its capability to detect errors in the positioning of a MLC with 10 mm leaf width in a phantom geometry. Dose reconstruction was performed for MLC position errors of various sizes at various locations for both rectangular and intensity-modulated radiotherapy (IMRT) fields and compared to a reference dose. It was found that the accuracy with which an error in MLC position is detected depends on the location of the error relative to the detectors in the matrix. The reconstructed dose in an individual rectangular field for leaf positioning errors up to 5 mm was correct within 5% in 50% of the locations. At the remaining locations, the reconstruction of leaf position errors larger than 3 mm can show inaccuracies, even though these errors were detectable in the dose reconstruction. Errors larger than 9 mm created inaccuracies up to 17% in a small area close to the penumbra. The QA capability of the system was tested through gamma evaluation. Our results indicate that the mean gamma provided by the system is slightly increased and that the number of points above gamma 1 ensures error detection for QA purposes. Overall, the correction kernel method used by the COMPASS system is adequate to perform QA of IMRT treatment plans with a regular MLC, despite local inaccuracies in the dose reconstruction.

5045

and

For prostate cancer patients, online image-guided (IG) radiotherapy has been widely used in clinic to correct the translational inter-fractional motion at each treatment fraction. For uncertainties that cannot be corrected online, such as rotation and deformation of the target volume, margins are still required to be added to the clinical target volume (CTV) for the treatment planning. Offline adaptive radiotherapy has been implemented to optimize the treatment for each individual patient based on the measurements at early stages of treatment process. It has been shown that offline adaptive radiotherapy can effectively reduce the required margin. Recently a hybrid strategy of offline adaptive replanning and online IG was proposed and the geometric evaluation was performed. It was found that the planning margins can further be reduced by 1–2 mm compared to online IG only strategy. The purpose of this study was to investigate the dosimetric benefits of such a hybrid strategy on the target and organs at risk. A total of 420 repeated helical computed tomography scans from 28 patients were included in the study. Both low-risk patients (LRP, CTV = prostate) and intermediate-risk patients (IRP, CTV = prostate + seminal vesicles, SV) were included in the simulation. Two registration methods, based on center-of-mass shift of prostate only and prostate plus SV, were performed for IRP. The intensity-modulated radiotherapy was used in the simulation. Criteria on both cumulative and fractional doses were evaluated. Furthermore, the geometric evaluation was extended to investigate the optimal number of fractions necessary to construct the internal target volume (ITV) for the hybrid strategy. The dosimetric margin improvement was smaller than its geometric counterpart and was in the range of 0–1 mm. The optimal number of fractions necessary for the ITV construction is 2 for LRPs and 3–4 for IRPs in a hypofractionation protocol. A new cumulative index of target volume was proposed for the evaluation of adaptive radiotherapy strategies, and it was found that it had the advantages over other indices in evaluating different adaptive radiotherapy strategies.

5063

, , and

Spatial smoothing using isotropic Gaussian kernels to remove noise reduces spatial resolution and increases the partial volume effect of functional magnetic resonance images (fMRI), thereby reducing localization power. To minimize these limitations, we propose a novel anisotropic smoothing method for fMRI data. To extract an anisotropic tensor for each voxel of the functional data, we derived an intensity gradient using the distance transformation of the segmented gray matter of the fMRI-coregistered T1-weighted image. The intensity gradient was then used to determine the anisotropic smoothing kernel at each voxel of the fMRI data. Performance evaluations on both real and simulated data showed that the proposed method had 10% higher statistical power and about 20% higher gray matter localization compared to isotropic smoothing and robustness to the registration errors (up to 4 mm translations and 4° rotations) between T1 structural images and fMRI data. The proposed method also showed higher performance than the anisotropic smoothing with diffusion gradients derived from the fMRI intensity data.