Table of contents

Volume 68

Number 8, August 2005

Previous issue Next issue

1703

In this review the theory and application of Smoothed particle hydrodynamics (SPH) since its inception in 1977 are discussed. Emphasis is placed on the strengths and weaknesses, the analogy with particle dynamics and the numerous areas where SPH has been successfully applied.

1761

and

Before the application of small-angle neutron scattering (SANS) to the study of polymer structure, chain conformation studies were limited to light and small-angle x-ray scattering techniques, usually conducted in dilute solution owing to the difficulties of separating the inter- and intrachain contributions to the structure. The unique role of neutron scattering in soft condensed matter arises from the difference in the coherent scattering length between deuterium (bD = 0.67 × 10−12 cm) and hydrogen (bH = −0.37 × 10−12 cm), which results in a marked difference in scattering power (contrast) between molecules synthesized from normal (hydrogeneous) and deuterated monomer units. Thus, deuterium labelling techniques may be used to 'stain' molecules and make them 'visible' in the condensed state and other crowded environments, such as concentrated solutions of overlapping chains.

For over two decades, SANS has proved to be a powerful tool for studies of structure–property relationships in polymeric systems and has made it possible to extract unique information about their size, shape, conformational changes and molecular associations. These applications are now so numerous that an exhaustive review of the field is no longer practical, so the authors propose to focus on the use of SANS for studies of strongly interacting soft matter systems. This paper will therefore discuss basic theory and practical aspects of the technique and will attempt to explain the physics of scattering with the minimum of unnecessary detail and mathematical rigour. Examples will be given to demonstrate the power of SANS and to show how it has helped to unveil universal aspects of the behaviour of macromolecules in such apparently diverse systems as polymer solutions, blends, polyelectrolytes and supercritical mixtures. The aim of the authors is to aid potential users who have a general scientific background, but no specialist knowledge of scattering, to understand the potential of the technique and, if they so choose, to apply it to provide new information in areas of their own particular research interests.

1811

The combination of synchrotron x-ray facilities with high-pressure methods provides new experimental tools for addressing geophysical problems relevant to understanding the interior of the Earth and other planets. Among the important geophysical questions related to the Earth's silicate mantle are the origin of seismic discontinuities in the upper mantle, the rheological properties of mantle minerals and their influence on dynamic flow in the Earth, and the nature of the core–mantle boundary region. In the case of the Earth's core, key questions are centred on the identity of the light elements of the core and their effect on energetics and thermodynamic properties, the melting curve of iron and its alloys and the origin of seismic anisotropy in the inner core.

Both new and established high-pressure synchrotron methods applied to the diamond anvil cell and large-volume apparatus are surveyed. Advances in synchrotron capabilities have been accompanied by new innovations in high-pressure technology. X-ray diffraction techniques are mature but continued improvements are leading to expanded pressure–temperature coverage and better ability to recover crystallographic details. Diffraction and absorption studies of the properties of liquids of silicate and iron alloy composition have expanded in response to new capabilities. Recently, methods for inelastic scattering and nuclear resonance probes have been developed at high pressures and these provide constraints on vibrational, electronic and magnetic properties, which were previously unattainable.

1861

and

In cancer treatment, the introduction of MeV bremsstrahlung photons has been instrumental in delivering higher doses to deep-seated tumours, while reducing the doses absorbed by the surrounding healthy tissues. Beams of protons and carbon ions have a much more favourable dose-depth distribution than photons (called 'x-rays' by medical doctors) and are the new frontiers of cancer radiation therapy. Section 2 presents the status of the first form of hadrontherapy which uses beams of 200–250 MeV protons. The central part of this review is devoted to the discussion of the physical, radiobiological and clinical bases of the use of 400 MeV µ−1 carbon ions in the treatment of radio-resistant tumours. These resist irradiation with photon as well as proton beams. The following section describes the carbon ion facilities that are either running or under construction. Finally, the projects recently approved or proposed are reviewed here.

1883

Recent progress in near-field optics instrumentation has led to a new class of subwavelength optical experiments in which near-field optical microscopes are used to image precisely the electromagnetic field distributions inside nanostructures microfabricated at the surface of dielectric wafers (microwaveguides, optical splitters, whispering-gallery modes, three-dimensional photonic crystals, metal nanoparticle gratings, plasmon waveguides, etc). In the light of these new advances, we review the physics of near-field optics in the presence of nanostructured materials (the so-called nano-optics). After the introductory part, revealing the main theoretical schemes and computation techniques well-suited for nano-optics, we will focus on several typical examples of calculations extracted from the recent literature. We will begin this series by revisiting the challenging problem of the optical addressing of both passive or active nanostructures in a subwavelength area. In this context, various procedures for the optimization of the energy transfer efficiency inside addressed nanostructures will be detailed. Finally, the concept of photonic local density of states in near-field optics will be revisited.

1935

and

The Galileo and Cassini spacecrafts have greatly enhanced the observational record of Jupiter's tropospheric dynamics, particularly through returning high spatial resolution, multi-spectral and global imaging data with episodic coverage over periods of months to years. These data, along with those from Earth-based telescopes, have revealed the stability of Jupiter's zonal jets, captured the evolution of vortices and equatorial waves, and mapped the distributions of lightning and moist convection. Because no observations of Jupiter's interior exist, a forward modelling approach has been used to relate observations at cloud level to models of shallow or deep jet structure, shallow or deep jet forcing and energy transfer between turbulence, vortices and jets. A range of observed phenomena can be reproduced in shallow models, though the Galileo probe winds and jet stability arguments hint at the presence of deep jets. Many deep models, however, fail to reproduce Jupiter-like non-zonal features (e.g. vortices). Jupiter's dynamics likely include both deep and shallow processes, requiring an integrated approach to future modelling—an important goal for the post-Galileo and Cassini era.