Table of contents

Volume 70

Number 10, October 2007

Previous issue Next issue

KEY ISSUES REVIEW

1583

When we try to pick out anything by itself we find that it is bound fast, by a thousand invisible cords that cannot be broken, to everything in the Universe. John MuirThe John Muir Papers 1858–1957, edited by Ronald H Limbaugh and Kirsten E Lewis 1986.

REVIEW ARTICLES

1597

In this paper techniques for the generation and measurement of ultrashort pulses in the frequency range from about 0.1 to 10 THz are reviewed. The methods for generation are restricted to table-top systems based on short-pulse lasers in the visible or in the near-infrared. Three techniques are dealt with in detail: photoconductive switches, difference frequency generation and plasma sources. Definitions and methods to measure the pulse width are given, among them cross-correlation and measurements of the electric field of these pulses as a function of time by photoconductive switches and electro-optic sampling.

1633

, , , and

Modern laser sources nowadays deliver ultrashort light pulses reaching few cycles in duration and peak powers exceeding several terawatt (TW). When such pulses propagate through optically transparent media, they first self-focus in space and grow in intensity, until they generate a tenuous plasma by photo-ionization. For free electron densities and beam intensities below their breakdown limits, these pulses evolve as self-guided objects, resulting from successive equilibria between the Kerr focusing process, the chromatic dispersion of the medium and the defocusing action of the electron plasma. Discovered one decade ago, this self-channeling mechanism reveals a new physics, widely extending the frontiers of nonlinear optics. Implications include long-distance propagation of TW beams in the atmosphere, supercontinuum emission, pulse shortening as well as high-order harmonic generation. This review presents the landmarks of the 10-odd-year progress in this field. Particular emphasis is laid on the theoretical modeling of the propagation equations, whose physical ingredients are discussed from numerical simulations. The dynamics of single filaments created over laboratory scales in various materials such as noble gases, liquids and dielectrics reveal new perspectives in pulse shortening techniques. Far-field spectra provide promising diagnostics. Attention is also paid to the multifilamentation instability of broad beams, breaking up the energy distribution into small-scale cells along the optical path. The robustness of the resulting filaments in adverse weathers, their large conical emission exploited for multipollutant remote sensing, nonlinear spectroscopy and the possibility of guiding electric discharges in air are finally addressed on the basis of experimental results.

ERRATUM

1715
The following article is Free article

and

Due to a typesetting error, the dashed lines in the captions of figures 9 and 13 in this article are incorrect. In addition, the lines plotted in figure 9b are also wrong. The complete correct version of figure 9 and the caption for figure 13 are given in the PDF.