Brought to you by:

Table of contents

Volume 55

Number 1, February 2000

Previous issue Next issue

COMMUNICATIONS OF THE MOSCOW MATHEMATICAL SOCIETY

1

The prime application of the ideas and algorithms of power geometry is in the study of parameter-free partial differential equations. To each differential monomial we assign a point in : the vector exponent of this monomial. To a differential equation corresponds its support, which is the set of vector exponents of the monomials in the equation. The forms of self-similar solutions of an equation can be calculated from the support using the methods of linear algebra. The equations of a combustion process, with or without sources, are used as examples. For a quasi-homogeneous ordinary differential equation, this approach enables one to reduce the order and to simplify some boundary-value problems. Next, generalizations are made to systems of differential equations. Moreover, we suggest a classification of levels of complexity for problems in power geometry. This classification contains four levels and is based on the complexity of the geometric objects corresponding to a given problem (in the space of exponents). We give a comparative survey of these objects and of the methods based on them for studying solutions of systems of algebraic equations, ordinary differential equations, and partial differential equations. We list some publications in which the methods of power geometry have been effectively applied.

43

A theory is constructed for attractors of all finite-energy solutions of conservative one-dimensional wave equations on the whole real line. The attractor of a non-degenerate (that is, generic) equation is the set of all stationary solutions. Each finite-energy solution converges as to this attractor in the Frechet topology determined by local energy seminorms. The attraction is caused by energy dissipation at infinity. Our results provide a mathematical model of Bohr transitions ("quantum jumps") between stationary states in quantum systems.

93

We consider regularity properties of Fourier integral operators in various function spaces. The most interesting case is the spaces, for which survey of recent results is given. For example, sharp orders are known for operators satisfying the so-called smooth factorization condition. Here this condition is analyzed in both real and complex settings. In the letter case, conditions for the continuity of Fourier integral operators are related to singularities of affine fibrations in  (or subsets of ) specified by the kernels of Jacobi matrices of holomorphic maps. Singularities of such fibrations are analyzed in this paper in the general case. In particular, it is shown that if the dimension  or the rank of the Jacobi matrix is small, then all singularities of an affine fibration are removable. The fibration associated with a Fourier integral operator is given by the kernels of the Hessian of the phase function of the operator. On the basis of an analysis of singularities for operators commuting with translations we show in a number of cases that the factorization condition is satisfied, which leads to estimates for operators. In other cases, examples are given in which the factorization condition fails. The results are applied to deriving estimates for solutions of the Cauchy problem for hyperbolic partial differential operators.