Articles

ACCURATE RITZ WAVELENGTHS OF PARITY-FORBIDDEN [Co ii] AND [V ii] LINES OF ASTROPHYSICAL INTEREST

and

Published 2013 July 15 © 2013. The American Astronomical Society. All rights reserved.
, , Citation M. P. Ruffoni and J. C. Pickering 2013 ApJS 207 20 DOI 10.1088/0067-0049/207/2/20

0067-0049/207/2/20

ABSTRACT

We report a comprehensive list of accurate Ritz wavelengths for parity-forbidden [Co ii] and [V ii] lines obtained from the analysis of energy levels measured in the laboratory with Fourier transform emission spectroscopy. Such lines, particularly those in the infrared, are in demand for the analysis of low-density astrophysical plasmas in and around objects such as planetary nebulae, star-forming regions, and active galactic nuclei. Transitions between all known metastable levels of Co ii and V ii are included in our analysis, producing wavelengths for 1477 [V ii] lines and 782 [Co ii] lines. Of these, 170 [V ii] lines and 171 [Co ii] lines arise from transitions with calculated transition probabilities greater than 1 × 10−2 s−1 and upper level excitations of less than 5 eV, and thus are likely to be observed in astrophysical spectra.

Export citation and abstract BibTeX RIS

1. INTRODUCTION

Stellar spectra feature a rich array of absorption lines, generated primarily from electric dipole (E1) transitions within the atoms of a star's atmosphere. These lines may be interpreted using synthetic spectra derived from atomic and molecular line lists, and radiative processes modeled using spectra containing hundreds of millions or billions of spectroscopic transitions.

In each case though, fundamental atomic data—such as line wavelengths and identifications, transition probabilities, and line broadening parameters such as hyperfine splitting—must be known. These can be supplied on a large scale through ab initio atomic and molecular calculations, or with greater accuracy on a smaller scale through direct experimental measurements in the laboratory.

However, in recent decades, developments in astronomical spectrographs have placed greater demands on the quantity and accuracy of such data. As a result, our understanding of stellar atmospheres is frequently not limited by the quality and quantity of astronomical spectra, but by the availability of accurate atomic and molecular data with which to analyze them. This is also true of other areas of astronomical spectroscopy, which may have additional, sometimes unique, requirements.

In contrast to stellar spectra, spectra from low-density astrophysical plasmas—such as those that exist in planetary nebulae and star-forming regions, and around active galactic nuclei—also contain strong emission lines. These are generated through a number of processes, and can lead to the observation of so-called forbidden lines, which arise from the radiative de-excitation of electrons from long-lived, low-lying metastable levels. For an overview of the processes at work in nebulae and active galactic nuclei, see Osterbrock & Ferland (2006), for example.

In general, metastable levels possess the same parity as the ground state of an atom,1 and are of lower energy than any level of opposite parity. De-excitation of electrons through E1 transitions is thus forbidden, as can be seen from the selection rules in Table 1. Electrons populating these levels must therefore de-excite through alternative mechanisms.

Table 1. Transition Rules for Allowed E1 Transitions and Parity-forbidden M1 and E2 Transitions

Transition Parity ΔJ Restrictions
E1 Changes 0, ±1 (0↮0)
M1 No change 0, ±1 (0↮0)
E2 No change 0, ±1, ±2 (0↮0, 1/2↮1/2, 0↮1)

Download table as:  ASCIITypeset image

Higher order, magnetic dipole (M1) and electric quadrupole (E2) transitions are allowed, but for neutral and weakly ionized atoms, their transition probabilities are many orders of magnitude smaller than those for E1 transitions. As a result, in high-density plasmas—such as those that exist in stellar atmospheres or plasmas generated in the laboratory—metastable levels are predominantly de-populated through collisions with other atoms, and thus no forbidden lines are seen. However, in low-density plasmas, collisions are rare, allowing enough time for M1 and E2 transitions to occur.

Forbidden lines are thus observed in these plasmas and are important in examining different regions of planetary nebulae (Smith et al. 2005, for example) and nebulae surrounding objects such as active galactic nuclei (Meijerink et al. 2007, for example). However, it is usual for only standard pairs of forbidden lines to be used in such analyses, most commonly those from [Fe ii], which is at least in part due to a lack of accurate atomic data for other forbidden lines. Barlow (2012) recently reviewed developments arising from spectroscopic studies of ionized nebulae and concluded that there is an "urgent" requirement for more atomic data of such lines; particularly so for atoms in low ionization states.

In this paper, we present a comprehensive set of accurate Ritz wavelengths for forbidden lines in Co ii and V ii, calculated, in each case, for transitions between all known metastable levels. These include infrared lines of astrophysical importance, some of which have already been observed in such spectra; see Fang & Liu (2011), Hartman et al. (2004), and Arkhipova et al. (2001), for example.

2. LABORATORY DATA

The Ritz wavelengths of the parity-forbidden [Co ii] and [V ii] lines reported here were calculated, respectively, from the accurate Co ii energy levels reported by Pickering et al. (1998) and the revised accurate V ii energy levels measured by Thorne et al. (2013).

In both cases, the laboratory Co ii and V ii spectra obtained by those researchers, and used in their spectral analyses, were generated in a water-cooled hollow cathode discharge lamp and measured on both the f/25 vacuum UV Fourier transform (FT) spectrometer at Imperial College London (Thorne et al. 1987) and the f/55 IR-visible FT spectrometer at the National Solar Observatory, Kitt Peak, Tucson, AZ (Brault 1976). Observed atomic lines were fitted using the GREMLIN program developed by J. W. Brault (unpublished), with care taken to account for hyperfine structure splitting by calculating a center of gravity wavenumber for each transition. The wavenumber scale was calibrated using the 26 Ar ii lines recommended by Learner & Thorne (1988), and the ELCALC program (Radziemski & Kaufman 1969) was then used to revise the energy levels involving known transitions observed in the FT spectra. New energy levels were found using the unidentified observed lines.

The Co ii spectra in Pickering et al. (1998) were wavelength calibrated using the Ar ii measurements of Norlén (1973). By contrast, the V ii spectra in Thorne et al. (2013) were wavelength calibrated using the more recent Ar ii measurements of Whaling et al. (1995). Since the measurements of Norlén (1973) have now been superseded by those of Whaling et al. (1995), we increased the Co ii energy levels of Pickering et al. (1998) by 7 parts in 108—the value recommended by Whaling et al. (1995)—in our calculations of [Co ii] Ritz wavelengths to account for the difference between the two calibration scales. In almost all cases, however, the resulting change in line wavelength was smaller than the overall wavelength uncertainty.

3. ANALYSIS AND RESULTS

3.1. Ritz Wavelengths

V ii has a complex energy level structure, with 65 metastable levels of even parity between the 3d4a5D0 ground state and the lowest-lying level of odd parity; the 3d3(4F)4pz5G2 level at 34592.843(1) cm−1 (Thorne et al. 2013). These levels are shown in Figure 1, grouped by their configuration and sub-configuration, with individual spin-orbit (LS) terms labeled. The levels belonging to the lowest-lying term of odd parity are also shown to indicate the upper limit on the region in which E1 transitions are forbidden.

Figure 1.

Figure 1. Energy level diagram showing the 65 known metastable levels in V ii, which are of even parity. The levels belonging to the 3d3(4F)4pz5G term, which is the lowest-lying term of odd parity, are also shown as dashed lines to indicate the upper limit on the region in which E1 transitions are forbidden.

Standard image High-resolution image

Using the energy levels measured by Thorne et al. (2013) and the selection rules given in Table 1, we calculated accurate Ritz wavelengths for the 1477 possible parity-forbidden [V ii] lines originating from M1 and E2 transitions between all 65 metastable levels. The most significant of these—those with A ⩾ 1 × 10−2 and upper level excitation of less than 5 eV—are listed in Table 2, with the remaining weaker lines listed in Table 4. The uncertainties in line wavelength were obtained by combining the uncertainty in the energy level value (typically 0.001 cm−1 to 0.003 cm−1) of each of the two levels involved in a given transition.

Table 2. Parity-forbidden Lines in V ii with a Transition Probability of At Least 1 × 10−2 s−1 and Upper Level Excitation Less Than 5 eV

Wavenumber Unc. λvac Unc. λair Transition Energy (cm−1)b A Type
(cm−1) (cm−1) (Å) (Å) (Å)a Lower Upper Lower Upper (s−1)c
Level Level Level Level
5391.151 0.004 18548.9147 0.0124 18543.8509 a5P3 b3P2 13742 19133 1.71 × 10−2 M1, E2
5649.623 0.004 17700.2961 0.0113 17695.4632 a5P1 b3P0 13512 19161 2.87 × 10−2 M1
5654.515 0.004 17684.9827 0.0113 17680.1540 a5P1 b3P1 13512 19166 2.22 × 10−2 M1, E2
7253.161 0.004 13787.0923 0.0069 13783.3234 a3P2 b3P0 11908 19161 1.02 × 10−2 E2
7657.257 0.002 13059.5068 0.0038 13055.9357 a3H6 b3H6 12706 20363 1.99 × 10−2 M1, E2
7658.766 0.003 13056.9337 0.0054 13053.3633 a3H5 b3H5 12621 20280 1.77 × 10−2 M1, E2
7697.282 0.004 12991.5989 0.0061 12988.0461 a3H4 b3H4 12545 20242 1.83 × 10−2 M1, E2
8387.824 0.004 11922.0432 0.0064 11918.7809 a3P1 a1S0 11515 19903 2.41 × 10−2 M1
9037.817 0.004 11064.6188 0.0044 11061.5892 b1D2 b1F3 25191 34229 3.38 × 10−2 M1, E2
9255.938 0.002 10803.8753 0.0026 10800.9164 a3F4 a3D3 9098 18354 2.05 × 10−2 M1, E2
9427.464 0.003 10607.3065 0.0036 10604.4009 a3F3 a3D1 8842 18270 1.13 × 10−2 E2
9629.152 0.004 10385.1305 0.0039 10382.2852 a3F2 a3D1 8640 18270 1.25 × 10−2 M1, E2
9695.545 0.004 10314.0154 0.0045 10311.1893 b3D3 c3F4 20623 30319 1.25 × 10−2 M1, E2
9955.193 0.004 10045.0087 0.0036 10042.2555 b3H6 c3F4 20363 30319 2.92 × 10−2 E2
10015.040 0.001 9984.9826 0.0014 9982.2457 a3F4 b1G4 9098 19113 1.71 × 10−2 M1, E2
10025.129 0.006 9974.9340 0.0058 9972.1998 b3H4 c3F2 20242 30268 3.26 × 10−2 E2
10026.138 0.004 9973.9301 0.0042 9971.1963 b3H5 c3F3 20280 30306 3.11 × 10−2 E2
10270.864 0.004 9736.2792 0.0034 9733.6098 c3P2 d3F4 20343 30614 1.27 × 10−2 E2
10270.879 0.001 9736.2650 0.0013 9733.5955 a3F3 b1G4 8842 19113 1.04 × 10−2 M1, E2
10521.060 0.004 9504.7457 0.0033 9502.1389 a3F2 b3P0 8640 19161 1.18 × 10−2 E2
10525.952 0.004 9500.3283 0.0033 9497.7227 a3F2 b3P1 8640 19166 1.23 × 10−2 M1, E2
10578.674 0.003 9452.9806 0.0025 9450.3878 a5F5 a5P3 3163 13742 1.85 × 10−2 E2
10583.438 0.005 9448.7255 0.0048 9446.1338 c3P1 d3F2 20090 30673 1.16 × 10−2 M1, E2
10626.334 0.004 9410.5832 0.0037 9408.0019 a5F4 a5P2 2968 13595 1.19 × 10−2 E2
10785.764 0.004 9271.4804 0.0035 9268.9368 a5F3 a5P2 2809 13595 1.08 × 10−2 M1, E2
10824.591 0.002 9238.2243 0.0019 9235.6897 a5F2 a5P1 2687 13512 1.23 × 10−2 M1, E2
10837.702 0.003 9227.0483 0.0024 9224.5167 a1H5 b1F3 23391 34229 5.30 × 10−2 E2
10906.759 0.002 9168.6265 0.0019 9166.1108 a5F1 a5P1 2605 13512 1.15 × 10−2 M1, E2
11245.157 0.002 8892.7171 0.0018 8890.2760 a3F4 c3P2 9098 20343 1.81 × 10−2 E2
11247.600 0.002 8890.7856 0.0018 8888.3450 a3F3 c3P1 8842 20090 1.56 × 10−2 E2
11259.411 0.005 8881.4593 0.0042 8879.0212 a5D1 a3P0 36 11296 1.93 × 10−2 M1
11318.330 0.007 8835.2257 0.0052 8832.8001 a1D2 d3P1 20981 32299 1.84 × 10−2 M1, E2
11408.141 0.002 8765.6701 0.0017 8763.2633 a5D2 a3P1 107 11515 1.52 × 10−2 M1, E2
11417.652 0.006 8758.3682 0.0045 8755.9634 b3D3 d3P2 20623 32041 6.46 × 10−2 M1, E2
11439.123 0.010 8741.9289 0.0080 8739.5286 a1D2 d3P0 20981 32420 7.03 × 10−2 E2
11449.288 0.003 8734.1676 0.0022 8731.7694 a3F2 c3P1 8640 20090 2.17 × 10−2 M1, E2
11475.453 0.004 8714.2529 0.0032 8711.8601 b3P1 d3F3 19166 30642 1.44 × 10−2 E2
11481.119 0.004 8709.9524 0.0032 8707.5607 b3P2 d3F4 19133 30614 2.58 × 10−2 E2
11492.641 0.002 8701.2202 0.0017 8698.8309 a5F5 a3G5 3163 14656 1.37 × 10−2 M1, E2
11500.996 0.002 8694.8991 0.0017 8692.5115 a3F3 c3P2 8842 20343 1.60 × 10−2 M1, E2
11516.308 0.004 8683.3384 0.0027 8680.9540 a3F2 c3P0 8640 20157 3.74 × 10−2 E2
11525.094 0.003 8676.7188 0.0024 8674.3361 a3F4 b3D3 9098 20623 1.60 × 10−2 M1, E2
11648.390 0.003 8584.8774 0.0023 8582.5195 b3F3 b1D2 13543 25191 1.08 × 10−2 M1, E2
11676.274 0.007 8564.3759 0.0049 8562.0236 b3D3 d3P1 20623 32299 5.62 × 10−2 E2
11680.097 0.004 8561.5727 0.0030 8559.2212 a3F3 b3D1 8842 20522 1.51 × 10−2 E2
11682.184 0.007 8560.0432 0.0049 8557.6921 b3D2 d3P1 20617 32299 4.01 × 10−2 M1, E2
11697.589 0.005 8548.7702 0.0039 8546.4221 c3P2 d3P2 20343 32041 1.11 × 10−1 M1, E2
11699.471 0.002 8547.3950 0.0016 8545.0473 a5D3 a3P2 209 11908 1.10 × 10−2 M1, E2
11777.110 0.007 8491.0475 0.0052 8488.7150 b3D1 d3P1 20522 32299 9.32 × 10−2 M1, E2
11802.977 0.010 8472.4388 0.0075 8470.1113 b3D2 d3P0 20617 32420 1.78 × 10−1 E2
11881.785 0.004 8416.2439 0.0032 8413.9316 a3F2 b3D1 8640 20522 1.15 × 10−2 M1, E2
11883.965 0.006 8414.7000 0.0041 8412.3881 c3P0 d3P2 20157 32041 3.83 × 10−2 E2
11950.985 0.005 8367.5111 0.0038 8365.2120 c3P1 d3P2 20090 32041 1.06 × 10−1 M1, E2
11956.211 0.006 8363.8537 0.0044 8361.5556 c3P2 d3P1 20343 32299 1.12 × 10−1 M1, E2
12077.004 0.010 8280.1993 0.0070 8277.9238 c3P2 d3P0 20343 32420 8.69 × 10−2 E2
12138.877 0.003 8237.9943 0.0021 8235.7303 a3F3 a1D2 8842 20981 1.86 × 10−2 M1, E2
12209.607 0.006 8190.2718 0.0042 8188.0206 c3P1 d3P1 20090 32299 2.54 × 10−2 M1, E2
12260.083 0.004 8156.5516 0.0024 8154.3096 a3D3 d3F4 18354 30614 2.25 × 10−2 M1, E2
12340.565 0.004 8103.3567 0.0024 8101.1290 a3F2 a1D2 8640 20981 2.01 × 10−2 M1, E2
12347.896 0.004 8098.5457 0.0024 8096.3193 a3D2 d3F3 18294 30642 1.65 × 10−2 M1, E2
12379.217 0.005 8078.0553 0.0035 8075.8345 a3D2 d3F2 18294 30673 1.14 × 10−2 M1, E2
12403.574 0.006 8062.1924 0.0038 8059.9758 a3D1 d3F2 18270 30673 1.72 × 10−2 M1, E2
12874.321 0.006 7767.3999 0.0035 7765.2629 b3P1 d3P2 19166 32041 1.47 × 10−2 M1, E2
12907.844 0.006 7747.2272 0.0035 7745.0956 b3P2 d3P2 19133 32041 1.92 × 10−2 M1, E2
13255.598 0.004 7543.9825 0.0023 7541.9058 a5D4 a5P2 339 13595 1.85 × 10−1 E2
13269.814 0.001 7535.9007 0.0008 7533.8261 a5D4 b3F4 339 13609 1.31 × 10−2 M1, E2
13287.259 0.010 7526.0067 0.0059 7523.9348 b3P2 d3P0 19133 32420 1.91 × 10−2 E2
13303.009 0.002 7517.0963 0.0013 7515.0269 a5D3 a5P1 209 13512 2.21 × 10−1 E2
13370.017 0.003 7479.4221 0.0016 7477.4245 a5F5 b3G5 3163 16533 2.88 × 10−2 M1, E2
13402.515 0.002 7461.2862 0.0012 7459.2934 a5D4 a5P3 339 13742 1.76 × 10−1 M1, E2
13405.156 0.002 7459.8162 0.0012 7457.8238 a5D2 a5P1 107 13512 1.43 × 10−1 M1, E2
13453.139 0.001 7433.2095 0.0008 7431.2240 a5F4 b3G4 2968 16422 1.57 × 10−2 M1, E2
13475.697 0.003 7420.7664 0.0016 7418.7842 a5D1 a5P1 36 13512 3.79 × 10−2 M1, E2
13488.080 0.004 7413.9537 0.0023 7411.9732 a5D2 a5P2 107 13595 6.33 × 10−2 M1, E2
13532.850 0.002 7389.4265 0.0012 7387.4525 a5D3 a5P3 209 13742 1.55 × 10−1 M1, E2
13558.621 0.004 7375.3813 0.0024 7373.4110 a5D1 a5P2 36 13595 1.08 × 10−1 M1, E2
13594.723 0.005 7355.7953 0.0027 7353.8301 a5D0 a5P2 0 13595 5.27 × 10−2 E2
13634.997 0.002 7334.0684 0.0012 7332.1088 a5D2 a5P3 107 13742 7.67 × 10−2 M1, E2
13686.808 0.005 7306.3055 0.0029 7304.3532 a3D3 d3P2 18354 32041 6.92 × 10−2 M1, E2
13705.538 0.003 7296.3207 0.0015 7294.3710 a5D1 a5P3 36 13742 1.83 × 10−2 E2
13746.764 0.005 7274.4393 0.0028 7272.4953 a3D2 d3P2 18294 32041 1.34 × 10−2 M1, E2
13785.545 0.004 7253.9751 0.0019 7252.0365 b3G5 c3F4 16533 30319 8.54 × 10−2 M1, E2
13884.861 0.003 7202.0887 0.0016 7200.1636 b3G4 c3F3 16422 30306 5.58 × 10−2 M1, E2
13897.000 0.003 7195.7977 0.0016 7193.8743 b3G4 c3F4 16422 30319 1.38 × 10−2 M1, E2
13926.530 0.005 7180.5396 0.0028 7178.6202 b3G3 c3F2 16341 30268 4.80 × 10−2 M1, E2
13945.430 0.006 7170.8079 0.0033 7168.8911 a3D3 d3P1 18354 32299 5.96 × 10−2 E2
13965.408 0.004 7160.5498 0.0018 7158.6357 b3G3 c3F3 16341 30306 1.28 × 10−2 M1, E2
14005.386 0.006 7140.1102 0.0032 7138.2014 a3D2 d3P1 18294 32299 1.95 × 10−2 M1, E2
14029.743 0.007 7127.7143 0.0034 7125.8087 a3D1 d3P1 18270 32299 5.60 × 10−2 M1, E2
14080.927 0.004 7101.8052 0.0018 7099.9063 b3G5 d3F4 16533 30614 1.72 × 10−1 M1, E2
14108.784 0.004 7087.7830 0.0018 7085.8879 b3G5 d3F3 16533 30642 3.20 × 10−2 E2
14126.179 0.010 7079.0551 0.0051 7077.1622 a3D2 d3P0 18294 32420 1.18 × 10−1 E2
14192.382 0.003 7046.0336 0.0016 7044.1493 b3G4 d3F4 16422 30614 3.72 × 10−2 M1, E2
14220.239 0.003 7032.2306 0.0016 7030.3500 b3G4 d3F3 16422 30642 1.69 × 10−1 M1, E2
14251.560 0.005 7016.7757 0.0025 7014.8991 b3G4 d3F2 16422 30673 4.87 × 10−2 E2
14300.786 0.004 6992.6226 0.0018 6990.7523 b3G3 d3F3 16341 30642 5.43 × 10−2 M1, E2
14332.107 0.005 6977.3412 0.0026 6975.4748 b3G3 d3F2 16341 30673 2.44 × 10−1 M1, E2
15115.923 0.002 6615.5404 0.0010 6613.7685 b1G4 b1F3 19113 34229 5.66 × 10−2 M1, E2
15385.438 0.002 6499.6525 0.0009 6497.9108 a5F4 a3D3 2968 18354 1.81 × 10−2 M1, E2
15484.912 0.002 6457.8991 0.0009 6456.1683 a5F3 a3D2 2809 18294 2.64 × 10−2 M1, E2
15582.306 0.003 6417.5354 0.0013 6415.8151 a5F2 a3D1 2687 18270 2.83 × 10−2 M1, E2
15662.921 0.003 6384.5052 0.0013 6382.7935 a3G5 c3F4 14656 30319 1.12 × 10−2 M1, E2
15664.474 0.003 6383.8722 0.0013 6382.1607 a5F1 a3D1 2605 18270 1.48 × 10−2 M1, E2
15750.321 0.003 6349.0769 0.0013 6347.3745 a3G4 c3F3 14556 30306 1.63 × 10−2 M1, E2
15805.763 0.005 6326.8062 0.0022 6325.1096 a3G3 c3F2 14462 30268 4.31 × 10−2 M1, E2
15844.641 0.004 6311.2822 0.0014 6309.5895 a3G3 c3F3 14462 30306 1.40 × 10−2 M1, E2
15958.303 0.003 6266.3304 0.0012 6264.6495 a3G5 d3F4 14656 30614 4.19 × 10−1 M1, E2
15986.160 0.003 6255.4109 0.0012 6253.7329 a3G5 d3F3 14656 30642 7.37 × 10−2 E2
16057.842 0.003 6227.4869 0.0012 6225.8161 a3G4 d3F4 14556 30614 7.60 × 10−2 M1, E2
16085.699 0.003 6216.7022 0.0012 6215.0342 a3G4 d3F3 14556 30642 3.20 × 10−1 M1, E2
16117.020 0.005 6204.6210 0.0020 6202.9561 a3G4 d3F2 14556 30673 9.10 × 10−2 E2
16180.019 0.004 6180.4625 0.0014 6178.8039 a3G3 d3F3 14462 30642 8.90 × 10−2 M1, E2
16211.340 0.005 6168.5215 0.0020 6166.8661 a3G3 d3F2 14462 30673 3.78 × 10−1 M1, E2
16317.939 0.003 6128.2249 0.0011 6126.5799 a1G4 b1F3 17911 34229 4.78 × 10−2 M1, E2
16348.985 0.003 6116.5877 0.0012 6114.9457 a3F3 b1D2 8842 25191 3.09 × 10−2 M1, E2
16550.673 0.004 6042.0504 0.0013 6040.4278 a3F2 b1D2 8640 25191 1.53 × 10−2 M1, E2
16697.450 0.003 5988.9384 0.0011 5987.3297 b3F4 c3F3 13609 30306 6.95 × 10−2 M1, E2
16709.589 0.003 5984.5877 0.0011 5982.9800 b3F4 c3F4 13609 30319 2.45 × 10−1 M1, E2
16724.866 0.005 5979.1211 0.0018 5977.5149 b3F3 c3F2 13543 30268 1.02 × 10−1 M1, E2
16763.744 0.003 5965.2545 0.0011 5963.6519 b3F3 c3F3 13543 30306 1.81 × 10−1 M1, E2
16775.883 0.003 5960.9381 0.0011 5959.3366 b3F3 c3F4 13543 30319 5.58 × 10−2 M1, E2
16776.628 0.005 5960.6734 0.0019 5959.0720 b3F2 c3F2 13491 30268 2.33 × 10−1 M1, E2
16815.506 0.004 5946.8921 0.0013 5945.2943 b3F2 c3F3 13491 30306 7.35 × 10−2 M1, E2
17004.971 0.003 5880.6334 0.0011 5879.0528 b3F4 d3F4 13609 30614 5.13 × 10−2 M1, E2
17032.828 0.003 5871.0157 0.0011 5869.4376 b3F4 d3F3 13609 30642 2.84 × 10−2 M1, E2
17071.265 0.003 5857.7967 0.0011 5856.2220 b3F3 d3F4 13543 30614 1.31 × 10−2 M1, E2
17099.122 0.003 5848.2535 0.0011 5846.6813 b3F3 d3F3 13543 30642 1.62 × 10−2 M1, E2
17130.443 0.005 5837.5607 0.0017 5835.9912 b3F3 d3F2 13543 30673 2.31 × 10−2 M1, E2
17182.205 0.005 5819.9748 0.0018 5818.4099 b3F2 d3F2 13491 30673 1.45 × 10−2 M1, E2
17654.594 0.003 5664.2481 0.0010 5662.7236 a5F4 b3D3 2968 20623 4.21 × 10−2 M1, E2
17722.411 0.005 5642.5731 0.0017 5641.0543 a3H4 c3F2 12545 30268 3.11 × 10−2 E2
17808.114 0.003 5615.4178 0.0010 5613.9060 a5F3 b3D2 2809 20617 3.25 × 10−2 M1, E2
17834.939 0.004 5606.9718 0.0013 5605.4622 a5F2 b3D1 2687 20522 4.50 × 10−2 M1, E2
17907.832 0.003 5584.1489 0.0010 5582.6452 a3H6 d3F4 12706 30614 1.18 E2
17917.107 0.004 5581.2582 0.0013 5579.7552 a5F1 b3D1 2605 20522 2.26 × 10−2 M1, E2
17992.425 0.003 5557.8945 0.0010 5556.3976 a3H5 d3F4 12621 30614 1.27 × 10−1 M1, E2
18020.282 0.003 5549.3027 0.0010 5547.8081 a3H5 d3F3 12621 30642 1.15 E2
18096.667 0.004 5525.8794 0.0011 5524.3909 a3H4 d3F3 12545 30642 1.58 × 10−1 M1, E2
18127.988 0.005 5516.3320 0.0016 5514.8459 a3H4 d3F2 12545 30673 1.29 E2
18171.968 0.003 5502.9813 0.0010 5501.4986 a5F3 a1D2 2809 20981 1.71 × 10−2 M1, E2
18398.128 0.004 5435.3356 0.0011 5433.8705 a3P2 c3F3 11908 30306 3.39 × 10−2 M1, E2
18410.267 0.004 5431.7518 0.0011 5430.2875 a3P2 c3F4 11908 30319 9.30 × 10−2 E2
18431.696 0.005 5425.4367 0.0015 5423.9741 b3F4 d3P2 13609 32041 1.06 × 10−1 E2
18497.990 0.005 5405.9928 0.0015 5404.5352 b3F3 d3P2 13543 32041 2.72 × 10−2 M1, E2
18752.727 0.005 5332.5578 0.0015 5331.1192 a3P1 c3F2 11515 30268 5.14 × 10−2 M1, E2
18756.612 0.006 5331.4532 0.0017 5330.0150 b3F3 d3P1 13543 32299 1.01 × 10−1 E2
18791.605 0.004 5321.5252 0.0010 5320.0895 a3P1 c3F3 11515 30306 6.96 × 10−2 E2
18808.374 0.006 5316.7807 0.0018 5315.3462 b3F2 d3P1 13491 32299 5.01 × 10−2 M1, E2
18929.167 0.010 5282.8526 0.0028 5281.4270 b3F2 d3P0 13491 32420 1.58 × 10−1 E2
18971.998 0.007 5270.9261 0.0020 5269.5035 a3P0 c3F2 11296 30268 5.22 × 10−2 E2
20132.374 0.005 4967.1241 0.0013 4965.7799 a3P2 d3P2 11908 32041 3.50 × 10−2 M1, E2
20390.996 0.006 4904.1253 0.0015 4902.7974 a3P2 d3P1 11908 32299 7.02 × 10−2 M1, E2
20511.789 0.010 4875.2452 0.0024 4873.9246 a3P2 d3P0 11908 32420 8.95 × 10−2 E2
20525.851 0.005 4871.9052 0.0013 4870.5855 a3P1 d3P2 11515 32041 4.48 × 10−2 M1, E2
20745.122 0.007 4820.4103 0.0016 4819.1039 a3P0 d3P2 11296 32041 1.99 × 10−2 E2
20784.473 0.006 4811.2839 0.0015 4809.9798 a3P1 d3P1 11515 32299 2.30 × 10−2 M1, E2
21208.500 0.003 4715.0906 0.0007 4713.8113 a3F4 c3F3 9098 30306 1.60 × 10−2 M1, E2
21220.639 0.003 4712.3934 0.0007 4711.1148 a3F4 c3F4 9098 30319 4.26 × 10−2 M1, E2
21425.461 0.005 4667.3441 0.0011 4666.0770 a3F3 c3F2 8842 30268 1.80 × 10−2 M1, E2
21464.339 0.003 4658.8903 0.0007 4657.6253 a3F3 c3F3 8842 30306 2.73 × 10−2 M1, E2
21516.021 0.003 4647.6995 0.0007 4646.4374 a3F4 d3F4 9098 30614 1.10 × 10−1 M1, E2
21543.878 0.003 4641.6899 0.0007 4640.4293 a3F4 d3F3 9098 30642 2.89 × 10−2 M1, E2
21627.149 0.005 4623.8180 0.0012 4622.5620 a3F2 c3F2 8640 30268 3.20 × 10−2 M1, E2
21666.027 0.004 4615.5209 0.0008 4614.2671 a3F2 c3F3 8640 30306 1.07 × 10−2 M1, E2
21771.860 0.003 4593.0848 0.0007 4591.8368 a3F3 d3F4 8842 30614 2.45 × 10−2 M1, E2
21799.717 0.003 4587.2155 0.0007 4585.9690 a3F3 d3F3 8842 30642 8.08 × 10−2 M1, E2
21831.038 0.005 4580.6342 0.0011 4579.3894 a3F3 d3F2 8842 30673 4.29 × 10−2 M1, E2
22001.405 0.004 4545.1643 0.0007 4543.9285 a3F2 d3F3 8640 30642 3.16 × 10−2 M1, E2
22032.726 0.005 4538.7030 0.0011 4537.4689 a3F2 d3F2 8640 30673 1.03 × 10−1 M1, E2
32383.948 0.010 3087.9496 0.0010 3087.0801 a5D1 d3P0 36 32420 1.10 × 10−2 M1

Notes. aCalculated using Birch & Downs (1994) for λvac > 7500 Å, and Bönsch & Potulski (1998) for all other cases. bTruncated energy. For the exact value, see Thorne et al. (2013). cCalculated transition probabilities derived from the log (gA) values given by Kurucz (2006b).

A machine-readable version of the table is available.

Download table as:  DataTypeset images: 1 2 3

The structure of Co ii is only marginally less complex, with 47 metastable levels between the 3d8a3D4 ground state and the 3d7(4F)4pz5F5 lowest-lying odd level at 45197.708(1) cm−1 (Pickering et al. 1998), as shown in Figure 2. Accurate energies for 41 of these levels are given by Pickering et al. (1998), and another five—the 3d64s2a5D1 level and the levels belonging to the c3F and a1F terms of the 3d7(2F)4s configuration—by Sugar & Corliss (1985). The final metastable level, 3d64s2a5D0, was omitted from our calculations as, to our knowledge, no experimental value exists for its energy.

Figure 2.

Figure 2. Energy level diagram showing the 47 known metastable levels in Co ii, which are of even parity. The levels belonging to the 3d7(4F)4pz5F term, which is the lowest-lying term of odd parity, are also shown as dashed lines to indicate the upper limit on the region in which E1 transitions are forbidden.

Standard image High-resolution image

By again applying the selection rules in Table 1, we calculated accurate Ritz wavelengths for the 782 possible parity-forbidden [Co ii] lines originating from M1 and E2 transitions between the remaining 46 levels. The most significant lines are shown in Table 3, and the remaining weaker lines in Table 5. Where a transition takes place between levels reported by Pickering et al. (1998), the uncertainty in the Ritz wavenumber is as low as 0.001 cm−1, but for those that include the levels from Sugar & Corliss (1985), this value is an order of magnitude larger due to the lower accuracy with which those energy levels are known.

Table 3. Parity-forbidden Lines in Co ii with a Transition Probability of At Least 1 × 10−2 s−1 and Upper Level Excitation Less Than 5 eV

Wavenumber Unc. λvac Unc. λair Transition Energy (cm−1)b A Type
(cm−1) (cm−1) (Å) (Å) (Å)a Lower Upper Lower Upper (s−1)c
Level Level Level Level
531.801 0.001 188040.2500 0.5001 187988.9985 a5F4 a5F3 4029 4561 1.09 × 10−2 M1
678.494 0.001 147385.2282 0.3072 147345.0570 a5F5 a5F4 3350 4029 1.24 × 10−2 M1
895.471 0.001 111673.0670 0.1764 111642.6289 b3F4 b3F3 9813 10708 1.88 × 10−2 M1
950.324 0.002 105227.2625 0.2476 105198.5811 a3F4 a3F3 0 950 2.24 × 10−2 M1
1156.905 0.003 86437.5147 0.2113 86413.9543 a3D2 a3D1 28112 29269 3.17 × 10−2 M1
1243.097 0.001 80444.2397 0.0915 80422.3125 b3P2 c3P1 24074 25318 2.65 × 10−2 M1
1609.411 0.002 62134.5281 0.0863 62117.5908 a1D2 a3P2 11651 13261 3.08 × 10−2 M1
1683.639 0.002 59395.1512 0.0789 59378.9604 a1P1 a3D1 27585 29269 1.49 × 10−2 M1
1753.044 0.001 57043.6298 0.0460 57028.0798 a1D2 a3P1 11651 13404 2.87 × 10−2 M1
2267.621 0.001 44099.0770 0.0275 44087.0542 c3P1 a1P1 25318 27585 1.18 × 10−2 M1
2321.755 0.001 43070.8636 0.0262 43059.1210 b1G4 a3H5 25147 27469 1.49 × 10−2 M1
2597.973 0.002 38491.5444 0.0331 38481.0495 c3P2 a3D3 24886 27484 1.18 × 10−2 M1
2754.928 0.002 36298.5868 0.0295 36288.6893 b1G4 a3H4 25147 27902 1.72 × 10−2 M1
3173.659 0.001 31509.3692 0.0140 31500.7764 b3P0 a1P1 24411 27585 3.94 × 10−2 M1
3225.472 0.002 31003.2122 0.0215 30994.7573 c3P2 a3D2 24886 28112 1.68 × 10−2 M1
3317.756 0.001 30140.8521 0.0128 30132.6321 b3P1 a1P1 24267 27585 4.23 × 10−2 M1
3407.455 0.003 29347.4141 0.0244 29339.4102 c3P0 a3D1 25861 29269 1.89 × 10−2 M1
3409.953 0.002 29325.9153 0.0192 29317.9173 b3P2 a3D3 24074 27484 1.31 × 10−2 M1
3461.429 0.002 28889.8004 0.0187 28881.9212 a3H6 a1H5 27106 30567 1.11 × 10−2 M1
3510.718 0.001 28484.1998 0.0115 28476.4310 b3P2 a1P1 24074 27585 2.87 × 10−2 M1
3522.704 0.001 28387.2823 0.0114 28379.5399 a3G5 b1G4 21625 25147 1.41 × 10−2 M1
3614.274 0.002 27668.0719 0.0171 27660.5254 a1P1 b1D2 27585 31199 1.97 × 10−2 M1
3715.039 0.003 26917.6159 0.0205 26910.2738 a3D3 b1D2 27484 31199 3.20 × 10−2 M1
3951.260 0.002 25308.3809 0.0143 25301.4770 c3P1 a3D1 25318 29269 7.19 × 10−2 M1
4037.452 0.002 24768.0946 0.0137 24761.3378 b3P2 a3D2 24074 28112 2.20 × 10−2 M1
4382.377 0.002 22818.6651 0.0116 22812.4391 c3P2 a3D1 24886 29269 6.44 × 10−2 M1
4857.298 0.002 20587.5763 0.0095 20581.9576 b3P0 a3D1 24411 29269 1.52 × 10−2 M1
5481.215 0.002 18244.1289 0.0074 18239.1480 a3G5 a3H6 21625 27106 3.80 × 10−2 M1
5487.730 0.002 18222.4696 0.0074 18217.4946 a3G3 a3H4 22414 27902 2.85 × 10−2 M1
5844.459 0.001 17110.2223 0.0041 17105.5500 a3G5 a3H5 21625 27469 3.87 × 10−2 M1
5892.816 0.002 16969.8143 0.0064 16965.1801 a3G4 a3H4 22009 27902 6.87 × 10−2 M1
5928.741 0.002 16866.9863 0.0064 16862.3800 a5P1 b3P1 18339 24267 4.20 × 10−2 M1
6072.838 0.002 16466.7645 0.0061 16462.2671 a5P1 b3P0 18339 24411 6.94 × 10−2 M1
6117.161 0.001 16347.4515 0.0038 16342.9866 a5F1 b3F2 5205 11322 1.35 × 10−2 M1
6302.912 0.001 15865.6813 0.0036 15861.3474 a5P3 b3P2 17772 24074 1.61 × 10−2 M1
6313.012 0.002 15840.2983 0.0056 15835.9713 c3P2 b1D2 24886 31199 1.61 × 10−1 M1
6462.365 0.001 15474.2100 0.0034 15469.9825 a5F5 b3F4 3350 9813 2.81 × 10−2 M1
6547.759 0.002 15272.3998 0.0052 15268.2272 a5P1 c3P2 18339 24886 1.87 × 10−2 M1
6854.972 0.001 14587.9506 0.0030 14583.9641 a5P2 c3P2 18031 24886 9.26 × 10−2 M1
6932.030 0.002 14425.7877 0.0047 14421.8453 b3P1 b1D2 24267 31199 2.56 × 10−2 M1
6978.876 0.002 14328.9540 0.0046 14325.0379 a5P1 c3P1 18339 25318 1.33 × 10−1 M1
7114.892 0.001 14055.0261 0.0028 14051.1845 a5P3 c3P2 17772 24886 1.68 × 10−1 M1
7522.682 0.003 13293.1322 0.0050 13289.4976 a5P1 c3P0 18339 25861 1.35 × 10−1 M1
8557.829 0.001 11685.2072 0.0019 11682.0092 a3G4 a1H5 22009 30567 4.33 × 10−2 M1
8942.645 0.001 11182.3744 0.0018 11179.3128 a3G5 a1H5 21625 30567 1.05 × 10−1 M1
9246.498 0.002 10814.9057 0.0026 10811.9438 a5P1 a1P1 18339 27585 2.04 × 10−2 M1
9452.946 0.002 10578.7131 0.0025 10575.8153 a5P2 a3D3 18031 27484 1.65 × 10−2 M1
9712.866 0.002 10295.6227 0.0024 10292.8016 a5P3 a3D3 17772 27484 5.69 × 10−2 M1
9724.663 0.002 10283.1330 0.0024 10280.3153 a3F2 b3F2 1597 11322 2.69 × 10−2 M1, E2
9758.007 0.002 10247.9946 0.0023 10245.1865 a3F3 b3F3 950 10708 2.25 × 10−2 E2
9773.232 0.003 10232.0300 0.0030 10229.2262 a5P1 a3D2 18339 28112 1.21 × 10−2 M1
9812.860 0.001 10190.7093 0.0015 10187.9166 a3F4 b3F4 0 9813 3.43 × 10−2 E2
10054.080 0.002 9946.2112 0.0022 9943.4848 a3F2 a1D2 1597 11651 7.91 × 10−2 M1, E2
10080.445 0.002 9920.1973 0.0022 9917.4779 a5P2 a3D2 18031 28112 4.37 × 10−2 M1
10371.536 0.002 9641.7737 0.0021 9639.1298 a3F3 b3F2 950 11322 2.02 × 10−2 M1, E2
10700.953 0.002 9344.9623 0.0020 9342.3988 a3F3 a1D2 950 11651 1.71 × 10−1 M1
10708.331 0.001 9338.5237 0.0012 9335.9619 a3F4 b3F3 0 10708 1.51 × 10−2 E2
10863.061 0.001 9205.5087 0.0012 9202.9829 a3P1 b3P1 13404 24267 1.18 × 10−2 E2
11006.694 0.002 9085.3804 0.0018 9082.8872 a3P2 b3P1 13261 24267 2.33 × 10−2 E2
11092.571 0.001 9015.0428 0.0011 9012.5686 b3F2 a3G3 11322 22414 2.39 × 10−2 M1
11150.791 0.002 8967.9738 0.0018 8965.5124 a3P2 b3P0 13261 24411 4.62 × 10−2 E2
11482.079 0.001 8709.2243 0.0011 8706.8328 a3P1 c3P2 13404 24886 1.88 × 10−2 E2
11593.446 0.001 8625.5632 0.0011 8623.1944 a1G4 a1H5 18974 30567 8.28 × 10−2 E2
11625.712 0.002 8601.6238 0.0017 8599.2615 a3P2 c3P2 13261 24886 1.18 × 10−2 E2
11663.491 0.003 8573.7625 0.0021 8571.4076 a3F2 a3P2 1597 13261 1.75 × 10−2 M1
11706.100 0.001 8542.5549 0.0010 8540.2085 b3F3 a3G3 10708 22414 3.93 × 10−2 M1
11811.669 0.001 8466.2042 0.0010 8463.8784 b3F4 a3G5 9813 21625 3.78 × 10−2 M1
11996.091 0.004 8336.0489 0.0025 8333.7583 a3F2 a3P0 1597 13593 3.11 × 10−2 E2
12196.485 0.001 8199.0837 0.0010 8196.8301 b3F4 a3G4 9813 22009 4.85 × 10−2 M1
12310.364 0.003 8123.2367 0.0019 8121.0037 a3F3 a3P2 950 13261 6.77 × 10−2 M1, E2
12453.997 0.002 8029.5508 0.0014 8027.3430 a3F3 a3P1 950 13404 2.45 × 10−2 E2
12616.105 0.001 7926.3767 0.0009 7924.1968 a1D2 b3P1 11651 24267 4.20 × 10−2 E2
12760.202 0.001 7836.8666 0.0009 7834.7108 a1D2 b3P0 11651 24411 4.12 × 10−2 E2
12945.522 0.001 7724.6789 0.0008 7722.5534 b3F2 b3P1 11322 24267 1.52 × 10−2 E2
13089.619 0.001 7639.6418 0.0008 7637.5393 b3F2 b3P0 11322 24411 2.12 × 10−2 E2
13133.942 0.002 7613.8604 0.0013 7611.7648 a5F1 a5P1 5205 18339 1.23 × 10−2 E2
13235.123 0.001 7555.6533 0.0008 7553.5734 a1D2 c3P2 11651 24886 1.90 × 10−2 M1, E2
13260.688 0.002 7541.0869 0.0013 7539.0110 a3F4 a3P2 0 13261 2.80 × 10−2 E2
13388.578 0.002 7469.0531 0.0012 7467.0583 a5F2 a5P1 4950 18339 1.50 × 10−2 E2
13470.638 0.001 7423.5534 0.0008 7421.5705 a5F3 a5P2 4561 18031 1.39 × 10−2 E2
13495.956 0.001 7409.6270 0.0008 7407.6477 a1D2 b1G4 11651 25147 5.39 × 10−2 E2
13559.051 0.001 7375.1474 0.0008 7373.1772 b3F3 b3P1 10708 24267 2.35 × 10−2 E2
13564.540 0.001 7372.1630 0.0008 7370.1935 b3F2 c3P2 11322 24886 1.81 × 10−2 M1
13742.519 0.001 7276.6863 0.0007 7274.7418 a5F4 a5P3 4029 17772 1.05 × 10−2 E2
13777.851 0.002 7258.0260 0.0012 7256.0863 a5F3 a5P1 4561 18339 1.04 × 10−2 E2
14002.439 0.001 7141.6130 0.0007 7139.7037 a5F4 a5P2 4029 18031 2.00 × 10−2 E2
14178.069 0.001 7053.1467 0.0007 7051.2605 b3F3 c3P2 10708 24886 1.03 × 10−2 M1, E2
14180.817 0.001 7051.7799 0.0007 7049.8941 a3P1 a1P1 13404 27585 2.02 × 10−2 M1, E2
14223.685 0.003 7030.5269 0.0014 7028.6467 a3P2 a3D3 13261 27484 1.07 × 10−2 M1, E2
14261.560 0.001 7011.8556 0.0007 7009.9803 b3F4 b3P2 9813 24074 2.61 × 10−2 E2
14324.450 0.002 6981.0708 0.0011 6979.2035 a3P2 a1P1 13261 27585 4.70 × 10−2 E2
14421.013 0.001 6934.3256 0.0007 6932.4705 a5F5 a5P3 3350 17772 3.68 × 10−2 E2
14438.902 0.001 6925.7344 0.0007 6923.8815 b3F3 b1G4 10708 25147 1.11 × 10−1 M1
14851.184 0.003 6733.4699 0.0013 6731.6672 a3P2 a3D2 13261 28112 1.53 × 10−2 E2
15073.540 0.001 6634.1417 0.0006 6632.3649 b3F4 c3P2 9813 24886 1.65 × 10−2 E2
15334.373 0.001 6521.2969 0.0006 6519.5496 b3F4 b1G4 9813 25147 1.93 × 10−1 M1
15933.861 0.001 6275.9427 0.0006 6274.2593 a1D2 a1P1 11651 27585 1.31 × 10−1 E2
16008.089 0.003 6246.8418 0.0011 6245.1659 a3P2 a3D1 13261 29269 1.16 × 10−1 E2
16250.884 0.002 6153.5114 0.0008 6151.8598 a1D2 a3H4 11651 27902 1.14 × 10−2 E2
16263.278 0.001 6148.8219 0.0005 6147.1715 b3F2 a1P1 11322 27585 2.52 × 10−2 M1
16776.042 0.002 5960.8815 0.0008 5959.2801 b3F3 a3D3 10708 27484 6.83 × 10−2 M1
16790.012 0.002 5955.9218 0.0008 5954.3217 b3F2 a3D2 11322 28112 3.42 × 10−2 M1
17376.530 0.002 5754.8889 0.0007 5753.3409 a3F2 a1G4 1597 18974 3.76 × 10−2* E2
17403.541 0.002 5745.9570 0.0007 5744.4114 b3F3 a3D2 10708 28112 1.34 × 10−2 M1
17448.555 0.001 5731.1335 0.0005 5729.5917 a5F3 a3G4 4561 22009 9.63 × 10−2 M1
17464.368 0.001 5725.9443 0.0005 5724.4039 a5F2 a3G3 4950 22414 6.65 × 10−2 M1
17595.540 0.001 5683.2583 0.0005 5681.7289 a5F4 a3G5 4029 21625 7.93 × 10−2 M1
17617.500 0.002 5676.1742 0.0007 5674.6466 a1D2 a3D1 11651 29269 1.96 × 10−1 E2
17671.513 0.002 5658.8249 0.0007 5657.3019 b3F4 a3D3 9813 27484 1.19 × 10−1 M1
17853.641 0.001 5601.0983 0.0004 5599.5902 a5F3 a3G3 4561 22414 8.70 × 10−2 M1
17938.724 0.003 5574.5324 0.0009 5573.0312 a3P2 b1D2 13261 31199 1.63 × 10−1 E2
17946.917 0.002 5571.9876 0.0007 5570.4870 b3F2 a3D1 11322 29269 4.76 × 10−2 M1, E2
17980.356 0.001 5561.6251 0.0004 5560.1272 a5F4 a3G4 4029 22009 2.20 × 10−1 M1
18023.403 0.002 5548.3417 0.0007 5546.8473 a3F3 a1G4 950 18974 7.09 × 10−2 M1
18274.034 0.001 5472.2454 0.0004 5470.7707 a5F5 a3G5 3350 21625 3.92 × 10−1 M1
18385.442 0.001 5439.0859 0.0004 5437.6198 a5F4 a3G3 4029 22414 1.45 × 10−2 M1
18658.850 0.001 5359.3870 0.0004 5357.9415 a5F5 a3G4 3350 22009 2.33 × 10−2 M1
18973.727 0.001 5270.4457 0.0004 5269.0232 a3F4 a1G4 0 18974 1.38 × 10−1 M1
19513.630 0.001 5124.6231 0.0004 5123.2382 a5F3 b3P2 4561 24074 1.69 × 10−2 M1
19548.135 0.002 5115.5774 0.0006 5114.1949 a1D2 b1D2 11651 31199 7.10 × 10−1 M1, E2
19877.552 0.002 5030.8005 0.0006 5029.4399 b3F2 b1D2 11322 31199 3.23 × 10−1 M1, E2
20112.818 0.001 4971.9536 0.0003 4970.6082 a5F1 c3P1 5205 25318 2.28 × 10−2 M1
20325.610 0.001 4919.9014 0.0003 4918.5694 a5F3 c3P2 4561 24886 3.03 × 10−2 M1
20367.454 0.001 4909.7937 0.0003 4908.4643 a5F2 c3P1 4950 25318 2.81 × 10−2 M1
20412.147 0.002 4899.0436 0.0005 4897.7169 a3F2 a3G4 1597 22009 2.84 × 10−2 E2
20491.081 0.002 4880.1719 0.0005 4878.8501 b3F3 b1D2 10708 31199 5.83 × 10−1 M1
20674.204 0.002 4836.9455 0.0005 4835.6348 a3F3 a3G5 950 21625 2.56 × 10−2 E2
20817.233 0.002 4803.7123 0.0005 4802.4101 a3F2 a3G3 1597 22414 4.41 × 10−1 E2
21059.020 0.002 4748.5589 0.0005 4747.2710 a3F3 a3G4 950 22009 4.64 × 10−1 E2
21464.107 0.002 4658.9407 0.0005 4657.6758 a3F3 a3G3 950 22414 1.26 × 10−1 E2
21624.529 0.001 4624.3783 0.0003 4623.1222 a3F4 a3G5 0 21625 6.38 × 10−1 E2
22009.345 0.001 4543.5247 0.0003 4542.2893 a3F4 a3G4 0 22009 1.03 × 10−1 E2
22380.440 0.001 4468.1875 0.0003 4466.9714 a5F1 a1P1 5205 27585 1.61 × 10−1 M1
22477.223 0.002 4448.9482 0.0004 4447.7371 a3F2 b3P2 1597 24074 2.96 × 10−2 E2
22534.311 0.002 4437.6774 0.0004 4436.4691 a5F2 a3D3 4950 27484 2.91 × 10−2 M1
22635.076 0.001 4417.9221 0.0003 4416.7189 a5F2 a1P1 4950 27585 3.48 × 10−1 M1
22670.185 0.002 4411.0801 0.0004 4409.8786 a3F2 b3P1 1597 24267 3.19 × 10−1 E2
22814.282 0.002 4383.2193 0.0004 4382.0250 a3F2 b3P0 1597 24411 4.14 × 10−1 E2
22907.174 0.002 4365.4447 0.0004 4364.2549 a5F1 a3D2 5205 28112 7.17 × 10−2 M1
22923.584 0.002 4362.3197 0.0004 4361.1307 a5F3 a3D3 4561 27484 1.31 × 10−2 M1
23124.096 0.002 4324.4934 0.0004 4323.3141 a3F3 b3P2 950 24074 3.58 × 10−1 E2
23161.810 0.002 4317.4519 0.0004 4316.2744 a5F2 a3D2 4950 28112 6.63 × 10−2 M1
23317.058 0.002 4288.7058 0.0004 4287.5356 a3F3 b3P1 950 24267 4.65 × 10−1 E2
23455.385 0.002 4263.4133 0.0004 4262.2496 a5F4 a3D3 4029 27484 5.91 × 10−1 M1
23550.036 0.002 4246.2781 0.0004 4245.1187 a3F2 b1G4 1597 25147 9.41 × 10−2 E2
23551.083 0.002 4246.0893 0.0004 4244.9299 a5F3 a3D2 4561 28112 7.62 × 10−1 M1
23720.320 0.002 4215.7948 0.0004 4214.6432 a3F2 c3P1 1597 25318 3.75 × 10−1 E2
24064.079 0.002 4155.5715 0.0004 4154.4352 a5F1 a3D1 5205 29269 1.74 × 10−1 M1
24074.420 0.001 4153.7865 0.0002 4152.6507 a3F4 b3P2 0 24074 2.41 E2
24264.125 0.003 4121.3108 0.0005 4120.1832 a3F2 c3P0 1597 25861 2.46 E2
24318.715 0.002 4112.0594 0.0004 4110.9342 a5F2 a3D1 4950 29269 3.71 × 10−1 M1
24367.193 0.002 4103.8786 0.0004 4102.7554 a3F3 c3P1 950 25318 1.65 E2
24886.400 0.001 4018.2590 0.0002 4017.1576 a3F4 c3P2 0 24886 3.88 × 10−2 E2
25147.233 0.001 3976.5807 0.0002 3975.4898 a3F4 b1G4 0 25147 1.29 × 10−2 M1, E2
25887.176 0.003 3862.9166 0.0004 3861.8544 a3F2 a3D3 1597 27484 3.74 × 10−2 E2
25987.941 0.002 3847.9386 0.0003 3846.8802 a3F2 a1P1 1597 27585 4.94 × 10−1 E2
26304.964 0.003 3801.5639 0.0004 3800.5172 a3F2 a3H4 1597 27902 1.50 E2
26514.675 0.003 3771.4964 0.0004 3770.4573 a3F2 a3D2 1597 28112 5.27 × 10−1 E2
26518.664 0.002 3770.9291 0.0003 3769.8901 a3F3 a3H5 950 27469 1.73 E2
26534.049 0.003 3768.7426 0.0004 3767.7042 a3F3 a3D3 950 27484 3.84 × 10−1 E2
26634.814 0.002 3754.4847 0.0003 3753.4498 a3F3 a1P1 950 27585 2.71 × 10−1 E2
26951.837 0.003 3710.3222 0.0004 3709.2985 a3F3 a3H4 950 27902 1.40 × 10−1 E2
27105.744 0.002 3689.2550 0.0003 3688.2365 a3F4 a3H6 0 27106 2.06 E2
27161.548 0.003 3681.6753 0.0004 3680.6588 a3F3 a3D2 950 28112 1.06 E2
27468.988 0.001 3640.4690 0.0002 3639.4628 a3F4 a3H5 0 27469 1.05 × 10−1 E2
27484.373 0.002 3638.4312 0.0003 3637.4255 a3F4 a3D3 0 27484 1.35 E2
27671.580 0.003 3613.8161 0.0004 3612.8165 a3F2 a3D1 1597 29269 8.69 × 10−1 E2
28111.872 0.002 3557.2160 0.0003 3556.2306 a3F4 a3D2 0 28112 9.09 × 10−2 E2
28318.453 0.003 3531.2663 0.0004 3530.2874 a3F3 a3D1 950 29269 4.61 × 10−2 E2
29616.849 0.002 3376.4564 0.0003 3375.5160 a3F3 a1H5 950 30567 4.39 × 10−2 E2
30249.088 0.003 3305.8848 0.0003 3304.9618 a3F3 b1D2 950 31199 1.50 × 10−2 M1, E2

Notes. aCalculated using Birch & Downs (1994) for λvac > 7500 Å, and Bönsch & Potulski (1998) for all other cases. bTruncated energy. For the exact value, scale the energies given in Pickering et al. (1998) by 7 parts in 108. cCalculated transition probabilities taken from Raassen et al. (1998). The line at 17376.531 cm−1 (*) is not given by Raassen et al. (1998), so the value shown is from Quinet (1998).

A machine-readable version of the table is available.

Download table as:  DataTypeset images: 1 2 3

Table 4. Parity-forbidden Lines in V ii with a Transition Probability Less Than 1 × 10−2 s−1 or Upper Level Excitation Greater Than 5 eV

Wavenumber Unc. λvac Unc. λair Transition Energy (cm−1)b A Type
(cm−1) (cm−1) (Å) (Å) (Å)a Lower Upper Lower Upper (s−1)c
Level Level Level Level
4.892 0.004 20441537.2036 17728.1475 20435965.8233 b3P0 b3P1 19161 19166 1.79 × 10−9 M1
5.910 0.004 16920473.7733 12146.7835 16915862.0656 b3D2 b3D3 20617 20623 2.29 × 10−9 M1, E2
12.139 0.004 8237910.8658 2879.1907 8235665.6073 c3F3 c3F4 30306 30319 3.62 × 10−8 M1, E2
14.216 0.004 7034327.5183 2040.1854 7032410.2988 a5P2 b3F4 13595 13609 1.17 × 10−18 E2
19.862 0.003 5034739.7040 801.5932 5033367.4759 b1G4 b3P2 19113 19133 3.80 × 10−19 E2
20.916 0.003 4781028.8774 646.5286 4779725.7988 b3F2 a5P1 13491 13512 2.43 × 10−18 E2
24.357 0.004 4105595.9272 607.7488 4104476.9391 a3D1 a3D2 18270 18294 3.14 × 10−7 M1, E2
27.857 0.004 3589761.9988 546.7233 3588783.6022 d3F4 d3F3 30614 30642 5.57 × 10−7 M1, E2
28.631 0.004 3492717.6836 517.5630 3491765.7367 b3P2 b3P0 19133 19161 5.03 × 10−16 E2
30.846 0.002 3241911.4310 235.0105 3241027.8417 a5P1 b3F3 13512 13543 1.79 × 10−17 E2

Notes. aCalculated using Birch & Downs (1994) for λvac > 7500 Å, and Bönsch & Potulski (1998) for all other cases. bTruncated energy. For the exact value, see Thorne et al. (2013). cCalculated transition probabilities derived from the log (gA) values given by Kurucz (2006b).

Only a portion of this table is shown here to demonstrate its form and content. A machine-readable version of the full table is available.

Download table as:  DataTypeset image

Table 5. Parity-forbidden Lines in Co ii with a Transition Probability Less Than 1 × 10−2 s−1 or Upper Level Excitation Greater Than 5 eV

Wavenumber Unc. λvac Unc. λair Transition Energy (cm−1)b A Type
(cm−1) (cm−1) (Å) (Å) (Å)a Lower Upper Lower Upper (s−1)c
Level Level Level Level
15.385 0.002 6499837.0491 944.6914 6498065.5060 a3H5 a3D3 27469 27484 2.03 × 10−20 E2
76.085 0.031 1314319.4191 536.3402 1313961.1987 a5D4 c3F2 40695 40771    
100.765 0.002 992408.0087 22.0224 992137.5259 a3D3 a1P1 27484 27585 4.86 × 10−17 E2
108.330 0.042 923105.2617 361.5253 922853.6674 c3F2 c3F3 40771 40879 3.28 × 10−5 M1, E2
143.633 0.002 696218.7868 10.8387 696029.0308 a3P2 a3P1 13261 13404 5.18 × 10−5 M1, E2
144.097 0.001 693976.9253 6.8109 693787.7803 b3P1 b3P0 24267 24411 1.44 × 10−4 M1
167.620 0.042 596587.4776 151.0026 596424.8763 c3F3 c3F4 40879 41047 9.50 × 10−5 M1, E2
184.415 0.031 542255.2016 91.2948 542107.4086 a5D4 c3F3 40695 40879 4.78 × 10−9 M1, E2
188.967 0.003 529192.8908 8.8558 529048.6580 a3P1 a3P0 13404 13593 3.64 × 10−4 M1
192.962 0.001 518236.7150 3.7981 518095.4683 b3P2 b3P1 24074 24267 8.14 × 10−5 M1, E2

Notes. aCalculated using Birch & Downs (1994) for λvac > 7500 Å, and Bönsch & Potulski (1998) for all other cases. bTruncated energy. For the exact value, scale the energies given in Pickering et al. (1998) by 7 parts in 108. cCalculated transition probabilities of 1 × 10−3 or greater were taken from Raassen et al. (1998) unless marked with a * or †. Values less than 1 × 10−3 were derived from the log (gA) values given by Kurucz (2006b). *Transition probability greater than 1 × 10−3 taken from Quinet (1998). Transition probability greater than 1 × 10−3 derived from the log (gA) values given by Kurucz (2006b).

Only a portion of this table is shown here to demonstrate its form and content. A machine-readable version of the full table is available.

Download table as:  DataTypeset image

3.2. Transition Probabilities

Also included in Tables 25 are calculated transition probabilities, A. In general, these were derived from the log (gA) values in Kurucz (2006a, 2006b), but for Co ii, the more detailed calculations reported by Raassen et al. (1998) and Quinet (1998) were used instead, where available.

The transition probabilities of Raassen et al. (1998) were obtained through a semi-empirical method. First, the angular coefficients of the transition matrix in pure LS coupling were found using the Racah algebra, multiplied by transition integrals from a relativistic Hartree–Fock code (Parpia et al. 1996), and corrected for core polarization (Hameed 1972; Laughlin 1992). The resulting LS transition matrix was then transformed into the actual intermediate coupling by using orthogonal operators (Hansen et al. 1998); adjusting the parameters of the model Hamiltonian to yield eigenvalues as close as possible to the experimental energies of Pickering et al. (1998).

Quinet (1998) used the approximately relativistic Hartree–Fock method (Cowan & Griffin 1976), followed by a least-squares optimization of the radial parameters to reduce discrepancies between calculated energy levels and the experimental levels reported by Sugar & Corliss (1985). Quinet (1998) also noted that strong multiplets are typically composed of only one type of transition; M1 transitions being dominant for inter-combination multiplets (ΔS ≠ 0) and E2 transitions dominating under LS-coupled selection rules (ΔS = 0).

A comparison of the transition probabilities obtained by Raassen et al. (1998), AR, with those obtained by Quinet (1998), AQ, is shown in Figure 3. Here, it can be seen that for the majority of lines, AR and AQ differ by no more than about 25%, although at values of AR less than 0.1 s−1, there is a significant minority of lines where differences increase to around a factor of two. At higher values of AR, the two sets of results converge, but rather than approaching zero difference, there is a systematic difference; AQ being approximately 25% larger than AR at values of AR greater than 0.1 s−1.

Figure 3.

Figure 3. Comparison of calculated transition probabilities obtained by Raassen et al. (1998), AR, with those obtained by Quinet (1998), AQ. The dashed horizontal lines indicate differences of plus and minus 25%.

Standard image High-resolution image

In this paper, we choose to adopt the values given by Raassen et al. (1998), where possible, as these authors employed the more accurate and new energy levels of Pickering et al. (1998) in their calculations. We therefore only include values from Quinet (1998) in Tables 3 and 5 where no corresponding value is available in Raassen et al. (1998). If neither author reports a transition probability for a given line, as is the case for A < 1 × 10−3 s−1, the transition probability shown in Tables 3 and 5 is derived from the log (gA) values in Kurucz (2006b).

3.3. Air Wavelengths

In addition to the vacuum Ritz wavelengths for [V ii] and [Co ii] lines, Tables 25 also list the calculated air wavelength of each line, λair. Aldenius & Johansson (2007) give a detailed review of approaches to calculating λair in different spectral regions. Following their approach, the refractive index correction given by Birch & Downs (1994) was used for lines in the infrared (λvac > 7500 Å). For all lines of shorter wavelength, the correction given by Bönsch & Potulski (1998) was used.

4. SUMMARY

We have presented a comprehensive list of accurate Ritz wavelengths for parity-forbidden [Co ii] and [V ii] lines, calculated by considering radiative M1 and E2 transitions between all known metastable levels in each species. These data will aid the analysis of spectra from low-density astrophysical plasmas, particularly in the infrared where strong forbidden lines are seen in both the near-IR, from transitions between LS terms, and far-IR, from transitions between fine-structure levels.

We thank M. J. Barlow, P. J. Storey, and R. L. Kurucz for helpful discussions, and the UK Science and Technology Facilities Council (STFC) for funding this research.

Footnotes

  • Exceptions include levels that are metastable to E1, M1, and E2 transitions, such as the 1s22s2s3P2 level in Be-like ions. In this case, decay to the 1s22s2 1S0 involves ΔJ = 2 and occurs through a magnetic quadrupole (M2) transition.

Please wait… references are loading.
10.1088/0067-0049/207/2/20