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ABSTRACT

We present an Advanced Spectral Leakage (ASL) scheme to model neutrinos in the context of core-collapse
supernovae (CCSNe) and compact binary mergers. Based on previous gray leakage schemes, the ASL scheme
computes the neutrino cooling rates by interpolating local production and diffusion rates (relevant in optically thin
and thick regimes, respectively) separately for discretized values of the neutrino energy. Neutrino trapped
components are also modeled, based on equilibrium and timescale arguments. The better accuracy achieved by the
spectral treatment allows a more reliable computation of neutrino heating rates in optically thin conditions. The
scheme has been calibrated and tested against Boltzmann transport in the context of Newtonian spherically
symmetric models of CCSNe. ASL shows a very good qualitative and a partial quantitative agreement for key
quantities from collapse to a few hundreds of milliseconds after core bounce. We have proved the adaptability and
flexibility of our ASL scheme, coupling it to an axisymmetric Eulerian and to a three-dimensional smoothed
particle hydrodynamics code to simulate core collapse. Therefore, the neutrino treatment presented here is ideal for
large parameter-space explorations, parametric studies, high-resolution tests, code developments, and long-term
modeling of asymmetric configurations, where more detailed neutrino treatments are not available or are currently
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computationally too expensive.
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1. INTRODUCTION

Neutrinos are elusive, weakly interacting particles. Owing to
their small cross sections with ordinary matter, which make
their detection on Earth so challenging, they represent a very
efficient way for astrophysical dense and hot plasma to radiate
energy away. In particular, they are expected to be copiously
emitted in stellar explosive scenarios, including core-collapse
supernovae (CCSNe; e.g., Janka 2012; Kotake et al. 2012a;
Burrows 2013; Foglizzo et al. 2015, for recent reviews) and
compact binary mergers (e.g., Shibata & Taniguchi 2011;
Faber & Rasio 2012; Rosswog 2015b, for recent reviews). The
modeling of such systems is extremely stimulating, owing to
the large variety of involved scales and to the complex and rich
physics required. The treatment of neutrinos, in particular their
transport from optically thick to optically thin regions, is
among the most crucial and difficult parts to model. This is
even more evident for intrinsically multidimensional problems,
where the solution of the Boltzmann transport equation would
result in a genuine seven-dimensional problem (e.g.,
Lindquist 1966).

The large variety of questions and possible initial conditions,
together with the parallel increase of computational power,
have motivated the development of several neutrino treatments,
which differ in complexity and accuracy. The solution of the
complete Boltzmann equation for neutrino radiation has been
performed for spherically symmetric simulations of CCSNe
(Mezzacappa & Bruenn 1993a, 1993b, 1993c; Liebendorfer
et al. 2004; Sumiyoshi et al. 2005). Solutions in 2D (e.g., Livne
et al. 2004; Ott et al. 2008; Brandt et al. 2011) and, recently, in
three dimensions (Sumiyoshi & Yamada 2012; Sumiyoshi
et al. 2015), neglecting velocity-dependent terms, in the context
of collapsing stellar cores, have also been presented. Lately,
Nagakura et al. (2014) proposed a novel numerical method for
solving special relativistic Boltzmann equations for neutrinos

coupled to hydrodynamics equations. The velocity-dependent
term is fully included in it. This method has been tested in
spherically symmetric CCSN simulations, and it can be
potentially extended to multidimensional models. Another
sophisticated approach to the neutrino transport problem is
represented by the so-called Moment schemes. In these
schemes, the explicit angular dependence in the neutrino
momentum space is removed by integrating the distribution
function and introducing momenta (for example, the energy
density is the zeroth momentum, while the linear momentum
density is the first momentum). The Boltzmann transport
equation is replaced by time evolution equations for the
different momenta. Among them, we recall the (multigroup)
flux-limited diffusion schemes, (MG) FLD, where only the
zeroth moment is considered (Arnett 1977; Bowers & Wilson
1982; Bruenn 1985; Swesty & Myra 2009; Zhang et al. 2013;
for related applications see, e.g., Fryer 1999; Dessart et al.
2006, 2009; Burrows et al. 2007; Yakunin et al. 2010; Bruenn
et al. 2013; Dolence et al. 2015), and the M1 schemes, where
both the zeroth and first moments are taken into account (see,
e.g., Pons et al. 2000; Kuroda et al. 2012; O’Connor & Ott
2013; Obergaulinger et al. 2014; Foucart et al. 2015; Just et al.
2015; O’Connor 2015). The closure relation in M1 schemes is
usually provided by an analytic expression. It is possible to
design moment schemes where the closure relation is not
analytic, but it is given by a variable Eddington tensor (e.g.,
Burrows et al. 2000; Rampp & Janka 2002; Thompson
et al. 2003; Buras et al. 2006a, 2006b; Miiller et al. 2010;
Tamborra et al. 2013). The latter solution is close to the
solution of the full Boltzmann equation. Another noteworthy
approximate transport scheme is the isotropic diffusion source
approximation (IDSA, Liebendorfer et al. 2009; see Suwa et al.
2011; Nakamura et al. 2014; Takiwaki et al. 2014; Pan et al.
2015; Suwa et al. 2015 for some recent applications), where the
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distribution function is separated into a trapped and a free-
streaming component. Also Monte Carlo methods have been
developed in the context of neutrino transport (see, e.g., Janka
& Hillebrandt 1989a, 1989b; Janka 1992; Abdikamalov
et al. 2012; Richers et al. 2015). More approximate treatments
include gray transport schemes (Scheck et al. 2006), gray
neutrino leakage schemes (Ruffert et al. 1996; Rosswog &
Liebendorfer 2003), and lightbulb schemes (Murphy &
Burrows 2008; Fernandez 2012; Hanke et al. 2012; Couch &
Ott 2013; Fernandez & Metzger 2013; Handy et al. 2014).

In this paper, we present an improved and more sophisticated
version of the classical leakage scheme. Leakage schemes have
a long history in computational astrophysics: owing to their
reduced computational cost and to their flexibility, they were,
after FLD schemes, among the first developed neutrino
treatments for spherically symmetric core-collapse models
(van Riper & Lattimer 1981; Bludman et al. 1982; Cooperstein
et al. 1986) and for the first three-dimensional (3D) compact
binary merger simulations (Ruffert et al. 1996; Ruffert &
Janka 1999; Rosswog & Liebendorfer 2003). More recently,
gray leakage schemes have been widely applied to study, for
example, (i) neutrino and gravitational wave emissions from
rotating and/or magnetized collapsing stellar cores, in
axisymmetry (Kotake et al. 2005, 2012b) or in three
dimensions  (Scheidegger et al. 2010; Takiwaki &
Kotake 2011); (i) SN explosions caused by the magnetorota-
tional mechanism (e.g., Suwa et al. 2007; Takiwaki et al. 2009;
Winteler et al. 2012); (iii) the influence of the pions and
hyperons in the nuclear equation of state (EOS) of stellar cores
collapsing into a black hole (Peres et al. 2013); (iv) the impact
of asphericity in the progenitor model for core-collapse
simulations (Couch & Ott 2013); and (v) gravitational waves
and neutrino emission from Newtonian simulations of compact
binary mergers (Rosswog et al. 2013). General relativistic
extensions of the gray scheme have also been developed
(O’Connor & Ott 2010; Sekiguchi 2010; Galeazzi et al. 2013).
They have been used, for example, to simulate (i) spherically
symmetric models of SNe and black hole formation from
massive stellar cores (O’Connor & Ott 2011); (ii) 3D general
relativistic core-collapse models (Ott et al. 2013), including
also magnetic fields (Mosta et al. 2014); (iii) gravitational
waves and neutrino emission from general relativistic simula-
tions of compact binary mergers (Kiuchi et al. 2012; Deaton
et al. 2013; Sekiguchi et al. 2015); and (iv) the collapse of
a rotating stellar core to a black hole surrounded by an
accretion disk (Sekiguchi 2011).

Despite such a broad application field, detailed comparisons
between the results obtained by a leakage scheme and more
sophisticated neutrino transports are difficult to find. For
example, Dessart et al. (2009) and Foucart et al. (2015, 2016)
compared the luminosities obtained by a gray leakage scheme
with the ones obtained by MGFLD or moment schemes, during
and after a compact binary merger. Moreover, O’Connor & Ott
(2010) and Sekiguchi (2010) provide temporal profiles of the
neutrino luminosities and mean energies occurring after core
bounce in CCSN simulations, together with a few radial
profiles of some relevant quantities (e.g., entropy or electron
fraction). These results can be compared with reference results
in the literature (e.g., Liebendorfer et al. 2005). They found a
qualitative good agreement, even if quantitative differences
were present. This confirms the idea that leakage schemes
capture the dominant aspects of neutrino cooling, even if the
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evolution of the neutrino field in the opaque region and the
inclusion of consistent absorption terms in the optically thin
region remain challenging.

In the Advanced Spectral Leakage (ASL) treatment we
conjugate the usual positive aspects associated with leakage
schemes (mainly, the reduced computational cost and flex-
ibility), with an improved accuracy, obtained using a spectral
approach (i.e., solving different leakage schemes, for different
energy bins), modeling a neutrino trapped component in the
optically thick region, and including a consistent absorption
term obtained from the spectral cooling rates. The development
of the ASL treatment has been performed in the framework of
spherically symmetric models of CCSNe, where the new
treatment has been compared against a detailed Boltzmann
neutrino transport. Perego et al. (2015) used it, in combination
with IDSA for electron flavor neutrinos, to model heavy flavor
neutrinos in spherically symmetric, artificially induced explo-
sions of CCSNe. However, one of the goals of this approximate
scheme is the application to multidimensional models, with
reduced computational costs. Applications of the ASL scheme
in multidimensional astrophysical simulations have been
already performed in the past few years. Winteler et al.
(2012) simulated a magnetically driven CCSN explosion of a
15 M., progenitor star, using the 3D, Cartesian MHD code
FISH (Képpeli et al. 2011) coupled with a previous version of
the ASL scheme to model the neutrino cooling. Perego et al.
(2014b) studied the neutrino-driven wind that emerges from the
remnant of a binary neutron star merger, in the presence of a
long-lived massive neutron star. They used the FISH code
coupled with the ASL scheme. The neutrino heating rates were
based on neutrino densities in optically thin regions, computed
by a ray-tracing algorithm.

In Section 2, we provide a detailed presentation of the ASL
scheme and of its terms. In Section 3, we test the new scheme
in the context of spherically symmetric models of CCSNe,
comparing the results obtained by the new treatment with the
solution of the Boltzmann transport equation. We also briefly
explore the impact of the variation of the few free parameters
present in the scheme. In Section 4, we show the flexibility and
the versatility of the ASL scheme by implementing it in two
different multidimensional codes, a grid code and a smoothed
particle hydrodynamics (SPH) code, modeling CCSNe. Finally,
in Section 5, we summarize and discuss our results.

2. THE ASL TREATMENT
2.1. Neutrino Description and Interactions

The ASL scheme is an approximate neutrino treatment
designed for neutrinos and antineutrinos of all flavors. While
electron neutrinos (,) and antineutrinos () are considered
separately, 1 and 7 neutrinos, as well as their antiparticles, are
treated as a single neutrino species (v, ). For each of the three
independent species, we perform a spectral treatment, i.e., we
distinguish between neutrinos with different energies.

The interaction between matter and neutrinos is provided by
weak interaction processes. For each production, absorption, or
scattering reaction, we compute the corresponding spectral
emissivity j, (E, x), absorptivity x,, ., (E, x), or scattering rate
Xy.sc (B> X), respectively, as they are defined in the Boltzmann
transport equation, for a neutrino energy E and a position X (in
this section we consider a fixed time ). The total emissivity and
absorptivity are computed as the sum over all considered
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neutrino processes. While the emissivity provides the local
rates of neutrino production, the absorptivity and the scattering
rates are the sources of the local neutrino opacity. The local
opacity can be expressed in terms of the fotal mean free path

v,tots

-1
>\l/,tOt (E’ x) =c ZXV’ab’r(Es x) + ZXI/,SC,S(E’ x)) ) (1)

where c is the speed of light, and the indexes r and s run over
all the considered absorption and scattering reactions, respec-
tively. Besides the total mean free path, in which all reactions
are treated equally, we define also an energy mean free path, )\,
en- The latter represents the mean free path over which
neutrinos can effectively exchange energy with the fluid. To
compute it, we perform the geometrical mean between the total
mean free path and the mean free path only due to highly
inelastic processes, i.e., all the absorption processes and the
scattering processes where the energy of the incoming and
outgoing neutrinos is expected to differ significantly” (see, e.g.,
Shapiro & Teukolsky 1986 or Raffelt 2001 for analogous
expressions):

—12
)\V,en (E, x) = (Cl ZXV,inel,s’ (E’ x)] ()\V,lot (E’ x))l/Z’

@)

where we have restricted the sum only over inelastic processes,
abbreviated by inel and labeled by s'.

The neutrino optical depth 7, is defined as the path integral
of the inverse neutrino mean free path, )\;l, calculated on a
typical radiation path, 7, connecting any point x of the system
with its edge:

1
v,y E’ = METo 3
T’W( x) ‘j”:’:xHJroo )\z/(E’ xl(s)) ' ( )

From a physical point of view, it is a measure of the
accumulated opacity of matter to radiation along an escape
path: it counts the number of interactions that, on average, a
radiation particle, emitted at a certain point, experiences before
leaving the system. The two mean free paths introduced above
can be used to compute two different optical depths, a total
optical depth, 7,.:(E,x), and an energy optical depth,
Ty.en(E, X). We note that 7, ¢ < Ty, Dy definition. In the
case of spherically symmetric models, the optical depth retains
the spherical symmetry and 7, can be simply calculated along
radial paths:
+00 1

7 (E, R) = fR mdr. 4)

Otherwise, for more general geometries, multidimensional
algorithms are required to compute the optical depth along

paths that minimize the number of neutrino-matter interactions
(e.g., Perego et al. 2014a).

4 Elastic scattering processes enter the definition of A, ., via A, . Even if

they do not allow direct energy exchange between neutrinos and matter, they
still provide opacity and increase the probability of inelastic processes to
locally happen.
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According to the values of 7,,, and 7,., for the most
relevant neutrino energies, several different regimes can be
distinguished:

L Ty > 1 and Tyen 2 L, the equilibrium-
diffusive regime. The radiation field is in thermal and
weak equilibrium with the surrounding matter, and
neutrinos can be considered as a trapped Fermi gas
inside the fluid, behaving like a fluid component itself.
Under these assumptions, the distribution functions
describing the neutrino gas can be expressed as
1, x) =f"(p,x) + &,(p, x), where f' is the
trapped component and §f, is a small deviation from
equilibrium, which we neglect (Cooperstein
et al. 1986, 1987; Cooperstein 1988). We assume further
that the trapped component has no explicit angular
dependence in the momentum space, fVtr (E, x) (for a
more detailed discussion of the decomposition of the
neutrino distribution function in an [isotropic] trapped
component and a free-streaming one see Liebendorfer
et al. 2009). The integration over the neutrino phase space
of f" and f\" E gives information about the particle and
the energy contents of the neutrino gas:

= AT My e 2

N = oo JI € xE dE, )
AT omy r 3

2,0) = s 1 BB dE. ©)

where my, is the baryon mass and & the Planck constant.

2. Tywor > 1, but 7,6, < 1, the diffusive regime. Neutrinos
still diffuse, but they are not necessarily in thermal
equilibrium with the surrounding plasma.

3. Tyt ~ 1, the semitransparent regime. The solution of
the Boltzmann transport problem would be here ideal to
model the radiation transport with accuracy. The surfaces
defined by the conditions 7, = 2/3 are called neutrino
surfaces (or neutrinospheres, in spherically symmetric
models). In the case of 7, ¢, they are considered as the
last-interaction surfaces, before neutrinos can stream
away freely. For 7, .,, they represent the surface at which
neutrinos decouple thermally from matter.

4. Ty S 1, the free-streaming regime. In this regime,
neutrinos that are locally produced can stream out freely,
almost with no interaction with matter. At the same time,
a fraction of the large neutrino fluxes coming from the
neutrino surfaces can be here reabsorbed by matter.

2.2. The Coupling with Hydrodynamics

In the following we consider a Newtonian hydrodynamical
system at time ¢, which is evolving in time with a time step Ar.
To be more general, we consider a 3D domain, and, unless it is
explicitly said, no symmetries are assumed. The system is
described by its density p, temperature 7, electron fraction Y,,
and velocity field v. The trapped neutrino components are
defined by Y, and Z,. All these quantities are given at every
position x. We define the vector of conserved variables, U, and
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the corresponding flux tensor, F, as

P vp
pv vov + IP
v? v2 P
ple+5) wole+ s+ 1)
U= F = ; Q)

pYe vpY.
pY, vpY,

(pZI/)% V(pZ,,)%

where the specific internal energy e and the fluid pressure P are
provided by an EOS as functions of (p, T, Y,), while v is the
modulus of the fluid velocity. The evolution of the system is
determined by

0
EU + V- F= ggruv + 8> (8)

where g,y is the gravitational source term, depending on the
gravitational potential ¢, and g, is the neutrino source term.
The latter is related to the variation of the specific internal
energy, ¢, of the electron fraction, Y,, of the neutrino trapped
components, ¥, and Z,, and of the fluid velocity, v, provided by
neutrinos:

0
—p V¢ pé + pv -y
8grav = _pvd ve » 8 = pYe : €))
0 pY,
3 .
0 = 3/4 Zy
y) Zyp "

The goal of the ASL scheme is the estimation of the neutrino
source term, g,, from the present values of the thermodyna-
mical state U of the system. Before proceeding, it is important
to notice that any leakage scheme models the local net loss of
leptons in the form of neutrinos, i.e., the variations of the total
(trapped) lepton number, ¥, and of the specific total internal
energy, u. These quantities are related to the variation rates
appearing in Equation (9) by

=Y +1, -

e

10)

and

1. . .
i=¢+ —Zy+ Zo+47,).
my,

Y

Note that the contributions to ¥ given by Y, - and 7, , cancel in
our approach. Concerning the neutrino stress, we distinguish ¥
into two contributions:

V=0)r>1+ 521 12)

i.e., one related to the trapped neutrinos, (¥). -1, and one to the
absorption of radiation in optically thin conditions, (¥) <.

In Section 2.3 we show how we compute the rates for the
trapped components Y, and Z, and the neutrino stress in
trapped conditions (¥) 1. The calculation of the leakage rates,
1 and ¥, and of the neutrino stress in free-streaming conditions,
(¥)- <1, is exposed in Section 2.4. In both sections, we omit the
explicit dependence on time and position in the equations, apart
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from when the neutrino energy is involved. In that case, we
only omit the temporal dependence.

2.3. Trapped Component Rates

The variation rates for the trapped components are computed
as

’ YI/[+Af -Y,
y, =222 ¥ 13
Y - (13)
; ZVZ+A[ - Z;/
Z, = —— 14
v ; (14)

where )’;,/,t+ A, and Z~W+ Ar are guesses of the trapped
components at t + At, only due to neutrino processes. Their
computation is done following these steps: (i) Reconstruct
approximated trapped components of the neutrino distribution
functions, fy‘r, at the current time ¢ based on Y,. This is done
assuming that

SI(E, X) = Y@ ([, (E, X))eq (1 — e~ TrnE),

The exponential cutoff ensures that f." is significantly different
from 0 only when neutrino trapping conditions are fulfilled
with respect to the energy optical depth, i.e., 7., 2 1, and that
it is proportional to (f")eq for 7., > 1. The local parameter
v (x) is fixed by Equation (5).° The equilibrium distribution
functions are assumed to be Fermi—Dirac distribution functions
of a neutrino gas in thermal and weak equilibrium with matter

1
eE/M®=n,@) 4 1’

5)

(f)eq (E, x) = (16)
where T, is assumed to be equal to the matter temperature (true
for 7, en 2 1) and 7, is the neutrino degeneracy parameter. For
v, and 7,, we use the equilibrium degeneracy parameter:

771/,, = (u’e - Hy + :u‘p)/T = 777176’ (17)

where p,,, pt,, and p, are the relativistic chemical potentials of
neutrons, protons, and electrons, respectively. For
T 2 0.5MeV, we assume ji,+ + p,- = 0. If 1, ; are produced
by electron—positron annihilation, this relation suggests that
neutrinos and antineutrinos of these flavors have approximately
opposite chemical potentials. However, the substantial equiva-
lence between v, and D/,,Tf’ implies also the equivalence
between their chemical potentials. Thus, the degeneracy
parameter for v, is set to 0.

(ii) Evolve f." according to timescale arguments between ¢
and 1 + Ar. This is done considering the neutrino production
and diffusion as two competing processes:

dfytr
dt

Htr

At
= fl/,prod + fz/,diff ’

(18)

5> We notice that the usage of Y, to reconstruct f'" does not ensure the exact

reconstruction of Z,. On one hand, we have tested that the usage of Z, instead
of Y, does not change our results significantly. On the other hand, the usage of
the original (i.e., not reconstructed) values of Z, in the computation of Z, still
ensures energy conservation.

® This approximation is valid as long as the temperature is not high enough to
produce a  significant amount of muons and  antimuons
(T < my, =~ 105.7 MeV) and nuclear effects distinguishing v and & (like weak
magnetism) are neglected.
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with
; ((f;) - f:r) tu, rod
Foa = = exp| ——2 (19)
’ max (f,prod, A1) by dit
and
tr
Atr 1, 1y, diff
= v exp| ——= . 20
fyydlff max (tu,diff, At) P [ tu,prod ) ( )

In Equations (19) and (20), all the quantities are evaluated at
position x and for a certain neutrino energy E. In Equation (19),
the term before the exponential ensures that the distribution
function reaches the equilibrium value whenever the produc-
tion timescale is small enough compared to the time step At.
Similarly, the first part of Equation (20) causes the distribution
function to go to 0, if the diffusion timescale is small enough
compared with Ar. The exponential factors in both expressions
are a switch between the diffusive and the free-streaming
regime. The production timescale, £, o4, is set by the neutrino
emissivity:

1
i, (E,x)

Following Rosswog & Liebendorfer (2003) (see Ruffert et al.
1996), we define the diffusion timescale, ¢, gir, as

Ax, (E, x)
c

1y prod (E,x) = (21)

ty.dite (E, x) = ot (E, X). (22)
The quantity Ax, can be understood as the effective width of a
layer drained by the diffusion flux, and it is calculated as

Axl/ (E’ X) = Qgiff Ty, tot (E, x) >\V,l()t (E, x)' (23)

Usually, agir ~ 3 (e.g., Mihalas & Mihalas 1984; Ruffert et al.
1996 and Rosswog & Liebendorfer 2003). While for large
optical depths Equation (22) provides an estimate of a proper
diffusion timescale, in the optically thin regime its value
decreases significantly, owing to its quadratic dependence on
the optical depth.

(iii) Obtain ¥, 1, and Z,, a, from f(t + At, E, x),
based on Equations (5) and (6).

Trapped neutrinos provide a source of stress for the fluid.
This stress is determined by the gradient of the pressure of the
neutrino gas

VB
P

Mr>1 = (24)

where the neutrino pressure is evaluated based on the energy
content of the neutrino gas,

1
Pl/,tot = Z B/ - _L(ZIIZ + Zpe + 4 Zy/m)- (25)
v 3 myp

2.4. Emission Rates

The rates for the total lepton number and total specific
internal energy are obtained as the net balance between the
emission rates (R for the particles and R! for the energy) and
the absorption rates in optically thin conditions (H° for the
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particles and H, for the energy):
Y= -my(R) — R) — HY + HY), (26)
and
i=—(R) + R} + 4R} )+ (H) + Hp). 27)

In Equations (26) and (27), v, - and 7, » do not provide any net
contribution to the lepton number and do not contribute to the
absorption in optically thin conditions. The emission and
absorption rates are obtained from spectral emission (r,) and
absorption (h,) rates, according to

+0o0
Rf@x) = f r(E, x) E>** dE, (28)
0
+0o0
HE@) = [ (B x) B4 E, (29)
0
with k = 0, 1.

The emission rates are computed as smooth interpolation
between the production rates,

4 'V(E , X)
Foproa (E, %) = ——— (30)
(he)®  p(x)
and the diffusion rates,
4r 1 (£)eg(E. x)
ity (B, X) = —— a G1)

(he)® p®) tyai (E, x)

The former are expected to be dominant in optically thin
conditions, while the latter in the opaque region. The
interpolation formula is provided by

rl/(E’ x) = (1 - Oél/,blk)Fu(Ev x)

x exp (—Ty,en (E, X)/Tew), (32)

U, (x)
where
Ty.prod (E, X) X 1y, gier (E, X)

i(E, x) =
’ ru,prod (E, x) + rl/,diff (E, x)

(33)

is the interpolation expression used for the emission rates in
gray leakage schemes (see, e.g., Ruffert et al. 1996; Rosswog &
Liebendorfer 2003). o, pix and 7, are parameters, and V¥, is a
local normalization factor:

+00
f 7, (E, x)e e EX)/Tan F2dE
U, (x) = 0

Too (34)
f 7 (E. x) EXE
0

Then, for o, pyc = 0 and 7,x — 400, we obtain r,, = 7,. Finite,
nonzero values of these constants introduce two important
improvements in the ASL scheme.

i. In the case where ay; = 0, the total amount of emitted
1, and 7, is usually overestimated. When a large fraction
of the emission rates is produced in the semitransparent
and optically thin conditions, the interpolation favors the
usage of the production rates, calculated as integral over
the whole solid angle of isotropic emission rates,
Equation (30). However, a significant fraction of those
neutrinos are emitted toward the optically thick region.
Moreover, the emission rates can be significantly reduced
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by Pauli’s blocking factors, provided by the large amount
of free-streaming neutrinos emitted at the neutrino surface
or locally produced. To efficiently take into account these
effects, we have introduced the factor (I — oy p) in
Equation (32). o, pik 1S a free parameter of the model, and
it is expected to be ~0.5 for v, and 7, in strongly accreting
systems. On the other hand, since the emission of v, ;
from optically thin conditions is usually negligible, we
use Oéblk,uw ~ 0.

ii. The rates obtained with Equation (33) retain spectral
information of the local thermodynamical properties of
matter. Nevertheless, during the diffusion process, high-
energy neutrinos coming from optically thick regions
thermalize to lower energies, at least as long as 7, ¢, > 1.
Thus, the spectrum emerging from the neutrinospheres is
softer than the one provided by Equation (33). To mimic
this transition, we have included the term
exXp(—Ty.en/Teut)/¥, in Equation (32). The definition of
W, Equation (34), ensures that the number of neutrinos
emitted is preserved, while their final spectrum is
modeled according to the energy optical depth. Since a
few inelastic interactions are necessary to thermalize the
spectrum, we expect 7oy ~ O(10).

2.4.1. Absorption Rates

Eventually, neutrinos emitted at the neutrino surface and
above it stream away in the optically thin region, with a non-
negligible probability to be reabsorbed by the fluid. In the ASL
scheme, we include an estimate of this nonlocal absorption rate,
h,(E, x), based on the computation of the neutrino densities
outside the neutrino surfaces. The spectral absorption rates for
v, and 7, in optically thin conditions are calculated as

o (E, %) = —— n, . <1 (E, x)
px) ~
X Xy (E, X) Fo(E, x) H(E, x). (35)

F. 1s the Pauli blocking factor for electrons or positrons in the
final state:

Fom (1 - 1 ) (36)
exp((E £ Q F p,)/T) + 1

where we have assumed that the electron or positron produced
by the absorption of an electron neutrino or antineutrino,
respectively, has an energy equal to the energy of the incoming
neutrino, corrected by the mass difference
Q= (m, —my)c*~1293MeV. In Equation (35),
H(E, x) = exp(—T,ot (E, X)) is an exponential term that
ensures the application of the heating rates only in the optically
thin region. The quantity n,, , < is the spectral neutrino density,
defined such that the total neutrino density outside the neutrino
surface, N, - <1, is

+00
Ny <1 (x) = f 1y <1 (E, x) E? dE. (37)
0

One of the limits of any leakage scheme is that it does not
model the spatial and angular distribution of the emission
outside the neutrino surface. Thus, the calculation of #h,
requires first a separate evaluation of n,, ; <;. This task depends
strongly on the nature of the problem and on the symmetry of
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the system. For spherically symmetric models, the preferential
propagation direction is the radial one, and the neutrino
densities are related to the spherically symmetric neutrino
spectral particle luminosities, /,, by

I,(E,R)

=1 - 38
47R?%c ,(E, R) 38)

ny,5,<1(E, R)
where R is the radial coordinate (e.g., Janka 2001). This
conversion between the neutrino flux and density involves the
(spectral) flux factor p, (E, R). It represents the average of the
cosine of the propagation angle for the free-streaming
neutrinos. Far from the neutrinospheres, the distribution
functions are expected to peak in the forward direction,
meaning 1, (R > R,) ~ 1. Close to the neutrinospheres,
assuming that radiation is emitted isotropically above the plane
tangential to the neutrinospheres, u,(R ~ R,) ~ 1/2. Follow-
ing Liebendorfer et al. (2009), we use an analytic approxima-
tion for R > R, (E):

R, (E) )2 (39)

1
/’(‘1/( ’ ) 2 T \/ (maX(R, RI/(E))

The quantity /[, is computed at each radius and for each
neutrino energy as a solution of the differential equation

BB w1 B
~ X E R g Ry LE R, (40)
C

The neutrinos absorbed in free-streaming conditions deposit
momentum in the fluid. In the case of spherically symmetric
models, the related stress is computed as

1 +00
Mrnz1(R) = —f h(E, R) u, (E, R) E’ dE. (41)
cJ0

For systems with an approximate spherical symmetry (like
collapsing stellar cores), the procedure described above to
compute 7, and (), < can be applied in a ray-by-ray fashion
(i.e., along radial paths starting from the center of the system).
For more general geometries, ray-tracing algorithms can be
designed (e.g., Perego et al. 2014b).

3. CALIBRATION AND VALIDATIONS

We implement the ASL scheme, as it is described in
Section 2, in the implicit, spherically symmetric hydrody-
namics code Agile (e.g., Liebendorfer et al. 2002; Fischer
et al. 2010, and references therein). For the calculation of the
neutrino emissivities, absorptivities, and scattering rates, we
include a minimal set of neutrino—matter reactions containing
the most relevant ones. For the production and the absorption
of electron flavor neutrinos,

e +pon+ i, 42)
e +A )~ A Z-1)+ 1, 43)
et +n<p+ 0, (44)

where ¢~ and e™ refer to electrons and positrons, while 7, p,
and (A,Z) to neutrons, protons, and nuclei with mass number A
and atomic number Z, respectively. Pair processes, like
electron—positron annihilation and neutrino bremsstrahlung
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from free nucleons (generically referred to as N), are expected
to be secondary sources for v, and 7, but primary for v, ;:

e tet o v+D, (45)
N+N<N+N+v+ o (46)

All the reactions listed above are considered as inelastic. Major
sources of opacity for all neutrino species are provided by
scattering on nucleons and nuclei:

N+v—N+v, @7
A, 2)+v—@AQA,Z)+ v (48)

These scattering reactions are considered as elastic in the
computation of the total and energy mean free paths. All these
weak interactions are implemented according to Bruenn (1985),
apart from neutrino bremsstrahlung (Hannestad & Raffelt 1998)
and pair production (Bruenn 1985; Mezzacappa & Mes-
ser 1999), whose implementation is described in Appendix A.
The opacity provided by the scattering of neutrinos on
electrons and positrons has not yet been implemented. It has
been shown that this process is relevant to thermalize neutrinos
during the collapse of the core (e.g., Mezzacappa & Bruenn
1993b) and in the cooling phase of the proto-neutron star (PNS)
in exploding models, seconds after core bounce (Fischer
et al. 2012). Even if the effect of this reaction on the total and
energy mean free path is not considered, the thermalization
effect provided by it in the optically thick regime is partially
taken into account in our scheme by enforcing the usage of
equilibrium Fermi-Dirac distribution functions to model the
neutrino trapped component. The impact of this effective
treatment in the different parts of a core-collapse simulation is
discussed later in more detail.

3.1. 15Mg, Progenitor

The ASL scheme is an effective treatment for neutrino-
radiation hydrodynamics. Therefore, it requires being tested
and compared against a reference solution, not only to check its
validity and accuracy but also to set the free parameters that
appear in the scheme. To perform this test, we choose the case
of spherically symmetric core-collapse models. We start with a
zero-age main-sequence (ZAMS) 15 M progenitor model,
obtained by Woosley et al. (2002). We follow the collapse of
the core and the first 300 ms after core bounce. We include
~2.05 M, from the initial progenitor, distributed over 103
radial zones on the adaptive Lagrangian grid of Agile. The
corresponding initial outer radius is ~7500 km from the origin.
As a reference solution, we use the results obtained by the
BOLTZTRAN code (Mezzacappa & Bruenn 1993a, 1993b,
1993c; Mezzacappa & Messer 1999; Liebendorfer et al. 2004;
Fischer et al. 2012, and references therein), also coupled with
the Agile code. BOLTZTRAN solves the Boltzmann equation
using the method of discrete ordinates with a Gauss—Legendre
quadrature. BOLTZTRAN incorporates all the neutrino reactions
listed in Equations (42)—(48). For consistency with our ASL
implementation, we rely on the neutrino reaction implementa-
tion reported in Liebendorfer et al. (2005). Recently, Lentz
et al. (2012a) have shown the impact of modern neutrino rates
in Agile-BOLTZTRAN runs. We postpone the implementation
of more accurate reaction rates in ASL to a future step.
Furthermore, we notice that, even if neutrino—electron scatter-
ing (NES) is implemented in the BOLTZTRAN version we are
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Table 1
Values of the Parameters Used in the Agile-ASL Runs

Name Quifp ik Teut

Calibration Sets

CAL {3, 4,5, 6} {0.4, 0.45, 0.5, 0.55, 0.6} {10, 15, 20, 25}
Standard Set
STD 3 + 2X;, 0.55 20

Parameter Variation Study

AD_2 2 0.55 20
AD_5 5 0.55 20
AB_45 3+ 2X, 0.45 20
AB_65 3 42X, 0.65 20
TC_7 3+ 2X, 0.55 7
TC_54 3+ 2X, 0.55 54

Note. Different sets of free parameters of the model are used in this study. In
the calibration runs (CAL), the three parameters are varied independently,
producing 80 different parameter sets. The result of the calibration is denoted
as standard set (STD) and is also used in the multidimensional runs. The six
parameter sets used to show the sensitivity of our models to variations of a
single parameter from the STD set are listed as a parameter variation study.

using, for consistency our reference runs do not include it, if
not stated otherwise. We perform our tests and compute our
reference solutions assuming Newtonian gravity to be able to
compare later with different multidimensional Newtonian
hydrodynamical schemes. In all our Agile-ASL runs, as well
as in the Agile-BOLTZTRAN ones, we use the Lattimer—Swesty
EOS (Lattimer & Swesty 1991), with nuclear compressibility
K =220MeV. Neutrino energies are discretized by 20
geometrically increasing energy groups in the range
3MeV < E, < 300MeV. In the Agile-BOLTZTRAN runs,
the neutrino propagation angle is discretized by 6 angular bins.

3.1.1. Parameter Choice

The validation and the calibration of the ASL scheme are
done by comparing directly the temporal and the radial profiles
of some relevant quantities obtained with Agile-ASL with our
reference solutions. We do not define a quantitative criterion to
compare the different results, because our simulations span a
broad range of conditions and this prevents the possibility
of selecting a single quantity as an indicator. Instead, we search
for the parameter set that, overall, best matches the most
important features of a CCSN model between collapse and a
few hundreds of milliseconds after core bounce. In particular,
during the collapse, we focus on central quantities (e.g.,
density, entropy, and electron fraction). Before and after
bounce, we monitor the profiles of matter density, p, matter
entropy per baryon, s, electron fraction, Y,, and radial velocity,
v,. Regarding the neutrino quantities, we investigate the radial
profile of Y,, together with the luminosities, L,, and the

rms neutrino energies, Eums = « (E2), both measured at
300 km from the center. The different versions of Agile-ASL
differ by the usage of a distinct set of parameters, (i, Qpiks
Teur)- The ranges we have explored are reported in the first row
of Table 1.
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Figure 1. Left: central electron fraction (black lines), electron neutrino fraction (red lines), and lepton fraction (blue lines) evolution during the collapse of the 15 M,
model, as a function of the central density. The solid lines refer to the run obtained with the ASL scheme, while the dashed lines refer to the run obtained with
BOLTZTRAN. Right: same as for the left panel, but for central entropy (black lines) and temperature (red lines), as a function of the central density during the collapse.
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Figure 2. Profiles of the electron fractions (left), temperature (middle), and radial velocity (right) as a function of the enclosed mass profile for the 15 M, model, at
three different times labeled by their central densities (black: 10'' g em™, red: 102 g cm™; blue: 10" g cm ™). The solid lines represent the run obtained with the

ASL scheme, while the dashed lines represent the run obtained with BOLTZTRAN.

The values of the parameters that provide the overall best
agreement in all the monitored quantities, during the entire
simulation, are as follows.

agee = 3(1 + 2 X,/3), where X, is the mass fraction of
heavy nuclei. This peculiar dependence is a simple
interpolation between two limiting behaviors: agigr ~ 5 in
the unshocked regions (more relevant in the collapse phase)
and agir & 3 in the shocked ones (more relevant in the post-
bounce phase). The physical interpretation of this difference
is linked with the fact that in the unshocked region v, and 7,
opacities depend more on quasi-elastic scattering on
nucleons and nuclei than on inelastic absorption processes
(Ty.en < Tytot), While in the shocked region both are equally
important (7, en S 7y.10)- When isoenergetic scattering dom-
inates, high-energy neutrinos diffuse, changing more slowly
their energy and interacting more with matter compared with
thermalized neutrinos. This effect leads to a significant
increase of the diffusion timescale.

Oé,,e,,—,eblk = Qplk = 055, while O[,,lm,
Tear = 20.

We will refer to this set of values as our standard set (second
row in Table 1).

pik = 0.

3.1.2. Collapse and Bounce Phase

In the following, we describe the results we obtain for our
15 M, model and how they compare with our reference
solution. A comparison of the performances of Agile-ASL and
Agile-BOLTZTRAN for the same calibration runs is reported in
Appendix B.

The stellar iron core collapses until densities in excess of
nuclear saturation density are reached in the center and a shock
wave forms. Free-streaming neutrinos reduce the total lepton
number, while the electron fraction is further decreased by the
conversion of electrons into v,. The core reaches core bounce
on a time fyounce = 248 ms after the beginning of the
simulation. ~ The central density at bounce is
Pbounce = 3.36 X 1014gcm73, and the enclosed mass at the
shock formation point is Mepcpounce = 0.75 M. The central
density and the initial PNS mass compare closely with the
corresponding values obtained by Agile-BOLTZTRAN (Ppounce,
aB =334 x 10"gem ™ and  Menepounceas = 0.74 My,
respectively), while the collapse time of the reference model
is shorter, #fyounce.ap = 205 ms. In Figure 1, we compare the
central values obtained for Y, and ¥, (left panel), and for the
entropy and temperature (right panel), as a function of the
central density during the collapse. Moreover, in Figure 2, we



THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 223:22 (22pp), 2016 April

Density and velocity at bounce

8 L

ASL — |
Bolztran ----

. L
o L4 &5 L AL L S o —

Vi [109 cm s'l]

0 0.5

1
M [M,

sun]

1.5

Entropy and Y, at bounce

T
ASL —
Bolztran ==--

s Density and velocity at 30 ms post bounce
10 . : :

ASL —

50

.
100

R [km]

Entropy and Y, at 30 ms post bounce

ASL —
Bolztran ===

,Density and velocity at 120 ms post bounce
10 : : : :

PEREGO, CABEZON, & KAPPELI

s [kg baryon‘l]

0 . . . 0 0 .
. 50

100
R [km]

1 1
Bolztran ---- 1 0 oM Ey T 0
-1 -1
13
2 10 Pm
ot ol2 Z
3 E g N N U 3 E
4% 2l N\ 4%
5 = 5 =
> 1010 ........ >
6 -6
109 L
27 ASL — -7
Bolztran ===
, . I 108 ; . . 8
150 200 250 0 50 100 150 200 250
R [km]
" Entropy and Y, at 120 ms post bounce
. . . .
i ASL —
05 Bolztran ==-- 0.5
T:
o
z
<
=)
m
24
”
. . 0 0 . . . . 0
150 200 250 0 50 100 150 200 250

R [km]

Figure 3. Profiles of the density and radial velocity (top row) and of the entropy and electron fraction (bottom row), at three different times for the 15 M model: at
core bounce (left panels, using the enclosed mass as an independent variable) and at 30 ms and 120 ms after core bounce (middle and right panels, respectively, using
the radial distance as an independent variable). The solid lines represent the run obtained with the ASL scheme, while the dashed lines represent the run obtained with

BOLTZTRAN.

plot radial profiles of Y,, temperature, and radial velocity, as a
function of the enclosed mass, for three different times during
the collapse (labeled by their central density). In all cases, we
have obtained a good agreement with the reference solution.
The decrease of Y, is well reproduced during the deleptoniza-
tion process, while neutrino trapping occurs when the central
density reaches p. ~ 2 x 10" gem 2. After that, the further
decrease of Y, is compensated by the growth in Y, , keeping the
total lepton number and the entropy roughly constant. In the
ASL model, the entropy per baryon and the electron fraction
stay almost constant after neutrino trapping up to core bounce,
inside the innermost 0.8 M. In the BOLTZTRAN reference
solution, the detailed treatment of the equilibrium approach and
diffusion process slightly reduces the total lepton number
(AY; = 0.02), compared with the ASL solution. Similarly, the
entropy per baryon rises just before the formation of the shock
wave (As ~ 0.2 kg). This difference is due to full thermal and
weak equilibrium with matter assumed in the ASL treatment.
However, this equilibrium is only approximated, and deviations
from it lead to a slightly larger matter entropy (Cooperstein
et al. 1986, 1987). Finally, in the radial velocity profile, we
notice a wiggle appearing after neutrino trapping sets in,
around M., ~ 1 My. This is due to the neutrino stress,
computed according to Equation (24), which can overestimate
the stress at the interface between the trapped and the free-
streaming regime and neglects additional momentum transfer
in optically thin conditions.

3.1.3. Post-bounce Phase

After core bounce, the shock wave propagates outward and
iron group nuclei falling into the shock are photodissociated
into neutrons and protons. Once the shock reaches the relevant
neutrinospheres, electron capture on free protons in almost
free-streaming conditions causes a peak in v, luminosity and a
fast neutronization of the shocked matter. Later, the absorption

of electrons and positrons on free nucleons, together with
neutrino pair processes, produces an intense radiation emission
of neutrinos of all flavors. The combined effect of the nuclei
photodissociation and neutrino emission causes the prompt
shock expansion to stop and the shock itself to stall within a
few tens of milliseconds. The absorption of neutrinos inside the
so-called gain region increases the shock radius during several
tens of milliseconds after the stalling. However, this energy
deposition is not enough to revive the shock and lead to an
explosion of the star.

Figure 3 shows radial profiles of several quantities at core
bounce, as a function of the enclosed mass, as well as at two
different times after core bounce (f ~ 30 ms and 7 ~ 120 ms),
as a function of the radial distance from the center. The results
obtained with the ASL scheme show the most relevant features
and the expected typical evolution. We find a good agreement
for the location of the shock during the different phases. We
recognize the effect of the passage of the shock wave in the
electron fraction profile, as well as the result of the neutrino
emission and absorption on the entropy profile (especially
around 120 ms, where the increase of the entropy inside the
gain region can be seen). A detailed comparison with the
reference solution shows several quantitative differences
between the two models. They originate from our approximate
treatment, compared to a detailed neutrino transport scheme.
However, the overall qualitative (and also a partial quantitative)
agreement between the two models is preserved during the
entire simulation time.

In the left panel of Figure 4, we present the temporal
evolution of the shock and PNS radii (defined as p
(Rpns) = 10! gcm*3). Overall, Ry« and Rpns evolutions
are in good agreement with the reference model. In the Agile-
ASL run, the shock expansion reaches its maximum,
~145 km, around 140 ms. This maximum extension is ~10%
smaller than the maximum Ry, obtained by the Agile-
BOLTZTRAN simulation. We also notice that the latter reaches
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Figure 4. Temporal evolution of the shock and PNS radii (left panel), of the neutrino luminosities (middle panel), and of the neutrino rms energies (right panel) for the
calibration run of a 15 My progenitor. The solid lines represent the run obtained with the ASL scheme, the thick short-dashed lines the run obtained with
BOLTZTRAN. For comparison purposes, we also plot results obtained with BOLTZTRAN including NES (thin long-dashed lines).

its maximum earlier (=105 ms). In general, the shock evolution
is more pessimistic in the ASL model than in the reference one.
On one hand, this is a consequence of the smaller PNS radius
(e.g., Marek & Janka 2009), which in turn is due to an
overestimated neutrino cooling happening in the semitranspar-
ent regime. On the other hand, the comparison with a
BOLTZTRAN model including also NES (thin long-dashed
lines) suggests that the smaller shock radius obtained by the
ASL scheme during the first 30 ms after core bounce could also
be the result of the effective inclusion of the neutrino
thermalization provided by this inelastic process. This effect,
together with the enhanced v, luminosity around neutrino burst,
compensates for the larger enclosed mass at core bounce.
Finally, despite the slightly smaller extension, the PNS
contraction rate within the first 300 ms is similar to the one
of the reference solution.

3.1.4. Neutrino Quantities

The neutrino luminosities and rms energies are displayed in
the middle and right panels of Figure 4.

During the collapse phase, electron capture on nuclei causes
the 7, luminosity to rise. This increase proceeds monotonically
up to neutrino trapping (L,, ~ 10.6 x 10>%ergs™ "), when the
enhanced core opacity and the fast-decreasing collapse time-
scale halt (and even slightly decrease) the v, luminosity. Once
the core has bounced and the shock has passed through the
relevant neutrinospheres, L, shows a burst and peaks at
4.1 x 10> ergs™'. The same behavior appears in the reference
solution obtained by Agile-BOLTZTRAN, even if the luminos-
ities are a bit smaller (9.5 x 10°*ergs™' at trapping and
3.5 x 1073 erg s7!oat burst). After the neutrino burst, L,
decreases and stabilizes during the accretion phase,
L, ~50 x 10 ergs ™. At the same time, the 7, luminosity
rises and becomes almost equal to L, during the whole
accretion phase. The same trend is observed in the reference
solution, and the differences in the absolute values are usually
within 10%. The smaller values obtained by the ASL scheme
are related to the smaller neutrinosphere radii. In correspon-
dence with the sudden (¢ < 25 ms) expansion and contraction
of the shock wave observed in the BOLTZTRAN run without
NES, the 7, luminosity presents a pronounced oscillation. This
increased luminosity is due to the larger presence of hot matter
(T ~ few MeV) at relatively low density (p > 10" gcm™)
above the PNS. In the BOLTZTRAN runs, these features
disappear once NES is included, as a consequence of the more
efficient neutrino thermalization and the larger 1, peak
luminosities (see also Figures 5 and 6 in Lentz et al. (2012a),

10

even though there the effects are less evident, owing to the
different progenitor structure and potentially to the different
opacities used). Also in this case, the results obtained with the
ASL scheme follow more closely the BOLTZTRAN run with
NES. The rise of L, _ proceeds as well after core bounce, but a
few milliseconds before L;,. This is expected because of the
negative 7, degeneracy parameter and the larger opacity that
characterize electron antineutrinos compared with g and 7
neutrinos. In the rising phase (i.e., within the first ~75 ms), the
ASL scheme underestimates the v, - luminosities, while the
agreement increases during the stationary accretion phase. This
discrepancy is due to the difficulty by the ASL scheme in
modeling the dynamical rise of the v, -, which are characterized
by an extended scattering atmosphere above the radius where
neutrino bremsstrahlung and pair production freeze out.

The rms energies obtained by the ASL scheme show trends
in agreement with the reference solution. A harder spectrum is
obtained for 7, during the collapse phase and for 7, in the first
tens of milliseconds after core bounce. We notice that the rms
energies for v, , are consistent with the values obtained by the
reference solution, i.e., without including NES. However, the
inclusion of this process in Agile-BOLTZTRAN leads to
significantly smaller energies (by ~20%—-25%). This indicates
that this process is responsible for efficiently down-scattering
high-energy v, ,, while they diffuse out from the core. The
same behavior is visible for 7, during the latest phases of the
collapse.

3.1.5. Parameter Variations

We briefly explore the sensitivity of the ASL scheme with
respect to variations of its free parameters (i, Qs Teur)
around the calibrated values. To do this, we consider the 15 M,
model of Section 3.1, with its standard set of parameters, and
we vary each of them independently. We choose agir = 2
(AD_2 model) and agir =5 (AD_S5 model), app = 0.45
(AB_45 model) and oy, = 0.65 (AB_65 model), and 7, = 7
(TC_7 model) and 7., = 54 (TC_54 model), representing six
independent tests (see Table 1). We notice that the diffusion
rates are proportional to 1/agi and the chosen diffusion
parameters could also be expressed as 1/agi = 0.5 (AD_2
model) and 1/ag = 0.2 (AD_5 model). Thus, the variations
of agirr and oy span an effective interval of roughly +30%
around the calibrated values. For 7., we choose two values
such that In (7¢,)/In (20) ~ 1 £+ (1/3).

In Figure 5, we show the shock and PNS radius, the 7,
luminosity, and the v, rms energy (the corresponding curves for
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Figure 5. Comparison of the temporal evolution of the shock and PNS radii (left panel), of the neutrino luminosities (middle panel), and of the neutrino rms energies
(right panel) between our reference case and six runs obtained varying the three free parameters, ok, i, and 7., (see the text for details).

7, and v, » present analogous trends) for each of the six tests, in
comparison with the reference case. The parameter oy, alters
the emission rates everywhere inside the core (see Equation
(32)), causing a variation of the total neutrino luminosity
roughly equal to the variation of the parameter itself. Since it
applies equally to all neutrino energies, it does not affect
directly the neutrino spectrum and it modifies only marginally
the evolution of the neutrino mean energies. The variations of
the rms energies that we observe in AB_45 and AB_65 are
mainly due to the different evolution of the radial profiles of the
thermodynamical quantities. A variation of £30% of ay, does
not change the qualitative behavior of the simulations, but it
changes the shock radius significantly, by a few tens of
kilometers. Variations of the PNS radius are more restrained.

Since the diffusion rates affect mainly the behavior of the
deep interior of the collapsing core, the radius of the PNS is
more sensitively affected by variations of the diffusion
parameter og;. In particular, an increase of agirr (AD_S)
causes a decrease of the diffusion rates and of the neutrino
luminosities. At the same time, it slows the PNS contraction
down and moves outward the transition region between the
diffusion and the production rates (see Equation (33)). The
smaller temperature at the PNS surface produces softer neutrino
spectra. The shock radius position is determined by the
hydrostatic equilibrium configuration inside the hot PNS
mantle, under the influence of neutrino cooling and heating
(e.g., Janka 2001). The lower neutrino energy deposition is
compensated by the more extended PNS, and the net result is a
larger shock radius (see Equation (2) of Janka [2012] for the
scaling relationships between the shock and PNS radii, the
neutrino luminosities, and mean energies). A decrease of
agitr (AD_2) provides parallel but opposite effects.

The variations of the parameter 7., have the smallest impact
on the ASL scheme results. In particular, a large increase of 7,
from 20 to 54 (TC_54) provides larger neutrino mean energies,
but it also increases the emission rates associated with high-
energy neutrinos, Equation (32). The more intense energy
emission coming from the optically thick region is still not
enough to modify significantly the evolution of the PNS radius.
However, it almost compensates the more efficient absorption
provided in optically thin conditions, and it limits the
differences in the radial profiles and in the shock conditions.
Analogous, but opposite, considerations apply to the TC_7 run.

Our brief parametric study has shown that even significant
variations of the free parameters of the model (of the order of
+30%) around the calibrated values do not change qualitatively
the results of the simulations for the tested 15 M, progenitor.
On the other hand, quantitative differences are present:
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variations of the parameters oy and ag; have the largest
impact, since they modify significantly the neutrino luminos-
ities and mean energies. The diffusion parameter regulates also
the contraction rate of the PNS, while it has a less pronounced
effect on the neutrino mean energies, compared with ovy.
Variations of 7, affect mainly the neutrino mean energies, but
have a reduced impact on the overall dynamics.

3.2. 12 M, and 40 M, Progenitors

After having presented the calibration of the ASL free
parameters for the core collapse of a 15 M, ZAMS star, we test
them with two different progenitors: 12M, (Woosley
et al. 2002) and 40 M, (Woosley & Heger 2007) ZAMS stars.
Also for these cases, we compare the results obtained in
Newtonian simulations performed with Agile-ASL with the
ones of Agile-BOLTZTRAN. For the 12 M, case, we include
1.67 M., from the initial progenitor, distributed over 103 radial
zones. The initial radius extends up to 6800 km. For the 40 M,
case, we include 2.60 M. from the initial progenitor,
distributed over 135 radial zones, ranging initially from O up
to 5100 km from the center.

The comparison of the collapse profiles between the Agile-
ASL and the Agile-BOLTZTRAN results shows a very good
agreement, for example, in the evolution of the central entropy
and electron fraction, similar to the one we have observed for
the 15 M., calibration model. The time necessary to reach core
bounce is again larger by 15%—20% in the ASL case: 169 and
354 ms, to be compared with 142 and 313 ms obtained in the
detailed neutrino transport run, for the 12 M and 40 M, case,
respectively. The enclosed mass where the shock forms is
larger in the ASL models by only a few percent (2%-3%). In
Figure 6, we present the evolution of some key quantities
during 250 ms after core bounce, for both the 12 M,
(top panels) and the 40 M, (bottom panels) progenitor models.
For comparison purposes, we plot also the results obtained by
the Agile-BOLTZTRAN code. Overall, the results obtained with
the ASL model reproduce qualitatively, and partially quantita-
tively, the results obtained by the detailed Boltzmann neutrino
transport. The agreement is better for the 40 M., case. This is
due to the fact that, despite the large difference in the ZAMS
mass, the core properties of the 15 M, progenitor show
similarities with more massive progenitors and differences with
lighter progenitors. In the 12 M, case, the results obtained by
the ASL scheme look more pessimistic, owing to a faster and
more intense energy loss above the neutrinospheres during the
first tens of milliseconds after core bounce. The lower v, and 7,
luminosities and the larger rms energies, observed for
t 2 0.75ms, are a consequence of the more compact PNS
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Figure 6. Same as in Figure 4, but for 12 M, (top panels) and 40 M., (bottom panels) progenitors.

and shock. Also for these two progenitor models (and
especially for the 12 M one), the v, luminosity and shock
radius evolutions within the first tens of milliseconds after core
bounce follow more closely the results obtained with
BOLTZTRAN, once the neutrino scattering on electrons and
positrons has been included. The reasons are analog to the
15 M, case. In the 12 M., case, the oscillations in the shock
radius and in the 7, luminosities appearing in the BOLTZTRAN
runs without NES are even more pronounced than in the
15 M., while they are practically absent in the 40 M, case. This
is due to the different density structures and accretion rate
histories. According to the analysis reported in Section 3.1.5,
the more pessimistic results obtained for the 12 M., case can
also indicate that light progenitors would require a slightly
different parameter choice to better match results from the
reference model (in particular, larger ag;er and ovpp)-

4. EXAMPLES IN MULTIDIMENSIONAL SIMULATIONS

In Section 3, we have compared results from the ASL
scheme against Boltzmann transport in spherically symmetric
models. To do that, we used the same hydrodynamics code,
Agile. In order to show the possibility for the scheme to be
implemented in multidimensional contexts, we report the
following two tests, performed with two different hydrodyna-
mical codes. In the first one, we apply the ASL scheme in a
multidimensional setting by coupling it to an axisymmetric
Eulerian and nonrelativistic hydrodynamics solver, to model
the core collapse of a stellar iron core. In the second one, we
couple our algorithm with a Lagrangian hydrodynamics code,
and we simulate the same stellar core collapse in 3D using
SPH. In both cases we consider a 15 M, progenitor from
Woosley et al. (2002). We use the Lattimer & Swesty (1991)
EOS with nuclear compressibility K = 220 MeV and the ASL
standard parameter set, as described in Section 3, with 20
geometrically increasing energy bins between 3 and 300 MeV.

The different dimensions, implementations, and numerical
techniques are expected to introduce differences among the
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multidimensional tests and compared with 1D results (see
Section 3). Nevertheless, during the collapse phase and in the
first tens of milliseconds after core bounce, the profiles and the
shock shape are expected to behave similarly to spherically
symmetric models (e.g., Marek & Janka 2009; Miiller
et al. 2012b; Bruenn et al. 2013), even if deviations due to
PNS and prompt convection can appear (e.g., Buras
et al. 2006a; Miiller et al. 2012b). At later times, multi-
dimensional effects change significantly the dynamics of the
system. Several multidimensional CCSN results, employing
more sophisticated neutrino treatments, have been published. In
the case of axisymmetric models of a 15 M, model, see, e.g.,
Buras et al. (2006b), Scheck et al. (2006), Miiller et al. (2012a),
Bruenn et al. (2013, 2016), Suwa et al. (2013), Zhang et al.
(2013), Miiller & Janka (2014), Dolence et al. (2015), and Pan
et al. (2015). For 3D SPH models, see, e.g., Fryer & Warren
(2004). They provide reference cases to check the qualitative
behavior of our simulations and of the neutrino quantities
within a few hundreds of milliseconds after core bounce.
However, our focus is to demonstrate the versatility and
portability of the ASL algorithm, along with the validation of
the results it provides with 1D detailed simulations, but not to
compare to other hydrodynamical codes and among different
dimensions.

4.1. 2D Grid-CCSN Model

The equations of hydrodynamics in spherical coordinates
and azimuthal symmetry are evolved with a directionally
unsplit finite-volume scheme. The scheme is of Godunov type
using a second-order-in-space well-balanced reconstruction
(Képpeli & Mishra 2014, 2016) with characteristic limiting,
an HLLC approximate Riemann solver (Toro 1997), and a
second-order-in-time strong stability-preserving Runge—Kutta
(SSP-RK2) (Gottlieb et al. 2001) time integration. Spurious
solutions near strong (grid-aligned) shocks are avoided by the
use of the H-correction method by Sanders et al. (1998).
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Newtonian self-gravity is approximated by a spatially
second-order-accurate discretization of the monopole term
(i.e., by spherically averaging the mass density and integrating
the resulting one-dimensional profile) and a spatially second-
order five-point discretization of the Poisson equation for the
deviation from the monopole term.

The ASL scheme is coupled to the hydrodynamics by a “ray-
by-ray” approach: apart from the trapped neutrino components
(Y,, Z,), which we evolve according to the corresponding
multidimensional advection equations (see Equations (7) and
(8)), the ASL scheme is applied as described in Section 2 along
each radial “ray.” However, in the present implementation we
have neglected the neutrino stress in the momentum equation.

The computational domain includes the innermost 5000 km
and the full [0, 7] polar realm. The radial direction is
discretized by N, = 512 logarithmically spaced -cells:
Ar,=Ard, i=1, .., N, a—1=5659 x 1073, and
Ar; = 1km. The polar direction is uniformly discretized by
Ny = 256 cells. The progenitor is then mapped (without adding
any rotation and perturbations) onto the computational domain
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and evolved numerically through collapse, bounce, and until
300 ms post-bounce.

The collapse proceeds without any noticeable deviations
from spherical symmetry until it is halted by parts of the inner
core bouncing at fyounce = 222 ms after the start of the
simulation owing to the stiffening of the EOS. At that time the
central density reaches ppounce = 3.29 X 1014g cm >, The
enclosed mass at the shock formation radius is Mey,
bounce = 0.66 M, which is slightly lower than in the one-
dimensional reference simulation. In Figure 7, we present a
detailed comparison of the profiles from the axisymmetric
simulation with the one-dimensional reference. At bounce (left
panels), we observe that all the quantities are in good
agreement. The 2D simulation has a slightly more compact
PNS, which we attribute to the fact that we have neglected the
neutrino stress. At 30 ms after bounce (middle panels) the
agreement is still very good up to the negative entropy gradient,
which was washed out by prompt convection. At later times,
the two-dimensional simulation deviates from the one-dimen-
sional reference owing to multidimensional -effects, e.g.,
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Figure 9. Snapshots of the post-bounce evolution of the 2D CCSN model at different times (27, 120, 200, and 300 ms). In each snapshot the data are mirrored along
the symmetry axis, displaying on the left the net neutrino heating rate and on the right the specific entropy.

convection and shock instabilities. This is illustrated in the
right panels of Figure 7, where we compare the profiles at
120 ms after bounce.

In the left panel of Figure 8, we show the minimum, average,
and maximum shock and PNS radii. In the same panel, the
spherically averaged net heating rate by electron flavor
neutrinos is also shown. The shock and PNS radii evolution
can be separated into three distinct phases. The first lasts from
bounce up to ~30ms after bounce. This phase features the
initial very strong acceleration of the shock wave. When the
shock passes the neutrino spheres, the neutronization burst
induces strong cooling as indicated by the negative heating
rate. During this phase, the evolution is almost perfectly
spherically symmetric. The second phase starts at ~30 ms after
bounce and lasts up to /170 ms. During this phase, the
unstable entropy profile left behind by the shock wave triggers
strong convective motions, i.e., the so-called prompt convec-
tion. This induces anisotropic shock movements, which are
visible in the minimum and maximum shock radii. The effect is
also visible in the minimum and maximum PNS radii, but to a
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much lesser extent. However, the anisotropic shock movements
remain mild, i.e., the difference between minimum and
maximum shock radius does not exceed ~40km. In the
top left panel of Figure 9, we show a snapshot at 27 ms post-
bounce when prompt convection just sets in. During this
second phase, one observes the appearance and progressive
growth of regions below the shock with net neutrino heating. In
the top right panel we show a snapshot at 120 ms post-bounce.
It can be seen that there is an extended heating region below
the shock. At this time, convective motions due to neutrino
energy deposition start to set in. The third and last phase starts
at ~170 ms and lasts until we stopped the simulation. During
this phase, the energy deposited by the neutrinos triggers strong
convective motions. Plumes rise by buoyancy against the
continuous accretion flow. This in turn triggers increasingly
strong shock movements, and it is illustrated in the two
bottom panels of Figure 9.

In the middle and right panels of Figure 8, we show the
neutrino luminosities and rms energies from the axisymmetric
simulation, respectively. Both quantities agree well with the
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one-dimensional reference. Moreover, the multidimensional
one shows some oscillations in all the quantities after ~50 ms
post-bounce. These oscillations become stronger after
~150 ms, especially in the luminosities. We attribute these
differences again to multidimensional effects.

4.2. 3D SPH-CCSN Models

The calculation is performed using our SPH code, SPHYNX,
which solves the Euler equations derived from a variational
principle (see, e.g., Rosswog 2009, and references therein).
SPHYNX uses high-order interpolating kernels, namely, the
sinc kernels with n = 5 (Cabezén et al. 2008; Garcia-Senz
et al. 2014), and an improved gradient evaluation based on the
integral approach IAD, (Cabezén et al. 2012; Garcia-Senz et al.
2012; Rosswog 2015a). 3D gravity is calculated with a
hierarchical tree structure created using the Barnes—Hut
algorithm (Hernquist & Katz 1989), and the neutrino treatment
is handled with a 3D version of the ASL treatment presented in
Section 2.

4.2.1. SPH + ASL Coupling

To evolve the system with SPHYNX, we solve the
hydrodynamical equations in Lagrangian form, including a
gravitational and a neutrino source term. In the momentum
equation, we add the total neutrino pressure, Equation (25), to
the plasma pressure. Therefore, the stress provided by the
trapped neutrinos is directly taken into account. The evolution
of each Z, is provided by an energy equation (similar to the
equation for the plasma internal energy e), which consistently
uses the neutrino pressure P,.

From the position of the SPH particles and the EOS, we
compute the local density, gradient of pressure, gravitational
potential, and internal energy. Moreover, each particle carries
information regarding the electron fraction, Y,, and the neutrino
trapped components, (Y,, Z,). Similarly to the method
presented in Section 2, the ASL scheme ultimately provides
the rates of change for these quantities ., Y,, Z,) and for the
internal energy (é,).

The abundances of electrons and neutrinos are evolved
explicitly, while the implementation of the energy equation for
Z, is described in Appendix C.

Most of the quantities that are needed to compute the
previous terms are local, so the implementation of the ASL
scheme in the SPH structure is straightforward and directly
done in 3D with very few modifications of the hydrodynamical
part of the code. The only nonlocal quantities are the spectral
optical depths, 7, (x, E) and 7, ¢,(x, E), and the spectral
neutrino densities, n, (E, x), used in the calculation of the
nonlocal absorption rates, h, (E, x) (Equation (35)).

To compute the optical depths, we use the expected quasi-
spherical symmetry of a collapsing stellar core by defining a
one-dimensional radial grid. On this grid we calculate the
spherical averages of the neutrino spectral mean free paths
(which are computed locally in 3D, at each SPH particle
position). Then, we integrate 1/A(R, E) radially, from the
external edge up to each radial position, to obtain the radial
optical depth. Finally, the spherically symmetric optical depth
is mapped back on the 3D SPH particle distribution,
interpolating with respect to the distance from the center of
mass. Using the 3D density as the interpolation variable led to
no significant differences. Regarding the neutrino densities, we
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also consider them to be spherically symmetric, and to evaluate
them, we calculate the spectral number luminosity via
performing a radial integration over all the particles sorted
from lower to higher radius.

4.2.2. Setup and Results

We set up a CCSN SPH simulation with 200,000 particles,
using Newtonian gravity. We map the spherically symmetric
progenitor model into a 3D quasi-random Sobol distribution of
equal-mass particles. We simulate ~1.8 M, of mass and up to
3800 km in radius. Next, we perform an angular relaxation of
the system by allowing the particles to move, but with fixed
radius. In this way we erase artificial gradients of pressure
formed by random clumps of particles, and we obtain clean
radial profiles that adjust to the initial 1D model.

The dynamics of the collapse and of the early post-bounce
phase are in very good agreement with the previous results. The
electron fraction in the center of the PNS decreases until it
reaches Y, ~ 0.31. When the central density becomes
Prounce = 33 - 10 gem ™, the core bounces and a shock
wave forms at the surface of the newly born PNS. More
specifically, the shock is formed at /214 km, which corresponds
to an enclosed mass of Meycbounce = 0.76 M, of unshocked
material.

In Figure 10, we present radial profiles of radial velocity (left
column), electron fraction (central column), and entropy (right
column), at four different times from core bounce up to 100 ms.
Each point in the panels represents one of the SPH particles.
From the low dispersion of the profiles at bounce, we can see
that the collapse preserves spherical symmetry, as expected.
We notice the position of the shock wave from the entropy
spike and from the corresponding starting deleptonization in
the Y, profile. As the shock proceeds, multidimensional effects
and inhomogeneities appear and grow inside the shocked
material. This effect can be seen from the spread of particles in
the profiles of all represented quantities in the second row.
After 50 ms, the initial prompt convection has been quenched
and the evolution proceeds more steadily. Later on, convection
slowly settles again in the shocked material, but with a longer
timescale, which can be seen in the profiles of radial velocity
and Y, as an increased scatter of the particles (last row). The
shape and the evolution of multidimensional instabilities can be
better seen in Figure 11. In this series of snapshots, we project
onto the xy plane all the particles included in a thin layer of
20 km around the equatorial plane (Z = 0), for the same time
steps used in Figure 10. The size of the box is 200 km wide.
Material processed by the shock is slowed down, deleptonized,
and accreted onto the hot PNS. At 17ms we show the
development of a transitory violent convection that comes right
after the shock launch, which in this snapshot has reached the
outer edge of the plot, at R ~ 100 km. At 50 ms the convection
modes have been quenched and the PNS accretes with a steady
flow. This leads to the more evolved image at 100 ms, where
accretion occurs smoothly on a slowly compactifying PNS. As
time proceeds, the accretion and compression of matter
increase the temperature above the surface where the shock
was launched. The low numerical diffusion of SPH helps
keep the heat located in this region. The strong deleptonization
via neutrino emission can be seen at work in all snapshots, even
at 17 ms, where evident 3D features occur, showing that the
ASL scheme is working correctly in multidimensional
simulations.
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Figure 10. Snapshots of the radial profiles of radial velocity (left), ¥, (middle), and entropy (right) at different times (bounce, 17, 50, and 100 ms, from top to bottom)
from our SPH model of a 15 M., CCSN. Each point represents one SPH particle, and only 1 out of every 10 is plotted.

In the left panel of Figure 12, we show the evolution of
the PNS radius (black line) and of the shock radius (red line)
as a function of time after bounce. The PNS shows a stable
evolution with a slowly decreasing radius, corresponding to
a more compactified configuration due to accretion and
cooling. The shock position is determined within the local
resolution as the radius at which the artificial viscosity (AV)
peaks. The AV is specifically designed to dissipate energy
only when shocks are present. We saw in all of our simulations
that, once the shock is formed and launched, the AV is
approximately two orders of magnitude higher at the shock

position than in the surrounding matter. The overall evolution
of the shock is similar to the spherical results, with a fast
expansion reaching 100 km within the first Sms, and after
some oscillations, triggered by 3D convection, it settles
around 150 km. In the same figure, we also present the time
evolution of the local cooling and heating rates color-coded.
The thin white region between the cooling (blue) and
the heating (red) regions is the location of the gain radius,
which settles around 100km at 50ms after bounce and
slowly recedes, while the neutrino heating sets in behind the
shock.
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Figure 11. Snapshots of the post-bounce evolution at different times (0.6, 17, 50, and 100 ms) from our SPH model of a 15 M., CCSN. We show here only a thin slice
of the 3D domain on the xy plane, and each box is 200 km wide, i.e., —100 km < x, y < 100 km. Each arrow represents one SPH particle and shows its projected
velocity. Temperature, density, Y,, and entropy are color-coded in each snapshot.
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Figure 12. Same as in Figure 8, but for our 3D SPH simulation of a 15 M., CCSN.
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In the middle and right panels of Figure 12, we show the
temporal evolution of the neutrino luminosities and rms
energies, respectively, calculated during our SPH simulation
with the ASL scheme. The obtained results agree well with the
1D simulation performed with the ASL scheme. In particular,
in the luminosity evolutions we distinguish all relevant features
expected in the collapse, burst, and accretion phases. Also, the
rms energies have an evolution that corresponds very well with
the results obtained with the reference 1D model, and their
hierarchy is preserved through the simulation. Another feature
that looks interesting is the oscillation in the luminosities
within the first milliseconds after neutrino burst: they appear in
all three curves, and they are related to violent convection
inside the PNS during the very early post-bounce phase.
Prompt, violent convection inside the PNS was also observed,
for example, by Herant et al. (1994) in 2D SPH simulations,
and more recently by Dolence et al. (2015) and Pan et al.
(2015). This feature deserves a deeper investigation (see, e.g.,
the analysis performed by Bruenn et al. 2004; Buras et al.
2006a).

5. CONCLUSIONS

We have presented the ASL scheme. This provides an
approximate treatment for the neutrino transport problem in
astrophysical contexts, like the core collapse of a massive star
or the merger of compact objects. The goal of the scheme is to
provide an efficient and physically motivated treatment that
contains all the major aspects of neutrino emission and
absorption, with a level of accuracy lower than other more
sophisticated (multidimensional) neutrino transports (like, for
example, M1 schemes, MGFLD schemes, or IDSA), but higher
than the classical gray leakage schemes. It allows the
application to different astrophysical contexts, codes, and
geometrical dimensions, with a reduced computational cost.
Owing to its effective nature, details of the neutrino transport
cannot always be reproduced. Nevertheless, it is optimal (1) to
study problems where a spectral neutrino treatment is required,
but the details of the neutrino behavior are of secondary
importance; (2) to perform extensive parametric or high-
resolution studies, which are still computationally too costly in
multidimensional simulations with detailed neutrino transports;
(3) to accomplish preparatory and exploratory tests; (4) during
the developing and testing of a hydrodynamic code, when the
usage of an easily verifiable but still reliable neutrino treatment
could be useful; and (5) to study complex and very dynamical
systems in which, due to the lack of symmetries, other more
sophisticated neutrino treatments are still not available.

Owing to its approximate nature, it is not well suited to
investigate aspects where the details of the neutrino transport
are crucial (e.g., Lentz et al. 2012a, 2012b; Miiller et al. 2012b;
Melson et al. 2015). Moreover, since it avoids the solution of
the transport problem in the diffusive regime by estimates of
the diffusion timescales, it is not designed to study the detailed
cooling of compact objects, especially over long timescales
(Hiidepohl et al. 2010; Fischer et al. 2012; Roberts et al. 2012;
Suwa 2014).

We have developed and tested the scheme against reference
models provided by numerical solutions of the Boltzmann
equation. We have explored three progenitors with 12, 15, and
40 M, ZAMS masses. The 15M,. case has been more
extensively studied to calibrate the free parameters of the
scheme. We have also investigated the impact of the variation
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of their values on the obtained results. Usually, the changes we
have tested produced differences qualitatively in agreement
with what we expected. Large quantitative discrepancies are
observed when the parameter values differ significantly from
the calibrated ones. The 12 and 40 M, cases have been used to
show the robustness of the calibrated parameters with respect to
the progenitor model.

Overall, the radial profiles of several hydrodynamical and
thermodynamical quantities obtained by the ASL scheme show
a good agreement with the reference solutions during the whole
simulated period (from the collapse to the neutrino heating
phase). Small differences are present during the collapse phase
and in the prompt shock expansion, while in the neutrino
heating phase, where a detailed treatment would be required to
model with accuracy both the neutrino emission and absorp-
tion, differences tend to grow. Usually, the shock position is
well reproduced, with typical differences not larger than
10-15km even at later times (larger discrepancies have been
observed only for the 12 M, case). The profiles of electron
fraction and entropy are the ones that present the most notable
differences, even though some differences can be interpreted as
radial or temporal shifts. We have also compared the temporal
evolution of the neutrino luminosities and mean energies, for
all neutrino flavors. Again, the most relevant features are
present also in the approximate results, especially for z,.
Quantitative differences are nevertheless visible, especially in
the rapid growth of 7, and v, ; in the early post-bounce phase.
The behaviors and the values we have obtained for the rms
energies of v, and 7, are consistent with the reference solution.
This is true especially in the neutrino heating phase, where
correctly describing the mean neutrino energies is crucial to
model the neutrino absorption in the optically thin region.

We have also shown that the scheme can be applied, without
conceptual changes, to different types of codes and to different
spatial dimensions. In this respect, we have implemented and
tested it in multidimensional core-collapse models using an
axisymmetric Eulerian grid code and a 3D Lagrangian
SPH code. These models agree with our spherically symmetric
solution during the collapse and in the early post-bounce phase.
Multidimensional features appear in the post-bounce phase,
and they agree (at least, at a qualitative level) with published
results obtained in multidimensional models employing more
detailed neutrino transport. In fact, the ASL treatment
has already been applied to multidimensional CCSN models
(Winteler et al. 2012; Perego et al. 2015) and to the study of the
aftermath of neutron star mergers (Perego et al. 2014b).

The scheme presents a modular structure that allows the
inclusion of new neutrino reactions and opacities, as well as the
possibility to include more sophisticated treatments (for
example, for the reconstruction of the trapped distribution
functions or for the neutrino thermalization process), without
changing its basic features. The inclusion of additional neutrino
reactions, like NES, or of some relevant relativistic and
Doppler effects (e.g., Lentz et al. 2012b, and references therein)
in the ASL scheme, will be carried out in the nearby future.

The authors thank A. Arcones, E. Gafton, M. Liebendorfer,
S. Rosswog, and F.-K. Thielemann for useful discussions and
comments about this work. A.P. is supported by the Helmholtz-
University Investigator grant No. VH-NG-825. He also thanks
the University of Basel and ETH Ziirich for their hospitality. R.
C. acknowledges the support from the HP2C Supernova



THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 223:22 (22pp), 2016 April

project, the European Research Council (FP7) under the ERC
Advanced Grant Agreement N 321263-FISH, and the DIA-
PHANE project within the Platform for Advanced Scientific
Computing (PASC). R.C. and R.K. thank TU Darmstadt for its
hospitality. A.P., R.C., and R.K. acknowledge the use of
computational resources provided by the Swiss SuperComput-
ing Center (CSCS), under the allocation grant s414. The
authors thank also M. Liebendorfer for the access to
BOLTZTRAN runs and acknowledge the support of the sci-
CORE (http://scicore.unibas.ch/) scientific computing core
facility at the University of Basel, where some of the
calculations were performed. R.K. acknowledges the comput-
ing resources provided by the Brutus and Euler clusters
at ETHZ.

APPENDIX A
IMPLEMENTATION OF THE PAIR PROCESSES IN THE
ASL SCHEME

In this appendix, we present our implementation of the
neutrino pair processes, Equations (45) and (46), in the context
of the ASL scheme. Our goal is the computation of the
associated emissivities, (j,)pair» and absorptivities, (X, )pair-
These quantities are necessary to compute the local mean free
paths, Equations (1) and (2), the production and diffusion
timescales, Equations (21) and (22), and the production rates,
Equation (30). We start from the expression of the collision
integral for pair processes in the Boltzmann equation for the
neutrino species v (see, e.g., Bruenn 1985; Hannestad & Raffelt
1998):

; o 3%.
o G leonpse = (1 =, (k) ———— %)3 [ ax
1 - fp (kl'/))S}?:lr (kz/, kV)

ks _
— f, (k) o Wf &%, f,

x (k) Spr (ki k) (49)

where 7 denotes the antiparticle of v, k, and k; the neutrino

momenta, f, and f, the neutrino distribution functions, and S}y,

and Sl;‘:}r the kernel of the pair reactions.

To compute the local emissivities, we consider the first term
in the integral of Equation (49) and perform the integral over
the  phase space, neglecting Pauli blocking factors for  in the
final state, since the production rate is mainly relevant in the
optically thin region:

1
cQn/c)? f

For the absorptivities, we consider the right-hand term of the
integral in Equation (49), and we integrate it over the phase
space of 7,

&k ST (k,, k).

pair

jem,pair (EV) = (50)

Navguir B = ——— [ &% f, (ko) Siic s o), (S1)

c@m 56)3
assuming that f, is described by Fermi-Dirac distribution
functions in weak and thermal equilibrium. Within this
assumption, we recover the correct limit in the diffusive
regime, where the calculations of the mean free path and of the
optical depth are more relevant. In the optically thin limit,
where the actual distribution functions are expected to differ
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significantly from Fermi—Dirac distributions, our approach is
expected to overestimate the absorptivity due to pair processes.
This would lead to a smaller Ap,;,. However, we have tested
that, for the corresponding relevant thermodynamical condi-
tions, Ap,ir is still significantly larger than the mean free path
owing to absorption or scattering on nucleons. Moreover, Ap,ir
is always much larger than the linear dimension of the system.
Thus, our overestimated absorptivities in optically thin
conditions do not affect critically the location of the neutrino
surfaces.

The reaction kernels, S;elﬁr and S}, are calculated following
Hannestad & Raffelt (1998) for the bremsstrahlung process and
Bruenn (1985) and Mezzacappa & Messer (1999) for the pair
annihilation process. The calculation of the integrals (50) and
(51) during runtime would be by far the most expensive part of
the rate computation. Thus, we decide to tabulate these
emission and absorption rates and to interpolate them during
the program execution. We compute them as a function of the
matter density, electron fraction, and temperature. For our
tables we consider a 3D grid, where we uniformly sample (i)
the logarithm of the matter density, with 104 points between
10%" and 10">* g cm™; (ii) the electron fraction, with 72 points
between 0.0 and 0.56; (iii) the logarithm of the matter
temperature, with 31 points between 0.1 and 100 MeV. We
perform the integral over the neutrino energy by splitting the
[0, +00) integration interval into two segments, [0, E.f) and
[Eret, +00), with E,s = 3T/2. For the second, improper
integral, we perform the change of variable E — 1/E. Then,
we integrate each of the two integrals using the Gauss—
Legendre quadrature with 16 points. The interpolation at
runtime is accomplished by a trilinear interpolation method.

APPENDIX B
PERFORMANCE COMPARISON

To analyze the performance differences between Agile-ASL
and Agile-BOLTZTRAN, we consider the reference runs
presented in Section 3 for the 15 M, progenitor (Woosley
et al. 2002), from the onset of the collapse up to 300 ms after
core bounce. Agile solves the hydrodynamics equation in an
implicit way. In principle, this allows the usage of Courant
numbers larger than 1 in the determination of the physical time
step. This is the case for Agile-BOLTZTRAN since BOLTZ-
TRAN is also implemented in an implicit way. On the other
hand, the ASL scheme mimics a diffusion process and is
implemented in an explicit way. Therefore, when we combine
Agile with the ASL scheme, we limit the time step by requiring
a Courant number lower than 0.75 to ensure a tight enough
coupling. Moreover, if necessary, we further adjust the time
step such that the maximum relative variation in Y, induced by
the neutrino source terms is always below 5 x 10~ per step.
An increase of the tolerance up to 10~ per step produces no
noticeable differences in the results.

We additionally extend the comparison to IDSA, which is a
very efficient, approximated v, /D, transport scheme. For this
comparison we use the publicly available version of the code
for spherically symmetric CCSN models,” which is also
coupled with Agile and includes the cooling effect of v, ; and
U,r via a gray leakage scheme. We run it for the same
progenitor and code setup. To compare directly with the ASL

7 https://physik.unibas.ch/~liebend /download/index.html
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Figure 13. Physical time steps (left panel) and wall-clock time per single neutrino step (right panel) for the reference 15 M runs, computed using Agile-BOLTZTRAN
with 6 angular bins (blue dot-dashed line) and Agile-ASL (black solid line). For comparison purposes, we consider also an Agile-BOLTZTRAN run with 2 angular
bins (magenta, thin long-dashed lines) and a Agile-IDSA run (red, thick short-dashed lines). For the latter, the diffusion equation in the neutrino step is solved
explicitly. For all runs, the maximum allowed time step is 10~*s. The spikes visible close to bounce in the physical time step of the two Agile-BOLTZTRAN runs
represent a few oscillations between 10~7 and 10" s, lasting only a few thousands of iterations.

scheme, the solution of the diffusion equation inside IDSA is
performed in an explicit way.

We perform all runs on a single processor. In Figure 13, we
present the physical time step used by the three different codes
(left panel) and the wall-clock time per step spent by each code
to perform one neutrino step (right panel). Since the
performances of Agile-BOLTZTRAN depend significantly on
the accuracy of the solution, we include in the comparison also
a run where we have decreased the number of bins in the
neutrino propagation angle from 6 to 2. From the time step
profiles, we notice that the implicit character of Agile-
BOLTZTRAN allows larger time steps (up to a factor of
10-50) both in the collapse and in the post-bounce phase,
compared with Agile-ASL and the explicit version of Agile-
IDSA. However, in the right panel we clearly see that the
solution of the Bolztmann equation requires much larger wall-
clock times per step, of the order of 10°~10* times larger than
those of Agile-ASL for 6 angular bins, and still 10°~10° times
larger for 2 angular bins. Moreover, despite the fact that IDSA
models two independent neutrino species while the ASL
scheme three species, we observe that the former requires
roughly double wall-clock time to perform one neutrino step
compared with the latter.

APPENDIX C
CALCULATION OF THE ENERGY DENSITY OF
NEUTRINOS IN SPHYNX

In this appendix, we present our implementation of the
equation that evolves Z, in the SPH implementation of the ASL
scheme. In the following, all SPH equations use IAD, for
calculating derivatives (Cabezoén et al. 2012; Garcia-Senz et al.
2012; Rosswog 2015a). To make a conversion to the traditional
SPH prescription, simply substitute all A; by V;W.

The trapped neutrino energy Z, is evolved according to

dz,

dt

|7

P

v+ 7, (52)

From Equation (52) it is clear that the variation of Z,, consists of
two contributions: The first term is due to the PdV work and
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can be calculated using an SPH equation similar to the
SPH (baryonic) energy equation, which takes into account the
neutrino pressure (instead of the baryonic pressure) and the
density changes of the fluid. The second one is the source term
provided by the ASL scheme and takes into account the rate of
change of energy of the trapped neutrinos due to production
and diffusion. Overall, evolving independent equations for Z,
is equivalent to splitting the equation for the total internal
energy u into two components: baryonic and neutrinos. The
baryonic part is accounted for with a regular SPH equation for
specific internal energy e, while the neutrino component is
calculated with

()

where i is the particle index, v is the velocity vector, and €); is
the grad-h term. Then, Z" ! could be calculated using the same
integration method used for the specific internal energy.
Although this scheme is quite straightforward, in order to
calculate the new Z,, we evaluate the rate of change Z,,, which
in fact depends on Z, itself via P,, (Equation (25)). Therefore,
we opted for developing a semi-implicit scheme that preserves
the consistency between both magnitudes at a very low
computational cost. Noting that our objective is

dz,
dt

B/ | :
N mpi = ) - Ay + Zo,
iPi

53
0 (33)

Pl = %pz;‘“, (54)

we can now substitute Equation (54) into Equation (53) to
explicitly show its dependence on Z"!. Taking into account
all sources, we can write

n+1
v,

Zn+1

v,i

=zl 20 A L2 S e~ - A,
Qi/)i j

(55)

Regrouping and isolating Zy’fi“ on the left-hand side, we
obtain the final version for the evolution of Z,; for each
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neutrino species:
n 71
Zu,i + Zu,i At
> M0 = v) - AyAt

Equation (56) shows a very stable evolution for Z, in all the
simulations, and it provides consistent values for the neutrino
pressure and the neutrino energy by construction. After its
evaluation, we use the new Z" ! to calculate, via Equation (54),
the neutrino pressure P, that is afterward included in the
momentum equation via adding it to the baryonic pressure.

nfl _

Vi T 11
1 — ——

3 Qip;

(56)
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