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ABSTRACT

We refine our previously introduced parameterized model for explosive carbon–oxygen fusion during
thermonuclear Type Ia supernovae (SNe Ia) by adding corrections to post-processing of recorded Lagrangian
fluid-element histories to obtain more accurate isotopic yields. Deflagration and detonation products are verified for
propagation in a medium of uniform density. A new method is introduced for reconstructing the temperature–
density history within the artificially thick model deflagration front. We obtain better than 5% consistency between
the electron capture computed by the burning model and yields from post-processing. For detonations, we compare
to a benchmark calculation of the structure of driven steady-state planar detonations performed with a large nuclear
reaction network and error-controlled integration. We verify that, for steady-state planar detonations down to a
density of 5 × 106 g cm−3, our post-processing matches the major abundances in the benchmark solution typically
to better than 10% for times greater than 0.01 s after the passage of the shock front. As a test case to demonstrate
the method, presented here with post-processing for the first time, we perform a two-dimensional simulation of a
SN Ia in the scenario of a Chandrasekhar-mass deflagration–detonation transition (DDT). We find that
reconstruction of deflagration tracks leads to slightly more complete silicon burning than without
reconstruction. The resulting abundance structure of the ejecta is consistent with inferences from spectroscopic
studies of observed SNe Ia. We confirm the absence of a central region of stable Fe-group material for the multi-
dimensional DDT scenario. Detailed isotopic yields are tabulated and change only modestly when using
deflagration reconstruction.
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1. INTRODUCTION

Type Ia supernovae (SNe Ia) are at once a pillar of modern
cosmology and one of the persistent puzzles of stellar physics.
These bright stellar transients are characterized by strong P
Cygni features in silicon and a lack of hydrogen or helium in
their spectra. It has generally been accepted that these events
follow from the thermonuclear incineration of a white dwarf
(WD) star, producing between 0.3 and 0.9 Me of radioactive
56Ni, the decay of which powers the light curve (see
Filippenko 1997; Hillebrandt & Niemeyer 2000; Röpke 2006;
Calder et al. 2013, and references therein). The light curves of
SNe Ia have the property that the brightness of an event is
correlated with its duration (Phillips 1993). This relation is the
basis for the calibration of light curves that allows use of these
events as distance indicators for cosmological studies (see
Conley et al. 2011 for a current example). However, their exact
stellar origin remains unclear, even in the face of extensive
observational and theoretical study. Recent early-time observa-
tions of the nearby SN Ia 2011fe are challenging for a variety of
common progenitor scenarios, both single and double degen-
erate (Li et al. 2011; Nugent et al. 2011; Bloom et al. 2012;
Chomiuk et al. 2012). Fitting of a wide variety of light curves
with a simplified ejecta model appears to require ejecta masses
both at and below the Chandrasekhar mass (Scalzo et al. 2014),
indicating that a variety of progenitors may be present.

In thermonuclear SNe, explosive nuclear combustion of a
degenerate carbon–oxygen mixture proceeds in one or both of

the deflagration and detonation combustion modes. In a
deflagration, or flame, the reaction front propagates by thermal
conduction (Timmes & Woosley 1992; Chamulak et al. 2007)
and is therefore subsonic. In a detonation, the reaction front
propagates via a shock that moves supersonically with respect
to the fuel (Khokhlov 1989; Sharpe 1999). These two
combustion modes have been used to construct a variety of
possible explosion scenarios, either in combination, as in the
deflagration–detonation transition (DDT) scenario (Khokh-
lov 1991), an example of which is presented in this work, or
singly, as in the double-detonation model (Livne &
Arnett 1995; Fink et al. 2010) or the pure-deflagration model
(Fink et al. 2014).
A major challenge in simulations of SNe Ia is capturing these

burning processes with confidence and accuracy. The carbon–
oxygen reaction fronts transition from being unresolved by
many orders of magnitude, to being partially resolved, to
finally being larger than the time and length scales of the star.
Figure 1 shows time and length scales for detonations (red) and
deflagrations (blue, Chamulak et al. 2007) at various densities.
For the stellar scales we take the initial WD radius,
R = 2 × 108 cm, and the dynamical time p »R GM2 1 s3

where M is the WD mass. A representative simulation
resolution of 4 km is shown, along with the corresponding
timestep of approximately the sound crossing time of a cell.
This resolution was found by Townsley et al. (2009) to be
sufficient to give convergence in 1D with the thickened flame
reaction front. As a result our multi-dimensional (multi-D)
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simulations are commonly performed between 4 and 1 km to
study resolution dependence in a regime in which convergence
is demonstrated in 1D. Several different stages within a steady-
state planar detonation front are indicated, with distances
measured from the shock that initiates the reactions and
propagates the front. The shortest length scale shown (dashed
line) is that when the 28Si abundance peaks in time, which also
corresponds to the completion of 16O consumption. The next
length scale (dotted–dashed line) is the size of the detonation
driving region, which is the distance to the sonic point. Finally
the solid line shows the distance to completion of burning,
reaching the Fe-group element (IGE)-dominated state of
nuclear statistical equilibrium (NSE).

The total yields of the explosion are determined by how and
when the reaction fronts stop propagating as well as by what
portion of the burning occurs within the reaction front as
opposed to what occurs after the reaction front itself has
passed. The latter can then be influenced by the expansion of
the star. The fairly thin range of densities, 1.5 > ρ7 > 0.7, ρ7
being density in units of 107 g cm−3, in which the detonation
driving region transitions from being unresolved to being larger

than the radius of the star is a manifestation of the difficulty of
capturing the reaction dynamics appropriately. As the driving
time and length scales get large, the detonation may not be able
to attain the planar steady-state structure. Curvature of the front
on scales comparable to the driving length, which will occur
due to the structure of the star, reduces the detonation speed
and the completeness of the burning (Sharpe 2001; Dunkley
et al. 2013). The long reaction times also mean that an ignited
detonation may not reach a steady state before the star expands
(Townsley et al. 2012).
Many recent results on multi-D simulations of SNe Ia have

computed nucleosynthetic yields by post-processing the density
and temperature recorded by a Lagrangian fluid history during
the simulation (e.g., Travaglio et al. 2004). A large nuclear
reaction network is used to integrate a set of species subject to
this ρ(t), T(t) history. The burning model used in the simulation
is therefore critical, as it determines these histories. Recent
multi-D work (Maeda et al. 2010; Seitenzahl et al. 2010, 2013;
Ciaraldi-Schoolmann et al. 2013) has used the method
described in the appendix of Fink et al. (2010) to set the
energetics of the burning model used in the hydrodynamics. In
this technique, the results of the post-processing are used to
revise the output of the model of burning and the process is
iterated until the yields no longer change.
In this work we pursue a different route toward construction

of our burning model and post-processing methods, which,
instead of an iterative bootstrap, is based on comparison to
separate resolved calculations of the deflagration and detona-
tion modes. The burning model and post-processing method are
then constructed with the goal that the post-processed results
reproduce the results of resolved calculations of the steady-state
structure of the reaction front even though the actual reaction
front is unresolved. The resolved calculations to which we want
to compare are standard methods (e.g., Fickett & Davis 1979)
for the computation of reaction front structure that can be
performed with fairly complete nuclear reaction networks and
using error-controlled methods of time integration to eliminate
most computational uncertainty. Here we succeed in matching
steady-state yields for detonations at high densities and in
planar geometry. Further development of benchmarks and
methods for lower densities and other geometries in future
work will permit confident higher-accuracy yields for an even
larger fraction of the ejecta.
The burning model presented here is the successor to that

initially presented by Calder et al. (2007) and Townsley et al.
(2007), with tabulations presented by Seitenzahl et al. (2009b),
which has been used in a number of studies using large multi-D
simulations of SNe Ia (Jordan et al. 2008, 2012b, 2012a;
Meakin et al. 2009; Kim et al. 2013; Long et al. 2014). The
capability to treat neutron-enriched fuel was added by
Townsley et al. (2009) in order to study how neutron
enrichment in the progenitor might influence the explosion.
The model presented here includes a change in dynamics to
better match iron-group production in detonations and extends
the treatment of initial composition to spatially non-uniform
abundances, allowing more realistic WD progenitors. This has
been used in work exploring systematic effects of progenitor
WD composition and central density in the DDT scenario
(Jackson et al. 2010; Krueger et al. 2010, 2012), as well as a
study of the turbulence–flame interaction during the deflagra-
tion phase (Jackson et al. 2014), and consideration of hybrid C–

Figure 1. Time and length scales of burning processes as a function of fuel
density for a mixture of 12C:16O:22Ne in the proportion 50:48:2 compared to
typical simulation resolution (4 km, solid black lines) and scales of the star
(dashed black lines). Stellar scales are taken to be the radius of the initial star
and the dynamical time. The top panel shows the size scale of various features
of the reaction front while the bottom shows the self-crossing time of these
features at the propagation speed of the reaction front. The behavior of the 12C
flame is shown by the solid blue curve that extends to high density (Chamulak
et al. 2007). Scales for planar steady-state detonations are shown in red. We
show the distance from the shock to three points in the detonation structure: the
peak of 28Si abundance (dashed), which is also the end of 16O consumption; the
sonic point (dotted–dashed), also called the pathological point, which is also
the size of the detonation driving region; and the attainment of the fully burned
NSE state (solid), which is the completion of consumption of 28Si. The
detonation driving region transitions from being just resolved to being larger
than the radius of the star between densities of about 1.5 × 107 g cm−3 and
7 × 106 g cm−3.
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O–Ne progenitor WDs (Willcox et al. 2016). Those studies,
however, did not proceed to nucleosynthetic post-processing,
which is discussed in detail here for the first time for our
burning model. The first work utilizing the post-processing for
astrophysical study is an investigation of spectral indicators of
progenitor metallicity (Miles et al. 2015).

We present below the structure of our burning model and
post-processing methods, along with particular assumptions
currently in use in our simulations of SNe Ia, as well as tests
performed so far that compare with calculations of steady-state
deflagrations and detonations. Our burning model is based on
tabulation of physical quantities and fits of parameters based on
resolved steady-state calculations. To improve accuracy in
post-processing, we explore supplementing the Lagrangian ρ–T
history recorded during the hydrodynamic simulation with a
reconstruction of unresolved processes based on conditions
near the reaction front when the fluid element is burned.

In Section 2 we present the structure of our model for
carbon–oxygen burning including the basic variables and the
form of their dynamics. Following this, we discuss our post-
processing treatment for tracks (fluid elements) burned by the
deflagration front in Section 3. This section is fairly brief since
the application of a burning model like that presented here to
deflagrations was a major topic of previous work detailed by
Calder et al. (2007) and Townsley et al. (2007). Detonations are
discussed in two sections. Section 4 develops the error-
controlled computation of steady-state detonation structure that
we use as a benchmark, calibrates the timescales in the burning
model dynamics based on this, and compares the resulting
dynamics of the burning model in hydrodynamic tests to the
benchmark calculations. The full method including track post-
processing is then outlined and tested in Section 5. Finally in
Section 6 we detail how results from full-star simulations are
post-processed, and in Section 7 we show the results of
applying these methods to compute the yields of a 2D
simulation of the DDT model of SNe Ia, including a
consideration of what we can infer about current uncertainties.
We summarize conclusions in Section 8.

2. IMPROVED PARAMETERIZED MODEL FOR
EXPLOSIVE CARBON–OXYGEN FUSION

We present here our current parameterized model for the
thermonuclear burning of carbon and oxygen fuel. The model
is intended to capture the dynamics of burning for densities
relevant to SNe Ia for either the deflagration or detonation
mode of combustion. Conversion of protons to neutrons
(neutronization or deleptonization) is included. The initial
abundances of carbon and neutron-rich elements (e.g., 22Ne)
are allowed to vary with position in the WD. The model is
constructed to use a small number of scalars to track the
reaction state and products in order to improve computational
efficiency. Accurate final-state energy release and electron
capture rates are obtained by tabulation. Abundances of
intermediate burning stages are approximated and the formal-
ism can be further refined by adjusting these if necessary.

The process of explosive carbon–oxygen fusion can be
roughly divided into three stages—C consumption, O con-
sumption, and conversion of Si-group to Fe-group material
(Khokhlov 1989, 2000; Calder et al. 2007). The main processes
involved in each of these stages are: C destroyed to produce
additional O, Si, Ne, and Mg; O destroyed to produce Si, S, Ar,
and Ca, generally in nuclear quasi-statistical equilibrium (QSE,

sometimes called NSQE); α particles liberated by photodisin-
tegration are then captured until this material is converted into
Fe-group elements, eventually reaching full NSE. Due to
differences in the rates of the nuclear processes involved, at
densities of interest these stages are well separated, in
logarithmic time, and sequential. This structure makes it
possible to greatly simplify the complex reaction state and
dynamics to the behavior of a model containing just a few
reaction progress variables.
Individual cells are allowed to contain both unburned and

fully burned material in order to allow modeling of reaction
fronts that are much thinner than the grid scale. This conceptual
structure is shown in Figure 2, where curves are shown to
represent two distinct processes in the overall burn that occur
on different timescales. In this example we will use O
consumption as the shorter-timescale process and Si consump-
tion as the longer-timescale one. The curves indicate the
contour on which the O abundance reaches half its value in the
fuel (solid) and where the Ni abundance reaches half its final
value (dashed). Intermediate Ni abundances are represented by
dotted lines, which would not be distinct at high densities (the
separation between stages is exaggerated at high density). At
high densities all reaction stages are localized on scales much
smaller than the grid, as indicated by the reaction length scales
shown in Figure 1, leading to cells that are volumetrically
divided into fuel and ash. At lower densities, some burning
stages become resolvable, while others remain thin compared
to the grid. For resolvable stages, the actual abundance
structure more closely resembles a spatial interpolation of the
coarse grid values. This is demonstrated in the lower panel of
Figure 2. A structure like this is present for both detonation and
deflagration combustion modes, though in the turbulent
deflagration phase the thin reaction front structure can be
much more irregular than shown in this diagram.
Our burning model is currently implemented in the Flash

code, an adaptive-mesh reactive hydrodynamics code with
additional physics for astrophysical applications developed at
the University of Chicago (Fryxell et al. 2000; Dubey
et al. 2009). The model is readily adaptable for use with other
similar reactive hydrodynamics software and the source code is
available as add-on Units for the Flash code7, distributed
separately to allow a more liberal license.

2.1. Definition of Stages and Relation to Fluid Properties

The first step in abstraction of the fusion processes is
defining the relation of our progress variables to the actual
physical properties of the fluid. The transformations taking
place via nuclear reactions act most fundamentally on the
abundances in the fluid. Since we will reduce the burning
processes to just a few stages, we must define first how these
stages are related to the actual abundances. After this we will
proceed to develop reaction kinetics that will reproduce the
effects that the nuclear reactions have on the actual abundances
and how that is manifested in the corresponding abstracted
stages.
Our basic physics will be phrased in terms of baryon

fractions, denoted by the symbol Xi. These are the fraction of
the total number of baryons that are in the form of the nuclide
indicated by the label i. This is very similar to the traditional
definition of mass fractions, but avoids the ambiguity that rest

7 astronomy.ua.edu/townsley/code
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mass is not conserved as nuclear reactions take place because
of energy release. Since baryon number is a conserved
quantity, in the absence of sources the baryon number density,
nB, satisfies the continuity equation

( ) · ( ) ( )¶
¶

= - v
n

t
n , 1B

B

where v is the fluid velocity. For reasons of convenience in a
nonrelativistic fluid code, we will make the definition

[ ] ( )r º =m n n N , 2u B B A

where mu is the atomic mass unit and NA is Avogadroʼs
number. Here [ = ] is used to denote “is numerically equivalent
to in cgs units”. Our intention is to make a distinction between
mass and (binding) energy in the gravitational treatment; we
could calculate the mass–energy density if necessary, but
computation of gravity in our simulation will just use ρ to
approximate it. The baryon fractions Xi then identify directly
the number of baryons in species i and therefore, in the absence
of reactions, also follow a conservation equation of the form

( ) · ( ) ( )¶
¶

= - v
Xn

t
Xn . 3B

B

Here X may be Xi or one of the progress variables defined
below that will be constructed as linear combinations of the Xi.
Taken together, Equations (3) and (2) mean that any linear
combination of baryon fractions can be treated as “mass
scalars” by the advection infrastructure in conservative fluid
dynamics software (e.g., Flash; Fryxell et al. 2000; Dubey
et al. 2009).
In order to start from quantities that satisfy Equation (1), for

purposes of tracking three stages of burning (that is three
transitions), we conceive of having four sets of all nuclides,
each of which represents a certain “type” of material:

å =
a

aX X X X X, , , , 1.f i a i q i N i
i

i, , , ,
,

,

These denote, respectively, the baryon fractions of individual
species comprising fuel, (intermediate) ash (product of carbon
consumption), a quasi-equilibrium (QSE) group, and a terminal
(NSE) group. These stages and the various symbols used here
are laid out in the diagram in Figure 3. This means that any
given baryon has two labels: the type of nucleus in which it
resides (e.g., silicon), and whether we call that material part of,
for example, the ash or the QSE material. It is convenient to
define four “superspecies” by

{ } ( ) å a= =a aX f a q N, , , . 4
i

i,

Since each of the burning stages follows in sequence from
the earlier ones—a feature unlike general nuclear species in a
reaction network—it is convenient to define progress variables
such that

( )
   f f f f f f= - = - = - =1 , , , ,

5

f fa a fa aq q aq qn N qn

or

( )     f f f= + + = + =, , . 6fa a q N aq q N qn N

By virtue of the property 0 � Xα,i � 1 and thus  a0 1,
we see that 1 � ffa � faq � fqn � 0. Also, since the fαβ are
simply linear combinations of the Xα,i they also satisfy
continuity, Equation (1), in the absence of sources.
We define a set of specific abundances:

{ } ( )


x aº =a
a

a

X
f a q N, , , , 7i

i
,

,

so that xå =a 1i i, . This is useful because we will, at times,
want to specify  x=a a aX i i, , by specifying ξα,i. This subtle
distinction was left unaddressed in our previous revisions of

Figure 2. Diagram of structure of thin, multistage reaction fronts embedded in
a coarse computational grid of control-volume cells. At high densities the
reaction front is completely localized—spatially thin—such that a mixed
computational cell contains physically separated regions of fuel and ash
material. At lower densities, some reaction stages remain localized, while
others extend over multiple cells, so that the abundances of reactants and
products vary smoothly on subgrid scales.
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this burning model (Calder et al. 2007; Townsley et al. 2007).
Note that since the ξα,i are quotients of the Xα,i, they are no
longer linear combinations. Nonlinear terms are any that
contain products or quotients of fields that are position-
dependent. Linear combinations are required in order for the
numerical scheme to be explicitly conservative. While any
general algebraic combination, including a nonlinear one like a
product or power, of quantities satisfying Equation (1) still
satisfies Equation (1), once the fields ρ, X, and ξ are discretized
into values averaged over control volumes, i.e., mesh cells,
conservation of Xʼs no longer implies conservation of ξʼs due
to nonlinearities in the advection scheme. This results from the
property that the average of a quotient is not the quotient of the
averages. Since we will not compute Equation (1) for both the
Xʼs and ξʼs, we must make a choice of which will satisfy
explicit conservation to numerical accuracy, as performed by a
conservative advection scheme like that in Flash. Since overall
energy release is important, we choose to compute conservative
evolution for quantities that are linear combinations of the Xʼs.

In order to evaluate fluid properties and follow nuclear
energy release into the fluid, we must be able to obtain several
bulk quantities. We will express these in units per baryon, such
that obtaining units per cm3 is trivial using the baryon density
nB ≡ ρ/mu. The two fluid quantities necessary are

( )å= º
a

aY Y X
Z

A
Number of protons per baryon: 8p e

i
i

i

i,
,

( )åº
a

aY X
A

Number of ions per baryon:
1

, 9
i

i
i

ion
,

,

where, as customary, Zi is the number of protons and Ai is the
number of protons plus neutrons in nuclide i. Here we have
assumed charge neutrality between the number of protons and
the number of nonthermal electrons, and defined Ye to include
only the net nonthermal electrons. Some e+–e− pairs are
created thermally at high temperatures and these are accounted
for in the equation of state (Timmes & Arnett 1999), and

therefore are, in effect, advected with the energy field instead of
as fluid electrons included in our definition of Ye.
For energetic purposes we need to be able to track the rest

mass of our material rather than the approximation mentioned
above. This is accomplished by tracking the nuclear binding
energy per baryon:

¯ [ ] ( )å åº = + -
a

a
a

aq X
Q

A

X

A
Z m N m m c , 10

i
i

i

i i

i

i
i p i n i

,
,

,

, 2

where mp and mn are the masses of the (free) proton and
neutron respectively and mi is the mass of one nucleus of
nuclide i. Note that mi is not the atomic mass, which is often
given in mass tables and includes electrons and their binding
energy. The average mass of a baryon in the fluid is

¯ [ ( )] ¯ ( )å= = + - -
a

am X
m

A
m Y m m c q. 11

i
i

i

i
n e p nB

,
,

2

Thus the actual rest-mass density is ¯ ¯r r= =m n m murest B B B .
Note that because the nuclear binding energy, q̄, is defined with
respect to free protons and neutrons in the same proportion as
the material, calculation of the average rest mass requires both
q̄ and Ye, with the latter specifying the overall relative numbers
of protons and neutrons in the material.
We may now define the group-specific quantities

¯ ( )å å åx x x= = =a a a a a aY
Z

A
Y

A
q

Q

A
,

1
, . 12e

i
i

i

i i
i

i i
i

i

i
, , ion, , ,

so that

¯ ¯ ( )  å å å= = =
a

a a
a

a a
a

a aY Y Y Y q q, , . 13e e, ion ion,

It is again important to note that the group-specific quantities
such as āq are not linear combinations of the Xα,i because the
ξα,i are quotients of linear combinations of the Xα,i. In order to
maintain machine-precision advection of the discretized field
Ye, for example, we will need to perform a conservative
advection scheme on the product a aYe, instead of separately

Figure 3. Diagram of burning stages for C+O burning and associated symbols used here. The progress of burning of a fluid element is from left to right, with the
horizontal axis indicating distance with respect to the foremost part of the reaction front or time as a fluid element passes through the reaction front. See Section 4.3 for
comparison to an actual reaction front structure.
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on a and Ye,α, since their product will not evolve
conservatively to machine precision. A similar statement holds
for Yion and q̄.

We will derive the quantities Ye,f, Yion,f, q̄f , and Ye,a, Yion,a, q̄a
from the initial state. Our simulation begins with fuel of known
abundances,

( ) ( )å =xX X, 1, 14i
i

i0, 0,

which may vary in space as indicated. These initial abundances
will satisfy Equation (1) throughout our simulation; they will
have no sources. This allows us to know, throughout the
burning process, how many of the local baryons were in what
form initially. From these we define the properties of the fuel,

({ })

({ })

¯ ({ }) ( )

å

å

å

=

=

=

Y X X
Z

A

Y X X
A

q X X
Q

A

,

1
,

. 15

e f j
j

j
j

j

f j
j

j
j

f j
j

j
j

j

, 0, 0,

ion, 0, 0,

0, 0,

Additionally the ashes of the first stage of burning are assumed
to be only a function of the initial composition. Thus

({ })x x= X ,a i a i j, , 0,

and it is therefore also position-dependent. Then

({ }) ({ })

({ }) ({ })

¯ ({ }) ({ }) ( )

å

å

å

x

x

x

=

=

=

Y X X
Z

A

Y X X
A

q X X
Q

A

,

1
,

. 16

e a j
i

a i j
i

i

a j
i

a i j
i

a j
i

a i j
i

i

, 0, , 0,

ion, 0, , 0,

0, , 0,

As an aside, some concrete examples are useful. In the
burning model of Townsley et al. (2007), the initial abundances
were { =X 0.5,0, C12 }=X 0.50, O16 , constant in space, and with
other abundances zero. Also the ashes of carbon consumption
were specified by x = Xa, O 0, O16 16 and x = Xa, Mg 0, C24 12 , with
others again zero. In Townsley et al. (2009) the abundances of
the fuel and carbon-consumption ash stages were effectively
modified to add a small amount of 22Ne, whose abundance was
still uniform in space, so that the initial abundances were
{ }= = =X X X0.5, 0.48, 0.020, C 0, O 0, Ne12 16 22 , constant in
space, and carbon-consumption ash abundances were
{x = X ,a, O 0, O16 16 x = X ,a, Mg 0, C24 12 x = Xa, Ne 0, Ne22 22 }. In the
model at hand we will use two parameters, X0, C12 and X0, Ne22 ,
that vary in space to define the initial state, and the ξa,i are
defined as previously. More detailed fuel abundances, or those
containing additional major constituents such as 20Ne or 24Mg,
also fit naturally into this scheme.

The fluid properties of the fuel and ashes of just the carbon-
burning step depend almost entirely on the initial abundances.
For the equilibrium groups (QSE and NSE), however, all of
these properties change dynamically as the nuclear processing
continues at high temperatures. The broad rearrangements of
abundances that lead to the variation of properties like Yion and
q̄ in the more processed ashes are precisely the dynamics that
we would like to abstract down to a few parameters for the sake

of computational efficiency. To this end, we will treat gross
properties of the quasi-equilibrium and equilibrium groups
together. For convenience we define another superabundance
representing the total amount of material in either QSE or NSE,
   f= + =qn q N aq. This allows us to collect the properties
of the equilibrium groups by defining

( )d ºY Y 17e qn qn e qn, ,

( )d ºY Y 18qn qn qnion, ion,

¯ ¯ ( )d ºq q . 19qn qn qn

The δ in front of the quantities here helps to indicate the
somewhat odd units involved. For example, δYion,qn is the
number of QSE+NSE ions (nuclei) per fluid baryon, whereas
Yion,qn itself is the number of QSE+NSE ions per QSE+NSE
baryon. This unit convention is the most awkward for ¯dqqn. To
restate why this is desirable: if we had chosen instead to treat
q̄qn directly, that would cause the total nuclear energy
¯ ¯ ¯ ¯  = + +q q q qf f a a qn qn, which is a nonlinear combination
of qn and q̄qn, to not be explicitly conserved by the
conservative hydrodynamics scheme. Applying the conserva-
tive hydrodynamics to ¯dqqn maintains conservation of the total
nuclear energy. This form also makes it straightforward to
derive appropriate dynamics, which we do below.
Using the progress variables, intermediate-state definitions,

and QSE+NSE material definitions, the bulk fluid properties
can be restated as
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d
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1

. 22
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a j qn
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This defines the relationship of the variables in our burning
model to the physical properties of the fluid.

2.2. Posited Source Terms

The previous subsection developed a framework in which
the properties of the parameterized burning stages can be
expressed in a way that can be advected in the absence of
sources. This leaves us to define dynamical equations (source
terms) for the fαβ themselves and the properties of the
equilibrium materials (the δ-prefixed quantities). By specifying
these source terms here, we complete the form of the burning
model.
First a brief note on the form of the source terms that we will

posit. Typically we will write down source terms by specifying
the Lagrangian time derivative

· ( )=
¶
¶

+ v
DX

Dt

X

t
X. 23

In Eulerian form this gives

( ) · ( ) ( )r
r r

¶
¶

= - +v
X

t
X

DX

Dt
. 24
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Thus we are specifying the term in the evolution of the
conserved quantity that is due to transformations rather than
just advection.

The evolution of the first stage of burning, ffa, can be set
from a flame-tracking scheme or via a thermal reaction rate.
This is done just as it is in Townsley et al. (2009),

( ˙ ) ˙ ( )
f

f f= +
D

Dt
max 0, , 25

fa
RD CC

where ḟRD is the reaction due to the calculation of reaction–
diffusion (RD) flame propagation, and ḟCC is thermally
activated carbon–carbon fusion (Townsley et al. 2009). The
other progress variables then obey

( )
( )

f f f

t
=

-D

Dt T
, 26

aq fa aq

NSQE

( )
( )

( )
f f f

t
=

-D

Dt T
. 27

qn aq qn
2

NSE

Here τNSQE is the timescale previously determined in Calder
et al. (2007) for oxygen consumption. faq reaches completion
at the peak Si abundance, when all oxygen is consumed. The
time and length scales for completion of this stage were given
as the dashed lines in Figure 1. As can be seen there, this stage
is mostly unresolved in our simulations for steady-state
detonations, including at all densities important for Fe-group
production, where the scales for completion of burning are less
than the stellar scales.

In contrast, as shown by the solid lines in Figure 1, the
completion of processing of Si- to Fe-group material, the fqn
phase, can occur on resolved scales for ρ  3 × 107 g cm−3.
Additionally, this stage can be left incomplete for ρ 
107 g cm−3 by the limited length scales in the star and the
time of expansion of the star. Therefore, the dynamics of this
phase are very important for accurate total Fe-group yields. The
dynamics we are now using for fqn, Equation (27), differs from
that used previously (Jordan et al. 2008, 2012b, 2012a; Meakin
et al. 2009; Townsley et al. 2009; Kim et al. 2013; Long
et al. 2014), Dfqn/Dt = (faq − fqn)/τNSE. In the process of
performing the comparisons to benchmark detonation abun-
dance structures presented in Section 4.3, it was found that the
dynamics used previously led to an approximately exponential
relaxation of fqn that did not match the time dependence of the
consumption of Si as well as was hoped. In order to improve
accuracy of our recorded Lagrangian histories, the dynamics
applied to fqn was altered to that of Equation (27). This also
necessitates recalibration of the parameter τNSE, which will be
performed below in Section 4.2.

Both of the parameterized timescales above, τNSQE and τNSE,
depend on temperature, T, and some of the values used below
also depend on density. However, there will be significant
regions in the artificial flame reaction front—where fRD is not
near 0 or 1—that have a cell-averaged temperature and density
that are not a good representation of the temperature of most of
the fluid in the cell. These are regions where, as shown in
Figure 2, a cell at the reaction front in reality consists partly of
unburned fuel and partly of fully burned material separated by a
thin front. In this region our use of an artificially thickened
reaction front gives a temperature intermediate between those
of the fuel and the ash. The evaluation of the timescales also
needs to be stable as fRD changes to obtain reasonable burning

dynamics. By assuming that the rest of the burning will occur
at either constant density or constant pressure, the final burned
state, ρf, Tf, and abundances can be determined based on the
current local abundances and thermal state (Calder et al. 2007).
The prediction at constant pressure provides a reasonable
approximation for the final burning state that will be reached by
the flame, and so the ρf and Tf of this final state are used to
evaluate τNSQE, τNSE, q̄NSE, Yion,NSE, and Ẏe,NSE (see below) in
regions where 10−6 < fRD < 0.99. Otherwise, in regions away
from the artificial flame the local temperature is used to
evaluate τNSE and the temperature predicted for an isochoric
evolution is used to evaluate τNSQE, q̄NSE, Yion,NSE, and Ẏe,NSE.
Evolution of Ye due to electron capture occurs mainly by

conversion of Fe-group material, that is material that has at
some point fully relaxed to NSE. At the densities relevant to
our SN Ia computation, the timescale for relaxation to NSE and
the timescale for electron capture are well enough separated
that electron capture in material that is only partially relaxed to
NSE is not an issue. However, due to the artificially thickened
reaction front in our simulations of SNe Ia, a single cell at high
densities will consist of an artificial mixture of unburned fuel
and fully relaxed NSE ash undergoing electron capture. To
constrain the evolution of electron capture to relaxed NSE
material, we separate the components of Ye further into QSE
and NSE portions:

( ) d d d= + = +Y Y Y Y Y . 28e qn e q e N q e q N e n, , , , ,

For all but the NSE material,
({ })= = = ºY Y Y Y Y Xe f e a e q e e i, , , ,0 0, . This simplifies

Equation (20) to

( ) ( )f d= - +Y Y Y1 . 29e qn e e n,0 ,

Applying the chain rule to δYe,n gives

( ) ( )


d
= +

D Y

Dt

D

Dt
Y

DY

Dt
. 30e n N

e n N
e n,

,
,

The terms on the right-hand side each have a distinct physical
interpretation. The first is the change due to newly produced
material, while the second is due to the adjustment of the pre-
existing material. New NSE material is created with Ye,0 and
old NSE material evolves according to the tabulated Ẏe,NSE,
which naturally gets scaled by the fraction of material currently
fully relaxed to NSE,  fºN qn, so that

( ) ˙ ( )d f
f= +

D Y

Dt

D

Dt
Y Y . 31e n qn

e qn e
,

,0 ,NSE

Next we consider ¯dqqn. This represents the average binding
energy of all material involved in incomplete Si burning,
whether currently in QSE or having progressed fully to NSE.
Using the chain rule on Equation (19) splits this into two
contributions,

( ¯ ) ( )
¯

( ¯ )
( )

d f
f= +

D q

Dt

D

Dt
q

D q

Dt
. 32

qn aq
qn aq

qn

In earlier versions (Townsley et al. 2009 and prior) of this
burning model, we posited dynamics in which the binding
energy relaxed to the NSE value on the shorter relaxation
timescale, τNSQE. However, in verification comparisons to
detonation structures it was found that at low densities this
released energy too quickly and led to underprediction of the
temperature just behind the unresolved portion of the
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detonation front. In order to improve this behavior, we here
introduce ¯dqQSE, which changes as Si-group material is
converted to Fe-group, as measured by the progress variable
fqn:

¯ ( ) ¯ ¯ ( )d f f f= - +q q q . 33aq qn qnQSE QSE0 NSE

Relaxation toward this value is assumed to occur via α capture
or photodisintegration, and thus to take place on the shorter
timescale τNSQE. To capture these two timescales we posit the
following dynamics:

( )
¯ [( ) ¯

¯ ¯ ] ( )

d f

t
f f

f d

= + -

+ -

D q

Dt

D

Dt
q q

q q

1

, 34

qn aq
aq qn

qn qn

QSE0
NSQE

QSE0

NSE

where the evolution on the timescale τNSE is contained in fqn.
Here q̄QSE0 represents q̄ of the material at the completion of O
consumption, i.e., the initial QSE state. This state is less easily
quantified at high densities, because it may contain a
significant, and density-dependent, fraction of α particles, but
it will only be important at low densities when the Si burning is
resolved in the simulation. While, therefore, the most
appropriate value for q̄QSE0 is likely to be dependent on density
and composition, for simplicity we will use ¯ =q qQSE0 Si28 ,
which appears mostly sufficient in the verification tests
performed.

The evolution of Yion, or equivalently the ion mean
molecular weight, Ā, poses a similar challenge to q̄. Each of
the QSE and NSE materials will relax the balance between
heavy elements and α/protons/neutrons on approximately the
NSQE relaxation time, whereas the conversion between QSE
and NSE occurs more slowly. We resolve this by using the
scalar that tracks relaxation toward NSE, fqn, to appropriately
mix approximations of Yion for the QSE and NSE states and
then set our dynamics to move toward this value on the NSQE
timescale. Working in a way similar to the construction of
Equation (34), we find

( )
[( )

]
( )

d f

t
f f

f d

= + -

+ -

D Y

Dt

D

Dt
Y Y

Y Y

1

.

35

qn aq
aq qn

qn qn

ion,
ion,QSE0

NSQE
ion,QSE0

ion,NSE ion,

It is left to obtain a suitable estimate of Yion,QSE0 for the QSE
state. We found that at densities 107 g cm−3 the simple
estimate º =Y Y 1 28ion,QSE0 Si28 provides a well-behaved
approximation that matches Ā produced by benchmark
detonation calculations within 10% (see Section 4.3). A
somewhat complex approximation was proposed in Townsley
et al. (2009), but it did not yield a better match to Ā in testing.

The dynamics of our parameterized model for CO burning is
contained in Equations (25)–(27), (31), (34), and (35). The
energy release is computed based on conservation of energy,
giving the energy release rate per mass,

¯̇ [ ˙ ( ) ] ( ) f= - + - + nq Y N c m m m , 36e p e nnuc qn ,NSE A
2

,NSE

where mp, me, and mn are the masses of the proton, electron,
and neutron respectively, and n,NSE is the energy loss to
emission of neutrinos based on the predicted local NSE

abundances. While the burning dynamics has been stated
analytically, the resulting differential equations must now be
implemented in a way that is numerically efficient. It is possible
to exploit some aspects of the separation between timescales
and the strict ordering of the burning stages to make the
integration of these dynamical equations extremely efficient.
This is discussed in Appendix E.

2.3. Calculation of Nucleosynthesis Using Post-processed
Lagrangian Particle Histories

The burning model presented here is intended to give
approximately the right energy release, as determined by direct
computation of steady-state reaction front structure with large,
complete nuclear networks and error-controlled numerical
methods, but with a relatively low computational cost. In
order to recover detailed abundances, Lagrangian fluid histories
are recorded from the hydrodynamic simulation and post-
processed. Our post-processing is described in later sections.
The Flash code includes the capability to produce Lagran-

gian fluid histories through the use of “tracer” particles (Dubey
et al. 2012). These are particles whose position is calculated as

( ) [ ( ) ] ( )ò= + ¢ ¢ ¢x x v xt t t dt, , 37
t

t

0
0

where the time-dependent velocity field [ ]v x t, is simply that
determined by the hydrodynamic evolution. Generally the
number of particles followed and the distribution of initial
positions x0 are chosen to provide a sampling that is useful for
nucleosynthesis (Seitenzahl et al. 2010), though here we use a
simple weighting in which each tracer represents an equal mass
and initial positions are chosen randomly to follow the mass
distribution. This random distribution is achieved as follows:
The domain is decomposed into blocks of 8d cells, where d is
the dimension, 2 in this case, and we are using blocks that are
eight cells on a side. The mesh structure in Flash provides an
ordering for these blocks, called the Morton ordering (Fryxell
et al. 2000). We split the mass of the star into segments based
on how much mass is contained in each block, using the same
order as the Morton ordering. A random number between zero
and the total mass is then generated for each particle, and the
segment in which it falls determines the block in which that
particle is initially placed. A similar procedure is repeated at the
block level, using the mass of material in each cell. Once the
cell in which the particle will be placed is chosen, each
coordinate of the location of the particle within the cell is
chosen randomly and uniformly across each dimension of the
cell. The impact of the finite sampling represented by this
distribution on the uncertainty of our results is discussed in
Appendix C.
The Lagrangian tracks are then computed at the same time as

the hydrodynamics. The method used to perform the integra-
tion of the particle positions is essentially a second-order
Runge–Kutta scheme with the velocity field sampled at the end
of each combined hydrodynamics and energy source step and
linearly interpolated to the particle position. Note that in the
directionally split hydrodynamics solver, which is used here,
each hydrodynamics step consists of multiple sweeps of the 1D
piecewise parabolic method (PPM) to allow for multi-D
problems (Fryxell et al. 2000).
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3. DEFLAGRATION FRONTS

Particles representing fluid burned by a deflagration front
must be treated differently from those undergoing detonation
because the true burning structure differs from the effective one
used in the simulation. In some ways treatment of the particles
undergoing deflagration is more straightforward because the
combustion in the hydrodynamical calculation has been made
into a spatially resolved process by coupling it to the RD front
as given in Equation (25). The parameterized dynamics used
for the RD front are the same as those discussed in Townsley
et al. (2009), basically causing the four-zone-wide reaction
front to propagate at a specified speed. However, since the
flame is generally quite subsonic, with Mach number Ma =
0.01, it will typically take many timesteps, approximately 4/
Ma, for a fluid element tracked by a Lagrangian tracer particle
to pass fully through the RD front. In our simulations this is
several tenths of a second, as can be seen by the histories of
progress variable and temperature shown by the solid black
lines in Figure 4. During this time, by construction (Townsley
et al. 2009, and Section 2.2 above), the local temperature is not
physical, but a mixture between burned and unburned states in
approximate pressure equilibrium. This makes it essential to
perform a reconstruction of the portion of the particleʼs

thermodynamic history during which it is still inside the RD
front, before the fully burned state is reached.
The black line in the upper panel of Figure 4 shows a typical

temperature history for a tracer particle embedded in material
ejected in a DDT SN Ia at approximately 5000 km s−1. The
bottom panel shows the evolution of the progress variable
representing relaxation toward Fe-group material, fqn (solid
black line). As can be seen, the transition from unburned to
nearly fully burned covers times from about 0.6 to 1.2 s, and
the slow rise in temperature seen in the upper panel covers a
similar time range. During this interval, the density and
temperature are not representative of a physical burning
process, but are instead the average of the burned and unburned
states based on the fraction of the cell burned as indicated by
the artificially thickened reaction front (see Figure 2). This
makes calculation of, for example, the electron-capture history
of this fluid element based on a direct post-processing of the ρ
(t), T(t) history inappropriate.
We attempt to reconstruct a reasonable approximation to the

temperature–density history that a fluid element would have
undergone passing through a flame of realistic thickness. The
reconstruction of the portion of the fluid history that elapses
while the particle is within the artificially broad reaction region
is obtained by assuming that the pressure jump across the flame
is small, 1% (Vladimirova et al. 2006; Calder et al. 2007).
This will be true as long as the Mach number of the flame
propagation is low, as is the case for our simulations. Under
this assumption, although the local density and temperature are
not representative of the actual values, the local pressure should
be similar to that near the actual thin flame front to within
approximately the Mach number. In order to use this feature,
we perform self-heating calculations with a pressure history
specified from the fluid histories extracted from the hydro-
dynamic simulation. This novel mode of specified-pressure-
history self-heating was added to the TORCH nuclear reaction
network (Timmes 1999).8 The set of 225 nuclides used
includes all those indicated in the discussion of weak reactions
in Calder et al. (2007), which includes an extension to neutron-
rich nuclides near the Fe group compared to the standard set of
200 nuclides used in TORCH. Weak cross sections were taken
from Fuller et al. (1985), Oda et al. (1994), and Langanke &
Martínez-Pinedo (2001), with newer rates superseding ear-
lier ones.
Assuming that the fluid element actually crosses the flame

front when the progress variable passes through fRD = 0.5, the
reconstructed temperature history is shown by the red curve in
the upper panel of Figure 4. It is notable that the temperature
peak is much higher and occurs about 0.2 s sooner. The initial
condition for the trajectory is found by performing a short
computation at constant pressure that was raised high enough
for the 12C to begin burning (2 × 109 K), continuing until the
12C abundance is 0.1. The specified-pressure self-heating
follows this. Once the fluid element exits the artificial reaction
front, post-processing can proceed from there using the
recorded temperature–density history. We take this point to
be when fRD > 0.95 in the recorded history, or when P < 1022

erg cm−3, whichever comes first. This P corresponds roughly
to when burning of heavier elements will cease, when ρ 
106 g cm−3 and T  2 × 109 K, and it is more convenient to

Figure 4. Histories of temperature and burning progress for fluid burned by a
deflagration front. Shown are the temperature (upper panel, thin solid), progress
variable for the reaction–diffusion front (fRD, lower panel, dashed), and
progress variable for QSE to NSE (fqn, lower panel, thin solid) recorded at the
position of the Lagrangian tracer particle embedded in material ejected at
approximately 5000 km s−1. fRD and fqn are identical up to about 1.2 s, at
which time the fluid element reaches a low enough temperature and density that
the separation between burning stages begins to become spatially resolvable.
Also shown (thick red solid lines) are the reconstructed temperature history
used in the post-processing calculation of nucleosynthetic yields and an analog
of fqn constructed from the detailed abundances, Xi, computed during post-
processing (see Equation (38)).

8 Original sources available from http://cococubed.asu.edu. Our modifica-
tions are available from http://astronomy.ua.edu/townsley/code.
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impose the condition on P than on ρ or T directly. In Figure 4,
this transition occurs just after t = 1.3 s.

The red line in the bottom panel of Figure 4 shows a
progress variable constructed from the full set of species treated
in the post-processing,

( ) ( )f º
+

+

+
X

X

X X
38qn i
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<
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This effective progress variable measures the process that fqn is
intended to track, the conversion of Si-group or generally
intermediate-mass elements (IME) to IGE. In NSE, there can
also be a significant fraction of light elements (LE: protons,
neutrons, αʼs) that will be present throughout the transition, but
will eventually be captured to form more IGE as the
temperature falls. Here the completeness of processing from
IME to IGE is comparable between the parameterized burning
performed in the hydrodynamic simulation and the post-
processed values, with the post-processing giving complete
conversion to IGE and fqn indicating more than 95% converted
to IGE. The reduction in fqn at late times, starting at
approximately 1.8 s, is due to mixing with surrounding zones
in the hydrodynamic simulation as the grid is coarsened from 4
km cells to 16 or 32 km cells in order to accommodate the
expanding ejecta.

In order to verify that the neutronization is captured well by
this method, we turn to 1D simulations in a medium of spatially
uniform density. For a flame of low Mach number in these
conditions, a constant-pressure self-heating calculation is a
good approximation to the correct fluid history (Vladimirova
et al. 2006; Calder et al. 2007; Chamulak et al. 2007). A
comparison of the Ye history obtained from the hydrodynamics
and the fluid element history post-processed as described above
is shown in Figure 5. The histories of two fluid elements are
taken from a simulation in which an artificial flame is
propagated from a hard wall into 50:50 CO fuel at a uniform
density of 109 g cm−3 with a flame speed of 5 × 106 cm s−1.
The first fluid element begins in the burned region. Its initial
state is determined by the Rankine–Hugoniot jump conditions
satisfied across the flame front as used to set the initial
condition of the simulation. The second fluid element is taken
from a position that the flame passes at about 0.5 s. The
reconstructed portion of the post-processing is shown in
Figure 5 by the solid red portion of the curves and the direct
post-processed portion incorporating the density–temperature
history is shown by the blue dashed lines. The black curves
show Ye according to the burning model, Equation (20), at the
position of the fluid element in the hydrodynamic simulation.
The agreement is fairly good, with the change in Ye from 0.5
matching within a few percent for both the initially burned case
and the case passing through the reconstructed portion at 3 s, a
few times longer than expected exposure in an explosion
simulation. This provides confirmation that scaling Ẏe with fqn
in the burning model provides a reasonable behavior even with
a thickened reaction front. The difference between the Ye time
history given by the simulation and the post-processing appears

consistent with the use of a larger set of nuclides to compute
the neutronization rate tables used in the burning model
(Seitenzahl et al. 2009b). Using a larger nuclear network for
post-processing would improve this difference at some cost to
efficiency.
Ideally the Ye histories of the two fluid elements would just

be shifted by a time delay based on when their burning began.
However, the flame propagation in physical space is slowing
somewhat because of the loss of pressure due to neutronization
of the material burned earlier. This causes the fluid element
burned later to be at a slightly higher density at a given time
interval after burning began. The first several tenths of a second
of evolution match well in both cases, demonstrating that the
post-flame state is consistent with the Rankine–Hugoniot
calculation as expected.

4. DETONATION HYDRODYNAMICS

In this section we demonstrate the detonation structure we
wish to reproduce and we test the burning model in
hydrodynamic simulations in comparison to this benchmark.
Although it was developed initially for deflagrations in carbon–
oxygen mixtures, the reaction structure of detonations is similar
enough (Khokhlov 1983, 1989) that the three-stage model can
also be applied to them. In the simplest form, this just involves
identifying the first stage, 12C consumption, with the rate of the
actual +C C12 12 reaction, and then following the later burning
stages. This was done, for example, in Meakin et al. (2009),
and we will do something similar here, with some adjustments
for improved accuracy.
As can be inferred from the length scales shown in Figure 1,

the actual burning structure is not resolved in full-star
simulations. Therefore, somewhat like in the case of the
deflagration, the dynamics that lead to the propagation of the

Figure 5. The time history of Ye for two fluid elements burned by the artificial
flame starting at a density of 109 g cm−3. The time history on the grid
computed from the simplified burning model is shown in black, whereas the
history computed in post-processing is shown in red (reconstructed portion)
and blue (direct post-processed portion). Two fluid elements are treated—one
that begins the simulation in the burned state (lower black) and one that the
flame passes through after 0.5 s (upper black).
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reaction front are not the same in the simulation as in reality.
The physics is similar; the energy release determines the
strength, and therefore speed, of the detonation shock.
However, the acoustic structure in the simulation is not the
same as the physical detonation structure. Reactions must be
suppressed in the numerically unresolved shock in order to
prevent numerical diffusion from dominating the propagation
of the reaction front (Fryxell et al. 1989). This creates an
artificial separation of a few zones between the shock and the
reaction zone. In addition, the reactions may run to near
completion within the single zone in which reactions are re-
enabled downstream of the shock. We show in Appendix A
that the widely used technique of disabling reactions in the
zones adjacent to the shock reproduces the steady-state
detonation speed and the resolved portions of the reaction
structure.

Here we present the error-controlled calculation of the 1D
structure of planar detonations that we will use as our
benchmark for both the burning model in hydrodynamics and
the Lagrangian post-processing. After introducing this bench-
mark, the remainder of this section will focus on how, in
comparison, the burning model acts in hydrodynamic simula-
tions. Post-processing will be discussed in Section 5. As
already mentioned in the presentation of the burning model in
Section 2, simply treating ffa according to the C reaction rate
and then proceeding as discussed in Townsley et al. (2007)
turned out in testing to not reproduce partially resolved
structures of detonation temperature and abundance at inter-
mediate densities, 106–107 g cm−3. The successful comparison
to benchmarks shown in this section is the result of making the
required adjustments to the timescales of the burning model
discussed in Section 4.2.

4.1. Verification Benchmark: The ZND Structure

In order to evaluate the realism of our simplified model of
burning, it is necessary to define an authoritative reference with
which it will be compared. Since, as one might expect, no
direct experimental validation of nuclear detonations in stellar
matter is available, we instead turn to a hierarchical approach to
validation (Calder et al. 2002). Following this practice, our
interest is in verifying that burning characteristics of our
models are similar enough to those computed with methods in
which we have more confidence. A typical benchmark in a
hierarchical verification like this would be a direct numerical
simulation (DNS) of a similar phenomenon with more detailed,
and typically separately verified, treatments of physical
processes. Another source of benchmarks is particular config-
urations or steady states that can be computed more easily, for
example in a lower dimension, or in more detail and with better
numerical error control.

As one of the two combustion modes in SN Ia explosions,
the predicted outcomes of C–O detonations have been
discussed in some detail previously in the astrophysical
literature. Khokhlov (1989) presented an overview of the
microscopic structure of steady-state planar C–O and He
detonations at a variety of densities. Further work by Sharpe
(1999) extended calculations of the structure of the planar
steady-state structure and products beyond the sonic point in
the detonation wave, allowing the completion of burning to be
computed at a wider range of densities. Sharpe (2001) followed
this up with computations of detonation speeds and structure
for nonplanar, i.e., curved, detonation fronts in a steady state,

still in one dimension. Gamezo et al. (1999) and Timmes et al.
(2000) investigated the multi-D structure of C-fueled detona-
tions with high-resolution reactive hydrodynamics for cases
important for SNe Ia. Recently, Domínguez & Khokhlov
(2011) performed a high-resolution investigation into the
stability of C-fueled detonations in one spatial dimension at
low densities, 106 g cm−3.
We are interested here in an inherently transient phenom-

enon as the detonation traverses different densities within the
star. As a result, the ideal benchmark is simulations of the
reactive Euler equations that include all relevant nuclides (and
therefore all relevant reactions) and in which all important
length scales are resolved. The component models of such a
DNS have been separately validated in many contexts, and
their limitations are fairly well understood. Unfortunately, a
DNS is challenging for the nuclear processes under considera-
tion here. In order to fully capture the reaction kinetics, it is
necessary to include hundreds of species. The more severe
limitation, however, as demonstrated in Figure 1, is the large
separation of time and length scales between the final reaction
stages—those which process Si-group to Fe-group elements or
perform electron captures—and the reactions that drive the
burning front forward, fusion of carbon. At the densities of
most interest, where the nucleosynthetic processing to Fe-group
elements is incomplete due to the finite size of the star, a few
×106 g cm−3, these length scales are 109 cm and 0.1 cm,
respectively.
In this work, we will compare our results with those obtained

from the well-known model of detonations of Zel’dovich, von
Neumann, and Döring (ZND: Zel’dovich 1940; von Neu-
mann 1942, 1963; Döring 1943; Fickett & Davis 1979). This
model predicts both the detonation velocities and final products
as well as the detailed 1D thermal and compositional structure
in space for steady-state detonations. It can also be computed
with error-controlled methods with a large reaction network
including all relevant reactions. Matching these detailed
structures during burning is crucial for our application. The

Ni56 yield of the SN will be determined by the burning
processes that lead to these structures. Therefore, if our burning
model, including particle post-processing steps, can accurately
reproduce the abundance profiles predicted by the ZND model,
it increases our confidence in the yields that it predicts in more
general cases.
The ZND equations describe the detonation structure

between the detonation shock front and the sonic point.
Beyond the sonic point, where the following flow is moving
away from the detonation front at the local sound speed,
disturbances cannot move upstream to change the detonation
flow. The portion of a propagating steady-state detonation
between the shock and the sonic point is a static (i.e., time-
invariant) structure that propagates in space at the detonation
speed. The flow beyond the sonic point is typically not static,
and its form depends on the boundary condition of the
following flow. Sharpe (1999) computes the flow beyond the
sonic point for asymptotically free propagation, but we do not
undertake that here.
Before moving further in the discussion, it is useful to state

the ZND equations in the form in which we will use them, for
plane-parallel, steady-state detonations (Fickett & Davis 1979;
Khokhlov 1989). In the frame of the detonation front,

( )
r
r

=v
D

, 410
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Here a dot indicates an ordinary time derivative, d/dt, v is the
flow velocity (with respect to the detonation front), ρ0 is the
unburned density, D is the detonation speed, cs is the frozen
(evaluated with constant Yi) adiabatic sound speed, and

( )rP T Y, , i is the pressure. To be consistent with the above
conventions, Yi is the number of nuclei of nuclide i per fluid
baryon. Thus Yi = Xi/Ai, where Ai is the mass number of
nuclide i. The Ẏi are given by the nuclear reactions. The energy
release function, in the absence of weak interactions, is
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where  is the internal energy. The integration of these
equations is begun just behind the leading shock, whose
properties are related to those of the fresh fuel by the detonation
speed D and the usual shock conservation equations.

A diagram of the form of typical solutions is shown in
Figure 6. Equation (42) is singular at the sonic point, where
v = cs, unless Σ is also zero there. There is a large class of
solutions for which D is high enough that the entire following
flow is subsonic. That is, Σ, and therefore ṙ, changes sign from
negative to positive before v increases to cs, thus avoiding an
encounter with this singularity. This type of solution has a
higher pressure in the final state than in the reaction zone, and
is called “overdriven” or “supported” since it is effectively
being pushed from behind by an overpressure. In this case the
full flow, including D itself, has an inherent dependence on this
boundary condition. As the pressure in the final state, or at the
“piston” following the detonation, is decreased, D also drops,

and eventually a sonic point will appear. For detonations with
lower pressures in the following flow, the steady portion of the
detonation flow then becomes an eigenvalue problem such that
Σ = 0 at the sonic point.
In simplified reaction systems, Σ = 0 at the sonic point

because that is the point at which fuel consumption is
completed. This is called a Chapman–Jouget detonation
(Fickett & Davis 1979), and its speed can be computed from
just the energy release and the equation of state, without a need
for the full ZND equations (Khokhlov 1989; Gamezo
et al. 1999). For reaction systems with complex or reversible
reactions, or changes in mean molecular weight, the heat
release function Σ may not reach or cross zero at a unique level
of progress toward the fully burned state. That is, Σ = 0 may be
attained before burning is “complete” and a static final state
reached. In this case, the sonic point, and thus the end of the
static portion of the detonation profile, also occurs before a
stable final state is reached. Such a detonation is termed
“pathological” or “eigenvalue” and the sonic point, where the
singularity appears in the ZND equations, and therefore where
Σ = 0, is called the pathological point. This is, in fact, the more
common case, and eigenvalue detonation structures in this case
represented a major advancement manifested by the ZND
model (Fickett & Davis 1979).
The ZND integration can be continued after passing through

the pathological point, but there is more than one way to exit
this point (Sharpe 1999). Figure 6 shows a diagrammatic
representation of the relation of the pressure profile in
overdriven and self-sustained, or unsupported, detonation.
The lowest overdriven detonation that can be fully integrated
using just the ZND equations without traversing a singularity is
that which passes just above the pathological point. While it is
possible with special methods to traverse the pathological point
and obtain the self-sustained solution (Sharpe 1999; Moore
et al. 2013), we do not undertake this here due to our large set
of species and complex reactions. This seems prudent because
even some of the profiles obtained by Sharpe (1999) using this
method show clear indications of having further zero-crossings
of Σ beyond the pathological point. How these would be
manifested in the detonation structure is unclear from this level
of analysis.
It is now possible to choose a well-defined verification

benchmark problem whose solution can be calculated with both
the ZND model with a fairly complete reaction set and a 1D
hydrodynamic simulation with our simplified burning model.
We choose our benchmark to be the slightly overdriven state
found by tuning D to be a small amount above the eigenvalue
that leads to the pathological point. This configuration can be
replicated in a 1D hydrodynamic calculation by manipulation
of the boundary conditions in the following flow to have the
appropriate pressure in the fully burned state. The static portion
of the benchmark structure, between the shock and the sonic
point, can also be used as a reference solution for self-sustained
detonations once they reach a steady state.

4.2. Calibration of Timescale for Si Consumption

In order to make use of the simplified dynamics for the
transition from the QSE to the NSE state, given by
Equation (27), we must calibrate the timescale τNSE. In Calder
et al. (2007), τNSE was calibrated by computing the consump-
tion timescale in isochoric self-heating as a function of
temperature and then using a fit to that timescale for τNSE.

Figure 6. Structure of detonation pressure in space and time for a steady-state
detonation in one dimension. The lower solid and dashed lines that pass
through the pathological point represent possible solutions for the cases in
which the sonic point is reached before completion of burning. These
detonations are termed “pathological” or “eigenvalue” detonations.
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Here we will compare the time evolution of abundances of Si-
group elements for our benchmark detonation, computed using
the ZND equations, directly to the behavior posited in our
burning model by Equation (27).

In order to make comparisons we use ( )f fº Xqn qn i,ZND
based on Equation (38), where the Xi are the abundances from
the ZND calculation computed with a large network for a
driven solution. In Figure 7, fqn,ZND is shown for two densities
spanning the range of interest, 0.5 × 107 and 1 × 107 g cm−3.
From Figure 1 we see that at these densities the synthesis of
IGE from IME will occur as a partially or mostly resolved
process on the grid during the explosion of the star, and will
largely determine the IGE yield of the explosion. Expansion
times for the star are in the region of a few tenths of a second
and the hydrodynamic timestep is around 10−4 s for typical
simulation resolutions of a few kilometers.

As will be shown in Section 4.3, the early rise to
f » 0.15qn,ZND in both curves is due to IGE+LE produced
during the oxygen consumption stage. Therefore we will
proceed by fitting only the latter part of the curve to get a better
characterization of the transition timescale. If necessary, the
inclusion of some IGE in the intermediate state, ξq,i in Figure 3,
could be introduced in converting the progress variables to
abundances. However, since we use post-processed yields for
our final abundances this is not necessary.

In the C–O burning process, the stages are well enough
separated in time that oxygen consumption, which is complete
about the same time the Si abundance peaks, completes before
the transition from Si- to Fe-group elements proceeds very far.
This can be seen clearly in Figure 1 as the five orders of
magnitude separating the time of maximum Si abundance
(dashed red line) and the completion of burning (solid red line).
We therefore assume faq = 1, and for a characteristic value of

τNSE we may analytically integrate Equation (27) to obtain

( )
( )

( )f f
f f t

= -
- +

t
t

1

1
. 45qn qn

qn qn
,final

,final ,0 NSE

Here fqn,0 and fqn,final are taken from fqn,ZND at the end of
oxygen consumption and in the final state respectively. In this
case they are about 0.15 and 0.99. fqn,0 might be different if we
performed this calibration with different initial abundances.
This form can now be fit to the curves shown in Figure 7 using
a nonlinear least-squares fit. We use a fitting region 0.15 � fqn
� 0.85, to capture the major portion of the evolution. The
resulting fits are shown by the dashed lines. The fit timescale is
not sensitive to the choice of fqn,0: a 5% variation in fqn,0
changes the fit τNSE by only 1%. The maximum error in the fits
occurs when fqn ≈ 0.4, and is about 0.06 and 0.03 for the
higher and lower densities shown in Figure 7 respectively. We
will discuss below in Section 4.3 how well the resulting
performance of the burning model in hydrodynamics compares
to the detonation benchmark, and extend this comparison to
abundances in post-processing, compared to those in the
benchmark, in Section 5.
This fitting procedure has been repeated at several densities,

between 0.3 × 107 and 10 × 107 g cm−3. At each of these
densities the conversion of Si- to Fe-group elements takes place
at a declining temperature. The decline during this burning
stage, however, is much less than the variation from one
density to another. By evaluating the temperature when the
relaxation is approximately half complete, we can construct and
fit a relation between τNSE and T. Using T9 to denote
temperature in units of 109 K, we obtain

( ) ( ) ( )t = -T Texp 201.0 46.77 . 46NSE 9

The τNSE timescale found here is not directly comparable to
previous work because we have used different burning
dynamics. However, a similar fit can be performed with the
exponential decay form that results from the simpler dynamics
previously posited, Dfqn/Dt = (faq − fqn)/τNSE (Townsley
et al. 2007). This is shown by the dotted–dashed lines in
Figure 7 when fit to the same region indicated above. This form
does not appear to provide a good reproduction of the late-time
behavior of fqn. Also the timescales obtained for the
exponential fit are approximately a factor of 10–20 shorter
than those given for τNSE in Calder et al. (2007). This is
understandable because the definition used in that work
measured a timescale to reach a fairly complete burning stage,
whereas we have fit an exponential form directly.

4.3. Comparison of Parameterized Burning Hydrodynamics
against 200-nuclide ZND Structure

The verification that we are attempting to perform involves
demonstrating that the abundance structure produced by post-
processing particle tracks from the hydrodynamics that utilizes
the parameterized burning matches the ZND structure for a
steady-state detonation. That comparison will be done in
Section 5, but first it is useful to compare the intermediate
result obtained from the parameterized burning model in the
hydrodynamics simulation alone. This will provide a check on
the realism of spatial thermodynamic structure without the
added complication of the integration of the Lagrangian tracks,

Figure 7. Effective progress variable for the conversion of Si- to Fe-group
material, or relaxation toward full NSE (see text for definition). Driven
detonations computed by a ZND integration are shown at two pre-shock
densities of 107 g cm−3 (black, shorter timescale) and 0.5 × 107 g cm−3 (red,
longer timescale). Also shown are fits to the dynamics in the current burning
model (dashed lines) and exponential relaxation (dotted–dashed lines).
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and will also give some diagnostics concerning whether the
parameters within the burning model are behaving as expected.

Our benchmark is, as described in Section 4.1, the ZND
solution for a steady-state, planar, slightly overdriven detonation
in one dimension. This solution is shown as the reference curves
in Figures 8 and 9, with thermodynamic quantities, T, ρ, P, in the
left panel (black), and abundances in the top right panel. The
initial condition for the 1D hydrodynamic simulations is material
at spatially constant density and temperature away from the
ignition point. We consider cases here with this background
temperature set to 4 × 108 K. The domain extends from x = 0
to 65,536 km in order to allow the detonation to approach a
steady state. Two resolutions, 4 and 1 km, similar to the
resolution of simulations of SN in the literature (Townsley
et al. 2009), are used to confirm insensitivity to resolution. We
will refrain from using the term “convergence” here, reserving it
for circumstances in which gradients are resolved. The boundary
condition on the opposite end of the domain from the ignition is
reflecting, but has no impact on the simulation due to the

supersonic nature of the detonation and since the simulation is
stopped before the front reaches it. The left boundary, at x = 0,
is a zero-gradient boundary. The initial perturbation is made
in both temperature and velocity. Along with inflow from the
zero-gradient boundary, the latter will serve to support
the detonation from behind. Both temperature and velocity are
placed as linear gradients decreasing from a maximum at x= 0 to
the background values of T = 4 × 108 K and velocity of zero
over a size that we will call the size of the ignition region.
The velocity is tuned by hand until the pressure far behind the
detonation front and near the x = 0 boundary matches the
late-time pressure found for the slightly overdriven ZND
solution. Sizes of the ignition region were 1024 and 128 km
for 107 and 5 × 106 g cm−3, respectively.
As above, we will focus on densities at which the transition

from Si-group burning products to Fe-group burning products
is fully or partially resolved on the spatial grid. At a density of
5 × 106 g cm−3, as indicated by Figure 1, nearly the entire Si-
to Fe-group transition is resolved at 4 km resolution for the

Figure 8. Thermal and compositional structure of detonation displayed by our parameterized model for C–O burning in 1D hydrodynamic simulations compared to
our detonation benchmark of the steady-state ZND solution of the equivalent detonation. This case is at a density of ρ = 5 × 106 g cm−3 and an initial composition of
50% 12C, 48% 16O, and 2% 22Ne. Left: thermal structure of simulations at spatial resolutions of 4 km (red) and 1 km (blue) compared to the benchmark steady-state
ZND solution (black). Right: top: the compositional structure of the benchmark ZND calculation computed with a network of 200 nuclides. Middle: effective progress
variables derived from the abundances in the benchmark (red, Equation (47); blue, Equation (48); black, Equation (38)), compared to the progress variable fqn
obtained in the hydrodynamic simulations at a resolution of 4 km (green) and 1 km (magenta). Bottom: average number of nucleons per nucleus, ¯ =A Y1 ion, derived
from the full abundances in the benchmark (black) and obtained from the progress variables, Equation (21), in 1D hydrodynamic simulations at 4 km (green) and 1 km
(magenta).
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steady-state detonation. The spatial structure obtained from the
ZND calculation and the hydrodynamics, which uses the
parameterized burning, is shown in Figure 8. The thermo-
dynamic quantities, T, ρ, and P, are shown in the left panel. The
hydrodynamic result is at an evolution time of 5.45 s, when
nearly the entire domain has been consumed. The zero point for
the distance behind the shock in the hydrodynamic simulations
is taken as the last zone in which the shock detection considers
the cell inside a shock, thereby suppressing the reactions in that
zone. See Appendix A for more on this suppression. In a steady
state, the shock region in which the reactions are suppressed is
a well-localized region of approximately four or five zones. As
a result of this, the first point from the hydrodynamic
simulations, indicated with stair-stepped lines, is at 4 and
1 km for simulations of those respective resolutions. The top
right panel shows the spatial abundance structure of a selection
of nuclides for the steady-state detonation from the ZND
calculation using 200 nuclides. From the ZND abundance and
thermal structures shown in Figure 8 we see that the stages of
both 12C and 16O consumption are entirely unresolved because
they take place on length scales of approximately 1 cm and
several × 103 cm, respectively. In the span of less than a single
zone, the burning reaches the Si-rich QSE.

The values of P, T, and ρ at the point chosen as zero distance
behind the shock in the simulation are not quite the same as the

post-shock values expected based on the detonation speed. This
is presumably the result of numerical mixing in the vicinity of
the under-resolved shock and burning front. The post-shock
density is about 35% lower than the peak value predicted by the
ZND calculation, and the pressure, rather than peaking at the
shock, peaks in the first zone in which burning is allowed, at a
value about 10% lower than expected. The T peak, which also
occurs in the first zone in which reactions are allowed, is about
3% higher than the peak in the benchmark. This transient is
also larger in time and space than the true burning structure due
to the resolution, but the thermal state appears to relax back
toward a good approximation of the QSE state very quickly,
within two zones. After this and a small undershoot, the
hydrodynamic solution is a very good match, with 3% in P and
ρ, and within about 1% in T, all the way out to the pathological
point. There is noise on a similar level, but more noise in P and
T than ρ. An artifact of the initial ignition is evident at the end
of the hydrodynamic curves for T and ρ. We also find very
good consistency between resolutions after the first few zones
behind the shock, matching within 1%, with noise in each case
slightly larger than that. The hydrodynamic result is probably
not completely relaxed to the steady-state overdriven solution,
since there is no pressure minimum. However, the pathological
point occurs quite close to the end of the domain even for this

Figure 9. Similar to Figure 8 but for ρ = 107 g cm−3.
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large domain, and the pressure minimum is expected to be
fairly shallow.

A comparison of some of the parameters in the burning
model is shown in the lower right two panels in Figure 8. In
order to make a comparison of the progress variables we have
defined some effective progress variables for the set of 200
nuclides. In addition to Equation (38) above, we define

( ) ( )f = -X
X

X
1 , 47fa i

C

C,0

12

12

( ) ( )f = -X
X

X
1 . 48aq i
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O,0

18

18

The spatial structures of both ffa and faq are unresolved at this
density and these resolutions. Thus they are both 1 in the first
zone behind the shock-detection suppression of burning
because our data dumps always follow a reaction substep in
our operator-split time evolution. For this reason the ffa and
faq from the hydrodynamic simulations are not shown.

We find a good match between the evolution of fqn and the
effective equivalent defined for the set of 200 nuclides. The
largest discrepancy is due to the production of some Fe-group
material with Si-group in the benchmark. After fqn  0.3 the
discrepancy is less than 0.05, and after fqn  0.5 it is less than
0.02. This indicates that our temperature-dependent fits of the
timescales for this evolution, described in Section 4.2, are
acting satisfactorily. The bottom right panel of Figure 8 shows
how the mean ion molecular weight Ā compares to the
equivalent quantity from the parameterized burning, 1/Yion.
This quantity is systematically about 4% low, probably due to
our choice of ˜ =Y 1 28ion,QSE as an estimate of Yion of the QSE
state. The QSE state is not pure 28Si, and therefore this estimate
is slightly off and creates a systematic offset in the consecutive
evolution toward Yion,NSE. The difference observed in the test
may also be magnified by the hydrodynamic simulation having
not quite reached the steady overdriven state. In either case the
discrepancy in Ā only leads to less than 1% discrepancy in T, as
found above, so this level of agreement appears sufficient for
producing accurate thermodynamic histories for particle post-
processing.

As a second case, shown in Figure 9, we perform a similar
calculation at an ambient density of 107 g cm−3. At this density,
more than half of the transition from the Si-group-dominated
QSE to the Fe-group-dominated NSE is unresolved on a 4 km
grid. This is according to the profile of fqn predicted by the
ZND calculation using 200 nuclides, shown in the middle right
panel of Figure 9. We see a region, similar to that in the first
case, of about two zones in which T is about 3% higher than the
expected peak and P and ρ are intermediate between the
expected post-shock values and the QSE values, after which all
of these relax to within 3% of the benchmark values. The
largest source of discrepancy is due to the lack of the expected
minimum near the pathological point at a distance of 107 cm
behind the shock. Instead, the hydrodynamic solution relaxes
monotonically to the state given by the pressure of the
boundary condition. However, even with this discrepancy the
maximum difference between the benchmark and hydrody-
namic result is about 5% in P and ρ and less than 2% in T. As
before, the two resolutions match very well, within 0.5%.

In terms of progress variables, during the partially resolved
transition from Si- to Fe-group elements, the progress variable
for this process, fqn, is about 0.1 higher than the benchmark

predicts at a given distance behind the shock. This seems like a
reasonable indication of the uncertainty in the progress
variableʼs reproduction of the real process for partially resolved
cases like this one. The Ā determined in the final state by the
burning model in the hydrodynamics is only about 2% lower
than the benchmark. However, as for the thermal profiles, the
nonmonotonic behavior near the pathological point is not
captured.
The main difference from the benchmark in this case is due

to the lack of a clear pathological point in the hydrodynamic
result. It is unclear whether this is due to the limited resolution,
a deficiency in the burning model, or insufficient time to relax
to the steady state. In any case, the discrepancy in the thermal
quantities used for post-processing is, at maximum, a fairly
modest 5% in ρ and 2% in T. We will accept this as the
approximate uncertainty in the thermal histories produced by
the burning model, and proceed to investigate the abundances
produced in post-processing directly below. At higher densities
than about 107 g cm−3, as can be seen from the length scale for
completion of Si- to Fe-group conversion, the conversion will
be nearly complete on scales smaller than the resolution. The
burning model shows good reproduction of the final state,
within a few percent, so that denser cases should also have
similarly good accuracy.

5. VERIFICATION OF LAGRANGIAN PARTICLE
NUCLEOSYNTHESIS AGAINST ZND SOLUTION

While it is important that the progress variables provide a
good reproduction of the detonation structure, in the end the
yields will be computed by post-processing histories of
Lagrangian tracer particles. In this section we compare
computed Lagrangian track yields to the steady-state ZND
solutions that we are using as a benchmark. Detonation yields
are computed by a direct integration of the ρ(t), T(t) history
recorded by the Lagrangian tracer particle from the hydro-
dynamic simulation, using them to set the reaction rates in the
nuclear reaction network.
The results of the integration of the reactions over the

Lagrangian history are compared with benchmark calculations
in Figure 10 for the same two densities, 107 and
5 × 106 g cm−3 (left and right columns), and two spatial
resolutions, 1 and 4 km (top and middle rows), as used in
Section 4.3. We also consider a case with a reduced time
resolution for the recording of the Lagrangian history (bottom
row). Comparison can now be made directly with actual
abundances. We show the major abundances for stages
beginning at oxygen consumption, 16O, 28Si, and 56Ni, as well
as the major neutron-rich nuclide produced before other Fe-
group material, 54Fe (Bravo et al. 2010), and the spectro-
scopically important 40Ca. Each plot shows two curves for each
nuclide: the benchmark solution (solid lines) computed using
the ZND equations and the post-processing of the ρ(t), T(t)
history (dashed lines).
In order to compare structures we must choose a zero time

during the Lagrangian history. Zero time for the benchmark
ZND integration corresponds to the downstream side of the
shock. We have chosen the zero time for the Lagrangian history
to be at the first timestep that reaches 1% above the ambient
temperature. This makes the entire reaction region visible on
these plots because the timescales for C and O consumption in
the benchmark are shorter than the timestep in all cases. The
abundances in the first part of the reaction region are
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unrealistic, as expected. Notably at ρ7 = 1 the 28Si abundance
during the first few steps overshoots what should be present.
However, the abundances appear to recover quickly to fairly
accurate values within 0.01 s in all cases with full time
resolution in the history. For the history with a coarsened time
resolution shown in the bottom row, the recovery toward the
correct solution is slower, taking until nearly 0.1 s at ρ7 = 0.5.
This is comparable to the expansion timescale of this material
during the SN and indicates that a time history at the same time
resolution as the hydrodynamics is required at this density.

In comparison to the benchmark solution we find excellent
agreement after 0.01 s. The worst case is 28Si at ρ7 = 1, 4 km

resolution, off by less than 0.005, about 20% of the abundance
at that time. More typical discrepancies are those near where
56Ni and 28Si are of similar abundance for ρ7 = 0.5, which are
between 5% and 10%. This comparison verifies directly, for the
first time in the computation of thermonuclear SNe, that a
hydrodynamic calculation with post-processing correctly
reproduces detonation yields computed with an error-controlled
integration of the ZND model. Thus the dynamics in our
parameterized burning model is able to give sufficiently
accurate thermodynamic structures for post-processing abun-
dance calculations accurate to between 5% and 10% for steady-
state planar detonations down to ρ7 = 0.5. This includes

Figure 10. Abundance histories computed from post-processed Lagrangian histories from hydrodynamic simulations (dashed lines) compared to benchmark steady-
state detonation structures computed from the ZND equations (solid lines). Shown as mass fractions are the major abundances after C consumption, 16O (blue), 28Si
(green), and 56Ni (black), as well as 40Ca (orange) and 54Fe (brown). Two densities are shown, 107 g cm −3 (left column) and 5 × 106 g cm−3 (right column). Each of
these is shown from a simulation with spatial resolutions of 1 km (top row) and 4 km (middle row) with histories recorded at full time resolution, and at a spatial
resolution of 4 km with history recorded at a reduced time resolution of 0.005 s (bottom row).

17

The Astrophysical Journal Supplement Series, 225:3 (28pp), 2016 July Townsley et al.



densities at which the detonation structure is partially resolved.
The driving region extends to near the plateau of the 56Ni
abundance, as can be inferred from the location of the density
and temperature minima near the pathological point in the ZND
integrations shown in Figures 8 and 9.

6. COMPUTATION OF COMPLETE NUCLEOSYNTHESIS

The previous sections have outlined methods for treating
fluid elements within the star processed by either the detonation
or deflagration mode of burning. In order to obtain yields for an
actual computation of a DDT SN Ia, it is necessary to perform
both of these methods on the fluid element histories of a single
simulation. This involves sorting and classifying histories to be
treated with the two different methods and treating cases that
may overlap. Also some aspects of the implementation of
energy release in the hydrodynamics must be modified to allow
both types of reactions. Here we discuss these and other details
of the unified post-processing.

6.1. Track Classification

We begin by discussing how a Lagrangian history recorded
from the hydrodynamics, hereafter called a “track,” is classified
as being processed in either a deflagration or a detonation. This
determines how the first portion of the post-processing is
performed, which may involve reconstruction and replacement
of an unresolved portion of the time history.

The recorded values of fRD(t) and ffa(t) for a track are
scanned, starting from the beginning of the time history. In
searching for a detonation, the first few points are ignored, after
which we search for a sudden increase in ffa to near unity. This
indicates a detonation. The actual parameters used are for
ffa > 0.9 and ffa having increased by more than 0.2 since the
fourth previously recorded ffa. If the track is determined to be a
detonation, it is subject to a direct post-processing of its ρ(t), T
(t) history.

During the search for a possible detonation feature, if fRD
exceeds 0.5 before a detonation is detected, the track is
classified as a deflagration. For a deflagration, the post-
processing begins from the point in the time history at which
fRD = 0.5 and proceeds initially with a reconstruction as
discussed in Section 3. This calculation is changed to a direct
post-processing at the time any of three conditions are met:
ffa > 0.95, P < 1022 erg cm−3, or ffa − fRD > 0.1. The latter
condition is in addition to those mentioned in Section 3, and
most likely indicates that a fluid element passing through the
artificially thickened flame front has been struck by a
detonation shock. These borderline cases are some of the most
challenging for obtaining accurate yields. Several such
examples are discussed along with others in Appendix B.

A track that does not meet either of the above criteria for
detonation or deflagration will be assumed to have not been
processed by either the deflagration or detonation and will be
post-processed directly based on the T, ρ history recorded.

6.2. Mixed Burning Modes in Hydrodynamics

As implied above, a fluid element with fRD < 0.5 will not be
considered to have been burned by the deflagration for the
purposes of post-processing. This also has implications for the
hydrodynamic implementation of the energy release: a
detonation must be able to propagate into regions where
0 < fRD < 0.5, i.e., regions that have been partially burned by

the RD front that is propagating the deflagration. This presents
a challenge because the temperatures in these regions are not
physical and therefore can’t be used directly to compute a
reaction rate like ḟCC appearing in Equation (25). In order to
allow detonations to propagate fully into the artificially broad
deflagration reaction front, this issue is treated directly in
energy release in the hydrodynamics rather than in post-
processing.
Typically ḟCC is suppressed when fRD is larger than some

small threshold. In order to allow thermal burning in these
regions without it getting out of control, two measures are
taken. First, ḟCC is only re-enabled in the proximity of non-
flame-related burning. Carbon reaction unrelated to the
deflagration is taken to be present if ffa − fRD > δb, where
δb is a threshold calibrated based on trials. δb = 0.1 has been
found to be suitable in 2D and δb = 0.3 in 3D. For a given cell
in the Eulerian hydrodynamics, proximity of thermally
activated burning is established if this condition is satisfied in
neighboring cells within one width of the RD front, typically
four cells away. This allows ḟCC to activate when a detonation
arrives at the RD front.
The second control measure attempts to estimate the

temperature of the fuel in the absence of the deflagration
rather than use the local T directly in the computation of ḟCC.
Recall that the zones in which 0 < fRD < 1 should be thought
of as being regions of mixed burned and unburned material
separated by a thin surface that is the propagating physical
flame, each in approximate pressure equilibrium with the other.
We would like to estimate the temperature of the unburned
material. This is done by removing the energy that corresponds
to the current amount of material burned and then computing
the T that corresponds to the energy left over at the local ρ. This
is a very rough calculation, but is only meant to be an estimate.
The resulting temperature is then used to calculate ḟCC.

6.3. Initial Abundances

In order to perform post-processing with a large network, it
is necessary to specify a full set of initial abundances. These
initial abundances must reflect the previous processing of the
material in the star by earlier phases of evolution, including the
burning phases of the progenitor star and the core convection
that precedes the ignition of the deflagration. Our initial
abundances are parameterized by three parameters: the 12C
abundance at ignition, the metallicity of the progenitor, and Ye
of the material, parameterized in the hydrodynamics by the
mass fraction of 22Ne in the fuel. The value of each of these for
a given track is determined based on location of the tracer
particle within the progenitor WD at the beginning of the
simulation. Note that Ye is not the same parameter as metallicity
because of the additional electron captures that occur during the
phase of pre-explosion core convection.
Given these parameters, the initial abundances are con-

structed from four components: (1) 12C of the specified mass
fraction. (2) Metallicity given by scaled solar abundances of all
elements heavier than 4He (Anders & Grevesse 1989) except
with the abundances of C, N, and O added together to give the
abundance of 22Ne used for the initial abundances (Timmes
et al. 2003). (3) Ashes from the convective phase made up of
equal parts 20Ne, 16O, 13C, and 23Ne (Chamulak et al. 2008;
Piro & Bildsten 2008). (4) The remainder is taken to be 16O.
The contribution associated with the metallicity is assumed to
be uniform throughout the star and any additional depletion of
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Ye in the interior convection zone is matched with the necessary
amount of simmering ashes.

7. RESULTS: 2D DDT YIELDS

Our model of SNe Ia using 2D simulations with a DDT is
intended to reproduce the large-scale abundance distribution
observed in the ejecta of normal SNe Ia. The most accessible
observational characterizations are the abundance tomography
studies (Stehle et al. 2005; Mazzali et al. 2008), though these
do require some information about the ejecta as input, and
therefore are not free of assumptions. Reproduction of
abundance structure inferred from spectra is one of the metrics
by which the original W7 model (Nomoto et al. 1984) and the
1D DDT models (Höflich et al. 1995) are found to succeed.
Here we will compare our yields to these tomographic
reconstructions and the essential aspects of successful theor-
etical models.

Figure 11 shows the nucleosynthetic yields for major species
from our 2D DDT simulation with the realization of ignition
distribution given number 10 by Krueger et al. (2012) and
using the progenitor from that work with a central density of
2 × 10−9 g cm−3. The state shown is 4 s after ignition, when
the ejecta reaches approximately free expansion. The Lagran-
gian tracer particles from the simulation are binned based on
their asymptotic radial velocity into bins of width 250 km s−1.
For each bin, 100 randomly selected particles are post-
processed as described in previous sections. See Appendix C

for a discussion of the uncertainty arising from this choice of
sampling. For the purpose of comparison, we perform
nucleosynthetic post-processing both with and without the
reconstruction of the portion of deflagration histories within the
artificially broadened reaction front, as discussed in Section 3.
Without this reconstruction, particle tracks are simply pro-
cessed using their ρ(t), T(t) history.
The abundance content of the ejecta from our 2D DDT

simulations compares fairly well with the general features seen
in observations and the W7 profile (Stehle et al. 2005; Mazzali
et al. 2008). Si-group material is fairly well separated from the
inner layers of Fe-group material that is dominated by 56Ni.
Reconstruction of deflagration tracks leads to more complete
conversion of IME to IGE in the region 2000–10,000 km s−1

due to the higher peak temperatures reached using reconstruc-
tion. A notable difference from W7 is the absence from our
model of a contiguous region near the center that is depleted in
56Ni. This loss of such a core of stable Fe-group material was
seen also in our earlier work (Krueger et al. 2012), and has
since also been seen in 3D simulations as well (Seitenzahl et al.
2013). It appears that without recourse to other mechanisms of
neutron enrichment in the core, the distribution of deflagration
ash produced by multi-D DDT simulations does not in general
produce an unmixed core of stable Fe-group material.
The isotopic distribution in the overall yields after decay is

shown in Figure 12, where integrated abundances are given in
solar units scaled by the Fe abundance. The pattern observed is
similar to that of W7-like delayed-detonation models (Brach-
witz et al. 2000). This simulation slightly underproduces the
most neutron-rich isotope of several elements compared to
solar abundances, as seen by Brachwitz et al. (2000) for a
central density at ignition of rc,ign = 1.7 × 109 g cm−3 (their
“C” cases). A slightly higher central density at ignition than
that used for our progenitor, rc,ign = 2 × 109 g cm−3, will give
isotopic yields more similar to solar as in the cases of
Brachwitz et al. (2000) with rc,ign = 2.1 × 109 g cm−3 (their
“W” cases). We show separately the yields obtained with and

Figure 11. Abundance profile of ejecta in velocity for 2D DDT simulation.
Upper and lower panels show different species from the same simulations.
Yields are averaged in spherical shell bins in velocity. Cases are shown in
which the unresolved portion of the deflagration is explicitly reconstructed
(solid lines) and in which the temperature–density histories are directly
processed without reconstruction (dashed lines). The main impact of
reconstruction is in capturing the peak temperature of the deflagration front,
giving more complete burning of Si- to Fe-group elements in the interior.

Figure 12. Isotopic yields in units of solar abundances and scaled to the 56Fe
yield. Isotopes of a single element are connected by a line. Results of post-
processing particles with two methods are shown—one in which the ρ, T
history of the particle is used directly (without deflagration reconstruction, red
diamonds), and one in which the portion of the history within the artificial
reaction front is reconstructed (with deflagration reconstruction, black squares).
Dashed boundary lines at 0.5 and 2 are also shown for reference. Differences in
the Fe group are mild, but the relative yield of IME is lower.
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without reconstruction (black squares and red diamonds
respectively) of the deflagration history. As is often found for
models of delayed-detonation type, there is an excess of 62Ni.
The main difference with reconstruction is, as seen above, that
the higher peak temperature obtained by using the reconstruc-
tion gives slightly more complete burning for some tracks,
leading to a lower relative fraction of Si-group material in the
case with reconstruction (black squares).

Yields of individual nuclides are tabulated in Appendix D.
The total yield of 56Ni is 0.69Me without reconstruction and
0.79Me with deflagration reconstruction. The total Fe-group
yield, i.e., all elements with Z > 22, is 0.89Me without
reconstruction and 1.0Me with reconstruction. The 56Ni mass
inferred from the scalars of the burning model on the grid, as is
done in Krueger et al. (2010) is 0.70Me, and the total Fe-group
mass inferred by integrating fqnρ over the grid is 0.86Me.
These values inferred from the progress variables are similar to
those obtained without reconstruction. These differences reflect
ambiguity introduced by material burned partially by the
artificial deflagration front, but then not fully burned by the
detonation in the hydrodynamics. Generally this material has
fRD > 0.5, and so is reconstructed in post-processing and ends
up fully burned, but may remain incompletely burned in the
variables of the burning model. The second example track
discussed in Appendix B is of this type. The discrepancy
between the burning model and post-processing in final yields
can be interpreted as an inconsistency of order 10% between
the ejected 56Ni mass and the ejection velocity. The sense is
that the ejection velocities are slightly lower than they should
be if the burning were fully consistent. This is the current level
of uncertainty and it will vary somewhat for each simulation,
but it can be estimated for a case by comparing these different
yield estimates.

8. CONCLUSIONS

We have outlined methods for computing yields from multi-
D simulations of thermonuclear SNe and compared the
accuracy of the results to benchmarks giving steady-state
reaction front structures. The model of burning presented here
has been used in recent work on various aspects of systematic
variation and physical assumptions regarding SNe Ia (Jackson
et al. 2010, 2014; Krueger et al. 2010, 2012; Willcox
et al. 2016). The full post-processing method is used by Miles
et al. (2015) to investigate possible spectral indicators of
progenitor metallicity. This paper accompanies the public
release of our implementation, which will be integrated into the
public release of Flash.

Our method uses a three-stage model for carbon–oxygen
fusion in hydrodynamics and histories of Lagrangian fluid
elements that are recorded during the simulation and post-
processed with a nuclear reaction network containing 225
nuclides. Due to its necessarily limited spatial and time
resolution compared to the reactions being modeled, reaction
fronts are unresolved in the hydrodynamics. In this work, for
the first time, we attempt to reconstruct the unresolved thermal
structure of the reaction front in order to obtain more accurate
yields. For verification, we compare the results of hydro-
dynamic simulations to benchmark calculations performed
using error-controlled methods and a reaction network with 200
nuclides. These benchmarks give the structure of the reaction
front in a steady state for the detonation propagation mode.
Reproduction of benchmark detonation structures required

improvements to our previously used (Calder et al. 2007;
Townsley et al. 2007, 2009) parameterized model for carbon–
oxygen fusion in order to better characterize the conversion rate
of Si- to Fe-group material. We find that use of reconstruction
for deflagrations increases the Fe-group yield by about 10%
over that inferred from the burning model alone, due to
improvement in representing the temperature peak in the
deflagration front. This implies a similar level of modest
inconsistency between the 56Ni yield and the kinetic energy in
our ejecta profiles as a current uncertainty in our simulation
results.
The main remaining source of inconsistency arises for fluid

elements that are processed by both the deflagration and
detonation fronts in the simulation. This leads to material that
burns less completely in the hydrodynamic simulation than in
post-processing when reconstruction is performed. Future work
may be able to improve the interaction between the detonation
front and the thickened model flame front in order to improve
this consistency. We postpone a more thorough investigation
until after we address unresolved structure in the detonation.
As an example, we computed yields for a 2D simulation of

the DDT scenario for a thermonuclear SN. The resulting yields
compare well to both previously successful 1D delayed-
detonation models of SNe Ia and the layered abundance
structure inferred from observations of normal SNe Ia. One
significant difference, however, is that the interior of the ejecta
lacks a well-defined central region that is depleted of 56Ni via
electron captures. This is because the material that undergoes
strong electron capture during the deflagration phase is mixed
outward by buoyancy, and therefore is spread out and diluted
by surrounding material. This is consistent with current
simulations of the multi-D DDT model (Seitenzahl et al.
2011, 2013; Krueger et al. 2012).
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APPENDIX A
PROPAGATION OF SPATIALLY UNRESOLVED

DETONATIONS WITH PPM

As shown by the scales in Figure 1 and the benchmark
reaction structure in Figures 8 and 9, our SN simulations are
performed on spatial grids that are very coarse compared to the
length scales involved in burning and with hydrodynamic
timesteps many orders of magnitude larger than the timescales
of many of the principal energy-releasing reactions. Since the
simplified burning kinetics includes the fastest burning step,
carbon fusion, this remains true in the simplified model as well
as in the actual physics. This brings to light a verification
problem: is our numerical treatment sufficient to accurately
capture salient features of the detonation and its products? Here
we will perform a verification that spatially unresolved
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hydrodynamic calculations give the same structure as that
computed using the well-established ZND solution with
explicit error control and the same reaction network (aprox13).

Of course an unresolved calculation cannot accurately
reproduce all aspects of the detonation dynamics, but it may
still be useful in some ways. As an example, in their study of
the critical gradient necessary for detonation ignition, Seiten-
zahl et al. (2009a) found that it was necessary to spatially
resolve the length scale of carbon burning in order to obtain
fully converged results for the critical gradient. However, they
did find that unresolved calculations were reasonably accurate,
within an order of magnitude, compared to the several orders of
magnitude over which the size scale setting the critical gradient
varies across the densities and compositions of interest. Thus
the unresolved calculations, though having known deficiencies,
were sufficiently accurate for the particular purpose.

In the present work we will be concerned with the steady-
state detonation structure. The focus will therefore be on
comparison with a reference solution calculated from the ZND
equations rather than on comparison with a converged/
resolved solution. Notably, although Seitenzahl et al. (2009a)
found “successful” self-propagating detonations, they did not
confirm that the ZND structure was achieved. It seems prudent
to perform this verification before proceeding further in our
evaluation of our burning model.

We would like to demonstrate, as was done in Gamezo et al.
(1999) for a different hydrodynamics method than that in Flash,
that when a portion of the detonation structure is spatially
unresolved on the grid, the thermal and compositional structure
of the resolved structures still matches the ZND solution.
Fryxell et al. (1989) showed that Eulerian PPM with reactions
disabled within shocks produces the correct detonation speeds
and post-detonation state for a single-step reaction. Addition-
ally, using an alpha-chain network to study the initial stages of
a detonation in carbon at ρ = 109 g cm−3, Fryxell et al. (1989)
also saw good agreement among resolutions at which the
carbon reaction is resolved and those at which it is spatially
unresolved. This indicates that the resolved stages did not
appear sensitive to lack of spatial resolution of the fastest
stages. Here, instead of comparing to a higher resolution, we
will extend verification to a comparison with the steady-state
structure of the reaction front computed using the ZND
equations.

Although the hydrodynamics method used in Flash is also
Eulerian PPM, it differs from the method used by Fryxell et al.
(1989) in the way the hydrodynamics and reactions are
coupled. Thus we cannot depend upon the tests performed by
Fryxell et al. (1989) as a verification of the method in Flash.
The method described in Fryxell et al. (1989) uses the same
timestep for both hydrodynamics and nuclear reactions,
limiting the changes in any given species during one timestep
to 5%–10%. In contrast, for the provided nuclear reaction
networks, Flash uses a per-zone integration of the reaction
kinetics that is operator-split from the hydrodynamics (Fryxell
et al. 2000). This sub-hydro-step integration is performed with
a Bader–Deuflhard stiff ODE solver with an error-controlled
adaptive timestep (Press et al. 1992; Timmes 1999). For the
aprox13 network, during this integration of the reaction
kinetics, the temperature and density are taken to be constant
at the values given by the previous hydrodynamic timestep.
Thus while the variation of species abundance with time is
always well resolved, because it is subject to error control, the

spatial abundance and thermodynamic structure as well as the
time history of the thermodynamics are often severely under-
resolved.
Flash does include the capability to limit the hydrodynamic

timestep based on energy release with a similar constraint on
the change in species used by Fryxell et al. (1989). However,
this leads to a timestep so small (nanoseconds) that it makes
even 1D calculations intractable. Therefore we choose to keep
the hydrodynamic timestep at that given by the standard CFL
limit. For our typical resolution of 4 km, this is about 10−4 s.
Finally, in order to execute our verification test, we must

choose a regime of parameter space in which to perform our
comparison. That is, we must choose a fuel density and
resolution for the hydrodynamic simulation. Given our
application, we are led to the natural choice of a density at
which the transition of abundances from Si-group to Fe-group
elements is resolved on the grid of 4 km resolution that we
typically use in SN Ia calculations. This is also the critical
process that will determine the amount of 56Ni produced in the
explosion. Material that does not flash to NSE on short
(unresolved) timescales will have this burning stage quenched
as the star expands, freezing in the final abundance structure. A
density of 107 g cm−3 makes about half of this burning stage
resolved in a 4 km grid, as seen in Figures 1 and 9.
The initial condition for the hydrodynamic simulation has a

mixture of 50/50 12C and 16O at constant density
(ρ = 107 g cm−3) and at a temperature of 4 × 108 K away
from the ignition point. The simulation is performed on a
domain with a reflecting left boundary condition at x = 0. The
right boundary condition is unimportant because the detonation
wave travels supersonically and the initial condition in the bulk
material is in equilibrium; a reflecting condition is used. The
detonation is ignited by placing a linear temperature gradient
that peaks at 1.8 × 109 K at x = 0 and decreases to the
background temperature at x = 128 km. This configuration is
only a very minor modification, for the ignition point, of the
“Cellular” simulation setup included with the public Flash
distribution. The standard adaptive refinement routines and
setting were used, which refine on pressure, density, and
abundances of 28Si and 12C. Figure 13 compares the ZND
structure calculated with aprox13 (dashed lines) and the steady
state to which the detonation asymptotes in the hydrodynamic
simulation (solid lines). A fairly large domain was necessary in
order for the detonation to come fully into a steady state. From
Figure 1 the width to completion of burning is nearly 109 cm.
The domain used was 6.5 × 109 cm, with a resolution of
4× 105 cm, and the simulation was run for 5.4 s, by which time
the detonation consumes nearly the entire domain. The distance
behind the shock in the hydrodynamic calculation is computed
by taking the distance from the first zone in which reactions are
allowed by the shock detection.
We find excellent agreement between the ZND solution and

the result of the hydrodynamic simulation despite the entire C
and O burning stages being unresolved. After a slight
overshoot in all P, ρ, and T just behind the shock front, the
ZND solution is matched within better than 1% out to the
pathological point. The hydrodynamic solution then extends
smoothly to lower pressures as expected for the unsupported
solution. Note that this solution, as expected for an α-chain
network like aprox13, is somewhat hotter than the more
realistic detonation structure given by a larger reaction set
discussed in Section 4.3.
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APPENDIX B
EXAMPLE RECORDED AND RECONSTRUCTED

LAGRANGIAN HISTORIES

In this appendix we present a range of example particle
histories from the simulation and the reconstruction obtained
from the methods described in the main text. The distribution
of tracks among the two burning modes, deflagration and
detonation, varies with position in the ejecta, with inner layers
having a large deflagration component and outer layers being
mostly dominated by detonation products. Histories, both
recorded and reconstructed, of ρ and T as well as IGE fraction,
which is represented by fqn in the burning model and
Equation (38) for the post-processed abundances, and fRD
are shown in Figure 14. These provide examples of the several
broad classes of tracks produced by the simulation that we will
now describe.

The top left panel in Figure 14 shows a typical time history
for a fluid element burned by a deflagration front. The slow rise
to peak temperature, over several tenths of a second, is replaced
in reconstruction by a quick rise followed by a steady decline
as the density falls off. The arrival of the detonation shock can
be seen at around 1.8 s, and it is relatively weak because this
location is within the burned material so that the arriving shock
is not an active detonation. Some mixing artifacts, shown by
separation between the IGE fraction for the model and fRD, are
apparent upon arrival of the detonation shock, and can be larger
in other cases. This is likely due to the proximity of slightly less
burned material and may also indicate a mild mismatch
between the advection of the particles and the hydrodynamics
when a shock is present. The grid in the simulation is forced to
coarsen starting at 2.2 s, after burning has ceased. The

numerical mixing associated with the merging of cells can
cause either a decrease, as seen here, or an increase in the IGE
fraction recorded from the simulation. The best time to
compare the IGE fraction produced in post-processing with
that in the burning model is just before this coarsening. As
expected, we find a good but not precise match for deflagration
tracks, within 10% or so for this and other similar tracks, as the
time of the deflagration is not precisely defined.
The top right panel in Figure 14 shows an example of cases

that lead to the largest difference between the yields estimated
from the variables in the hydrodynamic burning model and the
post-processed yields. In this deflagration track, when fRD
passes through 0.5, the density and temperature are still high
enough for fairly prompt full burning to Fe-group elements.
This is evidenced both in the recorded fqn being similar to fRD
and in the reconstructed post-processing giving an IGE fraction
that increases promptly to close to unity. However, as can be
seen by the subsequent evolution of the recorded history, fqn in
the hydrodynamics does not continue to track fRD. As a result,
the hydrodynamic progress variable does not reach near unity
as the fluid element passes the rest of the way through the RD
front, so that the processing of Si- to Fe-group elements is more
complete in the post-processing. This is a result of the
artificially thick and subsonic reaction front, creating an
ambiguity in when the burning commences for this fluid
element. The fluid state can change (expand) significantly
while a particle is passing through the artificial reaction front.
Note that when the detonation-produced shock arrives at about
1.8 s, it is too weak to cause much further progress in the
production of IGE. In some related cases, the shock is strong
enough to further produce IGE.
A converse case in which the detonation arrives earlier in the

process of artificially thick deflagration can be seen in the
middle left panel in Figure 14. Here a particle that has been
partially burned by the flame is burned by the detonation. Since
the detonation front arrives just before fRD = 0.5, the track is
treated as a detonation with its ρ, T history directly post-
processed, and its IGE yield close to but not quite unity. In this
case the deflagration was taking place at a low enough density
that IGE production was reduced (fqn < fRD), but the
detonation created more complete burning. The IGE abundance
in the model and post-processing are fairly consistent just
before the grid is coarsened at 2.2 s.
The right middle panel in Figure 14 shows an example of a

fairly clean detonation at higher density (>107 g cm−3). At pre-
detonation densities above 107 g cm−3 burning proceeds fully
to IGE in both the burning model and post-processing. A large
fraction of the IGE material is produced in this manner.
At lower densities, the burning in the detonation is less

complete. The material ejected at higher velocities above about
10,000 km s−1 is almost all burned in the detonation mode to
varying degrees of completeness, with the transition from
complete to incomplete near a pre-detonation density of
107 g cm−3. While some differences are attributable to density,
even cases at very similar densities, such as the two bottom
panels in Figure 14, can lead to different IGE yields depending
on the local strength of the detonation. The weaker detonation
shown in the left panel may be more curved (Dunkley
et al. 2013; Moore et al. 2013) or less fully developed
(Townsley et al. 2012). Even for the stronger case, the Si
burning is incomplete, giving an IGE fraction just short of
unity. Typically in these cases the post-processing is quite

Figure 13. Comparison of detonation structure at 107 g cm−3 calculated with
the ZND formalism (dashed) and simulated with the reactive hydrodynamics
methods implemented in Flash (solid) in one dimension. Both methods use the
enhanced alpha-chain nuclear network aprox13.
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Figure 14. Example particle histories of various types; see the text for individual descriptions. The top panel of each pair shows the temperature (solid, left scale) and
density (dashed, right scale) recorded from the simulation (black) and, for deflagration tracks, the reconstructed history (blue). The bottom panel of each pair shows the
fraction of IGE, recorded from the burning model in hydrodynamics (fqn, black) and determined in post-processing with (blue) and without (red) reconstruction.
Reconstruction is performed only for deflagration tracks. Also shown is the progress variable for the artificial flame, fRD (dashed).
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consistent, within 5% or so, of the IGE yield from the burning
model.

APPENDIX C
SAMPLING UNCERTAINTY

Computation of nucleosynthetic yields by post-processing of
Lagrangian histories introduces uncertainty due to the finite
sampling of the overall hydrodynamic solution. It is useful to
consider this uncertainty separately from the uncertainty due to
the finite resolution of the hydrodynamic solution and any
uncertainties introduced by assumptions in the models for
burning processes discussed in the main body of the paper. Our
Lagrangian histories are placed in the hydrodynamic simulation
at random initial positions such that all mass elements have an
equal probability of hosting a tracer particle. This makes the
weighting for computation of yields straightforward. As
discussed in Section 7, we additionally randomly sub-select
up to 100 history tracks for each bin of 250 km s−1 in ejection
velocity from those available in that bin from the 100,000
tracks included in the hydrodynamic computation.

To estimate the uncertainty due to the finite sampling
represented by these discrete tracks, we have computed the
standard deviation of the mean for all abundances in each
ejection velocity bin. The resulting uncertainty in the major
abundances for each velocity bin is shown in Figure 15,
intended to be compared directly with the yield profiles shown
in Figure 11. The major abundances have uncertainties small
enough for the comparisons made in this article, in which we
are focusing on the major Fe-group and Si-group yields. For

velocity bins between 1000 and 18,000 km s −1, 100 tracks are
processed, while for other velocity bins 100 are not available
from the 100,000 included in the hydrodynamic computation.
The number of available tracks falls to about 40 by
20,000 km s−1.
If smaller sampling uncertainty is desirable in work using the

methods described here, the number of tracks used or the
choice of the initial position distribution and weighting of the
sampling can be modified to give more samples in a particular
portion of the ejecta (e.g., Seitenzahl et al. 2010). As long as
the 100 samples in each bin used here are sufficient to
accurately characterize the variance of the underlying distribu-
tion, the standard deviation of the mean should vary as ∝N−1/2,
where N is the number of tracks. For nonuniform mass
sampling, the simple standard deviation of the mean can no
longer be used, but it is straightforward to develop a similar
measure of uncertainty by estimating the variance of the
distribution of yields using appropriate weighting of the
samples.
The yield uncertainties can also be propagated in the usual

way to the computation of the total yields of all species when
the sums over the mass in each ejection velocity bin are
performed. The resulting uncertainties are shown in Figure 16
as a fraction of each yield. Most of the uncertainties are in the
range 2%–8%, which is comparable to or slightly better than
our estimated uncertainty found by comparison to steady-state
detonation solutions in Section 5. The most neutron-rich
isotopes have higher uncertainties because they are produced in
a relatively small amount of material; however, even a 30%
uncertainty is modest in a comparison like that shown in
Figure 12, which spans four orders of magnitude in abundance.
If higher accuracy is desirable for these isotopes in a particular
study, more tracks can be included from the regions
producing them.

APPENDIX D
TABULATED YIELDS

Table 1 lists the mass yields of all nuclides with a mass of


- M10 9 or more for our 2D DDT simulation. Masses are listed at
two times. Masses in the first column are 4 s after the beginning

Figure 15. Profile computed using reconstruction of deflagration histories, with
colored bands indicating uncertainty due to finite sampling by Lagrangian
histories. Uncertainty is taken as the standard deviation of the mean of the
abundance over the histories contributing to each velocity bin.

Figure 16. Uncertainty in total decayed yields due to finite sampling of
Lagrangian histories.
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Table 1
Ejecta Yields in Me

At 4 s Decayed At 4 s Decayed

Nuclide w/o Recon. Defl. Recon. w/o Recon. Defl. Recon. Nuclide w/o Recon. Defl. Recon. w/o Recon. Defl. Recon.

4He 8.8 × 10−3 9.0 × 10−3 8.8 × 10−3 9.0 × 10−3 39K 7.7 × 10−5 3.3 × 10−5 7.7 × 10−5 3.3 × 10−5

12C 1.4 × 10−3 1.5 × 10−3 1.4 × 10−3 1.5 × 10−3 40K 2.9 × 10−8 2.2 × 10−8 2.9 × 10−8 2.2 × 10−8

14N 2.0 × 10−9 1.9 × 10−9 3.0 × 10−9 2.8 × 10−9 41K 1.2 × 10−8 1.8 × 10−8 4.5 × 10−6 2.1 × 10−6

16O 5.7 × 10−2 5.5 × 10−2 5.7 × 10−2 5.5 × 10−2 42K 1.2 × 10−8 1.5 × 10−8 L L
19O 6.5 × 10−9 L L L 40Ca 1.7 × 10−2 1.6 × 10−2 1.7 × 10−2 1.6 × 10−2

19F L L 6.8 × 10−9 L 41Ca 4.5 × 10−6 2.1 × 10−6 L L
20Ne 1.7 × 10−3 1.6 × 10−3 1.7 × 10−3 1.6 × 10−3 42Ca 2.6 × 10−5 8.7 × 10−6 2.6 × 10−5 8.8 × 10−6

21Ne 1.8 × 10−7 2.0 × 10−7 1.8 × 10−7 2.0 × 10−7 43Ca 5.3 × 10−8 3.2 × 10−8 2.5 × 10−7 2.3 × 10−7

22Ne 4.5 × 10−6 4.5 × 10−6 4.5 × 10−6 4.5 × 10−6 44Ca 5.9 × 10−8 4.7 × 10−8 3.1 × 10−5 3.2 × 10−5

23Ne 8.7 × 10−9 8.7 × 10−9 L L 45Ca 5.2 × 10−9 4.7 × 10−9 L L
22Na 9.7 × 10−9 9.5 × 10−9 L L 46Ca 7.2 × 10−9 7.3 × 10−9 7.2 × 10−9 7.3 × 10−9

23Na 1.2 × 10−5 1.3 × 10−5 1.3 × 10−5 1.4 × 10−5 47Ca 9.2 × 10−9 1.3 × 10−8 L L
24Na 1.1 × 10−7 1.1 × 10−7 L L 48Ca 2.4 × 10−9 4.4 × 10−9 2.4 × 10−9 4.4 × 10−9

23Mg 1.3 × 10−6 1.3 × 10−6 L L 42Sc 1.9 × 10−8 1.9 × 10−8 L L
24Mg 7.2 × 10−3 7.0 × 10−3 7.2 × 10−3 7.0 × 10−3 43Sc 2.0 × 10−7 2.0 × 10−7 L L
25Mg 1.8 × 10−5 2.0 × 10−5 1.8 × 10−5 2.0 × 10−5 44Sc 7.5 × 10−9 4.5 × 10−9 L L
26Mg 3.4 × 10−5 3.8 × 10−5 3.8 × 10−5 4.1 × 10−5 45Sc 5.7 × 10−8 3.9 × 10−8 2.9 × 10−7 2.1 × 10−7

27Mg 2.8 × 10−8 2.9 × 10−8 L L 46Sc 6.0 × 10−9 4.3 × 10−9 L L
26Al 3.5 × 10−6 3.2 × 10−6 L L 47Sc 8.4 × 10−9 8.5 × 10−9 L L
27Al 5.3 × 10−4 5.2 × 10−4 5.4 × 10−4 5.2 × 10−4 48Sc 6.7 × 10−9 6.9 × 10−9 L L
28Al 1.3 × 10−7 1.4 × 10−7 L L 49Sc 2.4 × 10−9 2.2 × 10−9 L L
27Si 6.5 × 10−7 6.7 × 10−7 L L 44Ti 3.1 × 10−5 3.2 × 10−5 L L
28Si 2.4 × 10−1 1.6 × 10−1 2.4 × 10−1 1.6 × 10−1 45Ti 2.3 × 10−7 1.7 × 10−7 L L
29Si 5.3 × 10−4 4.5 × 10−4 5.3 × 10−4 4.5 × 10−4 46Ti 1.5 × 10−5 5.8 × 10−6 1.5 × 10−5 5.9 × 10−6

30Si 1.1 × 10−3 1.1 × 10−3 1.1 × 10−3 1.1 × 10−3 47Ti 3.3 × 10−7 1.8 × 10−7 1.3 × 10−6 1.1 × 10−6

31Si 2.6 × 10−7 2.6 × 10−7 L L 48Ti 3.7 × 10−7 3.3 × 10−7 4.2 × 10−4 4.5 × 10−4

32Si 1.7 × 10−8 1.7 × 10−8 L L 49Ti 2.3 × 10−8 1.9 × 10−8 3.3 × 10−5 3.3 × 10−5

30P 4.3 × 10−6 3.7 × 10−6 L L 50Ti 2.0 × 10−7 1.9 × 10−7 2.0 × 10−7 1.9 × 10−7

31P 2.9 × 10−4 2.4 × 10−4 2.9 × 10−4 2.4 × 10−4 51Ti 2.7 × 10−9 3.1 × 10−9 L L
32P 2.1 × 10−7 2.1 × 10−7 L L 52Ti 2.9 × 10−9 3.5 × 10−9 L L
33P 1.7 × 10−7 2.0 × 10−7 L L 46V 9.0 × 10−8 9.1 × 10−8 L L
34P 1.4 × 10−9 1.4 × 10−9 L L 47V 9.0 × 10−7 8.8 × 10−7 L L
31S 4.9 × 10−7 4.6 × 10−7 L L 48V 8.7 × 10−8 5.7 × 10−8 L L
32S 1.1 × 10−1 8.3 × 10−2 1.1 × 10−1 8.3 × 10−2 49V 2.8 × 10−7 2.1 × 10−7 L L
33S 2.2 × 10−4 1.6 × 10−4 2.2 × 10−4 1.6 × 10−4 50V 2.1 × 10−8 2.1 × 10−8 2.1 × 10−8 2.1 × 10−8

34S 1.5 × 10−3 9.3 × 10−4 1.5 × 10−3 9.3 × 10−4 51V 5.7 × 10−7 5.7 × 10−7 1.1 × 10−4 1.1 × 10−4

35S 1.0 × 10−7 9.1 × 10−8 L L 52V 4.9 × 10−9 4.0 × 10−9 L L
36S 1.2 × 10−7 1.4 × 10−7 1.2 × 10−7 1.4 × 10−7 53V 2.3 × 10−9 1.7 × 10−9 L L
34Cl 1.1 × 10−7 9.5 × 10−8 L L 48Cr 4.2 × 10−4 4.5 × 10−4 L L
35Cl 8.9 × 10−5 4.8 × 10−5 8.9 × 10−5 4.8 × 10−5 49Cr 3.3 × 10−5 3.3 × 10−5 L L
36Cl 2.9 × 10−7 2.7 × 10−7 L L 50Cr 4.2 × 10−4 3.0 × 10−4 4.2 × 10−4 3.0 × 10−4

37Cl 4.1 × 10−7 4.3 × 10−7 2.2 × 10−5 1.0 × 10−5 51Cr 4.5 × 10−6 2.5 × 10−6 L L
38Cl 1.1 × 10−8 1.3 × 10−8 L L 52Cr 4.8 × 10−4 4.5 × 10−4 9.2 × 10−3 9.9 × 10−3

36Ar 2.0 × 10−2 1.7 × 10−2 2.0 × 10−2 1.7 × 10−2 53Cr 4.1 × 10−6 4.1 × 10−6 1.1 × 10−3 1.2 × 10−3

37Ar 2.1 × 10−5 9.7 × 10−6 L L 54Cr 9.2 × 10−6 9.1 × 10−6 9.2 × 10−6 9.1 × 10−6

38Ar 9.2 × 10−4 3.5 × 10−4 9.2 × 10−4 3.5 × 10−4 55Cr 1.1 × 10−8 1.1 × 10−8 L L
39Ar 1.9 × 10−8 2.0 × 10−8 L L 56Cr 2.8 × 10−8 3.2 × 10−8 L L
40Ar 1.9 × 10−8 2.3 × 10−8 1.9 × 10−8 2.3 × 10−8 57Cr 1.3 × 10−9 1.4 × 10−9 L L
41Ar 6.0 × 10−9 8.8 × 10−9 L L 58Cr 3.8 × 10−9 5.3 × 10−9 L L
38K 3.1 × 10−7 3.1 × 10−7 L L 51Mn 1.0 × 10−4 1.1 × 10−4 L
52Mn 2.3 × 10−6 1.9 × 10−6 L L 63Zn 2.1 × 10−6 2.2 × 10−6 L L
53Mn 1.1 × 10−4 9.9 × 10−5 L L 64Zn 8.9 × 10−6 9.1 × 10−6 8.6 × 10−5 8.8 × 10−5

54Mn 2.3 × 10−6 2.3 × 10−6 L L 65Zn 1.1 × 10−6 1.1 × 10−6 L L
55Mn 2.6 × 10−5 2.6 × 10−5 9.1 × 10−3 9.8 × 10−3 66Zn 1.1 × 10−5 1.2 × 10−5 1.5 × 10−4 1.5 × 10−4

56Mn 3.0 × 10−8 2.7 × 10−8 L L 67Zn 4.2 × 10−8 4.1 × 10−8 2.4 × 10−7 2.4 × 10−7

57Mn 2.2 × 10−8 1.5 × 10−8 L L 68Zn 3.2 × 10−7 3.4 × 10−7 4.8 × 10−7 5.1 × 10−7

58Mn 4.3 × 10−9 4.3 × 10−9 L L 69Zn 6.1 × 10−9 6.9 × 10−9 L L
59Mn 2.2 × 10−8 2.1 × 10−8 L L 63Ga 2.9 × 10−6 2.9 × 10−6 L L
52Fe 8.7 × 10−3 9.5 × 10−3 L L 64Ga 1.4 × 10−6 1.4 × 10−6 L L
53Fe 1.0 × 10−3 1.1 × 10−3 L L 65Ga 3.9 × 10−7 4.0 × 10−7 L L
54Fe 6.4 × 10−2 6.2 × 10−2 6.4 × 10−2 6.2 × 10−2 66Ga 2.3 × 10−8 2.3 × 10−8 L L
55Fe 1.1 × 10−3 1.1 × 10−3 L L 67Ga 6.4 × 10−8 6.4 × 10−8 L L
56Fe 1.7 × 10−2 1.7 × 10−2 7.0 × 10−1 8.1 × 10−1 68Ga 1.6 × 10−8 1.6 × 10−8 L L
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of the simulation, and those in the second column are after all
short-lived radionuclides, defined as those not present in solar
abundances, have decayed. At each of these times we show the
yields obtained without any reconstruction of the thermal history
and with reconstruction of the thermal history near deflagration
fronts as described in Section 3. The total Fe-group yield, all
elements with Z > 22, is 0.89Me without reconstruction and
1.0Me with deflagration reconstruction.

APPENDIX E
IMPLEMENTATION OF THE BURNING MODEL

Here we mention several details about the implementation of
the burning model outlined in Section 2. By defining the
burning model principally by dynamical equations,
Equations (25)–(27), (31), (34), and (35), we intend a clear
separation between the physical and numerical aspects of the
construction of the model. These dynamical equations are

Table 1
(Continued)

At 4 s Decayed At 4 s Decayed

Nuclide w/o Recon. Defl. Recon. w/o Recon. Defl. Recon. Nuclide w/o Recon. Defl. Recon. w/o Recon. Defl. Recon.

57Fe 4.0 × 10−5 4.0 × 10−5 2.1 × 10−2 2.4 × 10−2 69Ga 2.1 × 10−7 2.1 × 10−7 2.3 × 10−7 2.4 × 10−7

58Fe 1.4 × 10−4 1.4 × 10−4 1.4 × 10−4 1.4 × 10−4 70Ga 7.2 × 10−9 6.9 × 10−9 L L
59Fe 3.0 × 10−7 3.0 × 10−7 L L 71Ga L L 1.1 × 10−8 1.1 × 10−8

60Fe 4.3 × 10−6 3.9 × 10−6 L L 64Ge 7.6 × 10−5 7.7 × 10−5 L L
61Fe 7.7 × 10−7 9.3 × 10−7 L L 65Ge 5.5 × 10−6 5.6 × 10−6 L L
55Co 7.9 × 10−3 8.7 × 10−3 L L 66Ge 1.4 × 10−4 1.4 × 10−4 L L
56Co 6.3 × 10−5 6.4 × 10−5 L L 67Ge 1.4 × 10−7 1.4 × 10−7 L L
57Co 6.2 × 10−4 6.2 × 10−4 L L 68Ge 1.5 × 10−7 1.5 × 10−7 L L
58Co 3.9 × 10−6 4.0 × 10−6 L L 69Ge 1.4 × 10−8 1.4 × 10−8 L L
59Co 3.1 × 10−5 3.1 × 10−5 1.1 × 10−3 1.2 × 10−3 70Ge 9.5 × 10−7 9.7 × 10−7 9.5 × 10−7 9.7 × 10−7

60Co 2.0 × 10−6 1.5 × 10−6 L L 71Ge 1.1 × 10−8 1.1 × 10−8 L L
61Co 1.7 × 10−6 1.2 × 10−6 L L L L L L L
62Co 1.3 × 10−7 1.1 × 10−7 L L L L L L L
63Co 3.5 × 10−7 2.5 × 10−7 L L L L L L L
65Co 4.5 × 10−8 4.0 × 10−8 L L L L L L L
56Ni 6.9 × 10−1 7.9 × 10−1 L L L L L L L
57Ni 2.0 × 10−2 2.3 × 10−2 L L L L L L L
58Ni 6.1 × 10−2 6.7 × 10−2 6.1 × 10−2 6.7 × 10−2 L L L L L
59Ni 2.9 × 10−4 3.0 × 10−4 L L L L L L L
60Ni 4.4 × 10−3 4.5 × 10−3 1.5 × 10−2 1.6 × 10−2 L L L L L
61Ni 1.6 × 10−5 1.6 × 10−5 6.0 × 10−4 6.2 × 10−4 L L L L L
62Ni 2.7 × 10−4 2.7 × 10−4 5.3 × 10−3 5.5 × 10−3 L L L L L
63Ni 3.8 × 10−7 3.4 × 10−7 L L L L L L L
64Ni 9.8 × 10−7 8.7 × 10−7 9.8 × 10−7 8.7 × 10−7 L L L L L
65Ni 2.7 × 10−7 2.9 × 10−7 L L L L L L L
58Cu 1.2 × 10−6 1.3 × 10−6 L L L L L L L
59Cu 7.7 × 10−4 8.3 × 10−4 L L L L L L L
60Cu 3.9 × 10−5 4.1 × 10−5 L L L L L L L
61Cu 6.4 × 10−6 6.6 × 10−6 L L L L L L L
62Cu 5.0 × 10−7 5.1 × 10−7 L L L L L L L
63Cu 3.5 × 10−6 3.5 × 10−6 9.3 × 10−6 9.2 × 10−6 L L L L L
64Cu 4.6 × 10−7 4.4 × 10−7 L L L L L L L
65Cu 1.2 × 10−6 1.2 × 10−6 8.4 × 10−6 8.6 × 10−6 L L L L L
66Cu 5.5 × 10−8 5.1 × 10−8 L L L L L L L
60Zn 1.1 × 10−2 1.1 × 10−2 L L L L L L L
61Zn 5.8 × 10−4 6.0 × 10−4 L L L L L L L
62Zn 5.1 × 10−3 5.3 × 10−3 L L L L L L L

Table 2
Division of Time Evolution into Operators

Hydro Flame C-Reacta O consumptiona

=f¶
¶t

RD · f- v RD ḟ+ RD
b L L

=
f¶

¶t

fa · f- v fa [ ˙ ]f+max 0, RD ( )r f s+ - á ñX N v1 12faC,f
2

A12 L

=
f¶

¶t

aq · f- v aq L L ( )f f t+ -fa aq NSQE

Notes.
a Analytically integrated over timestep.
b ˙ ( )( ) f k f f f=  + - - +

t
1 .f

RD
2

RD 4 RD 0 RD 1
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summarized in Table 2, where the operator splitting, discussed
below, is also indicated.

First we will address how the various dynamical variables
are stored and treated by the hydrodynamical evolution. The
fundamental thermodynamic and hydrodynamic variables are
the density field, ( )r x t, , and the mass-specific energy, ( ) x t, .
As given in Equation (2), this density is more clearly
considered as the local baryon density in a particular choice
of units. Additional variables, used to describe the two initial
abundance fields, ( )xX t,C,i12 and ( )xX t,Ne,i22 , are stored but
are not subject to any source terms. This X Ne,i22 is used to
represent the entire effective neutron excess in the WD
material, regardless of the actual nuclides that contribute to
this neutron excess. The additional burning state variables
include the progress variables, ffa, fqn, faq, the reaction–
diffusion variable fRD, and the burning state variables ¯dqqn,
dY qnion, , and Ye. Care was taken in Section 2 that all of these
burning variables are linear combinations of abundances, and
therefore evolve hydrodynamically as mass scalars in the
absence of source terms.

Notably Ye is not stored as a partial like ¯dqqn or dY qnion, . From
Equations (20)–(22), we see that we basically have a choice for
each of Ye, Yion, and q̄ whether to store the partial “δ” value or
the full value. Either can be obtained from the other using the
progress variables and initial abundances. In numerical tests we
found that storing δYe and constructing Ye when needed proved
to not be well behaved when solving the hydrodynamic step.
We believe that this is related to the strong dependence of the
pressure on Ye in the highly degenerate material in the interior
of the WD. This problem appears to have been wholly
ameliorated by using Ye as the advected mass scalar, deriving
δYe in order to compute the time evolution given by the source
term, and then recomputing Ye.

An important feature of our implementation of reactive
hydrodynamics is the splitting of the time evolution operator.
As described above in Appendix A, our reactive hydrody-
namics code, Flash, is operator-split between hydrodynamics
and energetic source terms. We will also further split our source
terms to enable a high-efficiency substep integration. In
Appendix A the coupled reactions are integrated with a stiff
ODE solver that integrates through a hydrodynamical timestep
by assuming a constant T. For our parameterized model of
burning, we will assume that the following quantities are
constant during a hydrodynamic step: sá ñ +v C C, τNSQE, τNSE,
q̄NSE, Yion,NSE, and Ẏe,NSE. These are determined as described in
Section 2.2 depending on the proximity to the artificial flame.

Even with these values all assumed to be constant, the
burning model is still fairly tightly coupled. In order to separate
this coupling, as justified below, we will additionally operator-

split the burning source terms as shown in Tables 2 and 3. The
evolution represented by the Hydro column is computed first,
followed by the other columns in Table 2 and then the other
columns in Table 3. The final results of each stage are used to
compute the evolution of the next. The important aspect of this
splitting is that each of the resulting source terms can be
analytically integrated through the hydrodynamic timestep,
ΔtH. As an example, the C-React operator update is performed
as

( )
( )f

f

f
= -

-

+ D -+
-

-r t
1

1

1 1
, E1fa,

fa

fa
C

,C

CC ,C

where f -fa,C is the value of ffa before the C-React operator,

and r s= á ñ +r X N vCC C,f A C C12 . The other terms besides the flame
are all exponential relaxation and can therefore also be
analytically integrated. The evolution of fRD itself is not
directly dependent on the other burning variables.
This operator splitting is effective due to the separation of

timescales within the burning model. Generally
 t t tCC NSQE NSE, where each τ represents an approximate

timescale for C+C fusion, oxygen consumption/QSE adjust-
ment, and completion of Si burning. Thus for a given timescale
or timestep, Δt, generally only one variable is dynamically
active and the others are either nearly frozen out or tracking the
dominant variableʼs behavior.
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Note.
a Analytically integrated over timestep.
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