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Abstract
A nonlinear optimization method is proposed for the solution of inverse 
scattering problems in the frequency domain, when the scattered field is 
governed by the Helmholtz equation. The time-harmonic inverse medium 
problem is formulated as a PDE-constrained optimization problem and 
solved by an inexact truncated Newton-type iteration. Instead of a grid-based 
discrete representation, the unknown wave speed is projected to a particular  
finite-dimensional basis of eigenfunctions, which is iteratively adapted during 
the optimization. Truncating the adaptive eigenspace (AE) basis at a (small 
and slowly increasing) finite number of eigenfunctions effectively introduces 
regularization into the inversion and thus avoids the need for standard 
Tikhonov-type regularization. Both analytical and numerical evidence 
underpins the accuracy of the AE representation. Numerical experiments 
demonstrate the efficiency and robustness to missing or noisy data of the 
resulting adaptive eigenspace inversion method.

Keywords: inverse medium problem, Helmholtz equation, PDE constrained 
optimization, adaptive eigenspace inversion, regularization, full waveform 
inversion

(Some figures may appear in colour only in the online journal)

1. Introduction

Inverse scattering problems occur in a wide range of applications such as radar and sonar tech-
nology, non-destructive testing, geophysical exploration or medical imaging. By illuminating 
an unknown body, the scatterer, with waves of various directions or wavelengths, one attempts 
to obtain information about that body from the scattered waves recorded at some distance. In 
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the inverse medium problem, the scatterer is a penetrable, bounded inhomogeneity inside the 
medium characterized by one or several varying physical parameters and the inverse problem 
consists in estimating these parameters from scattering data. Typical inverse medium prob-
lems include oil and gas exploration [35] in geophysics or breast tumor detection [23] in medi-
cal imaging. Numerical methods for the solution of inverse scattering problems essentially fall 
into either of two classes: qualitative and quantitative methods.

Qualitative methods [3] generally require little a priori knowledge about the scatterer and 
permit to estimate its location and shape quite efficiently. Examples are the MUSIC (multiple 
signal classification) algorithm [6, 19], the DORT (decomposition of the time reversal opera-
tor) method [4, 27], the linear sampling method [7, 15], the probe method [26], and the fac-
torization method [19, 20]. These methods provide a criterion for deciding whether any point 
lies inside or outside the scatterer only on the basis of far-field measurements of the scattered 
field. Hence, they effectively determine the support of the scatterer and thus permit to quickly 
detect material defects or obstacles, but do not provide any further quantitative information 
about its physical characteristics such as the local sound speed.

Quantitative methods typically reformulate the inverse scattering problem as a PDE-
constrained optimization problem, where the unknown physical parameters, the control u, are 
determined by minimizing an appropriate objective functional [34]. The objective functional, 
L[y,u], measures the misfit between the simulated wave field, the state y, and the true scattered 
data, the observations yobs. Both optimize-then-discretize or discretize-then-optimize strategies 
are common [13, 18]. To tackle the ill-posedness of the inverse problem, a penalization term is 
usually included in the objective functional, such as standard Tikhonov regularization [2, 37].

At least two strategies are then available: the full-space approach, where u and y are sought 
simultaneously, and the reduced-space approach, where y is eliminated from the objective 
functional as L[u]  =  L[y(u), u], taking advantage of the linearity of the underlying wave equa-
tion [12, 13, 22, 36]. Then, standard Newton or quasi-Newton methods from nonlinear optim-
ization can be applied [25, 17]. For inverse medium problems, however, the exact solution of the 
Newton equations at each iteration may be prohibitively expensive due to the very large num-
ber of (unknown) parameters. In recent years, inexact truncated Newton methods [10, 11, 24],  
where at each (outer) iteration the (quasi-)Newton equations are solved by using only a few 
(inner) Krylov subspace iterations, have proved particularly effective for large-scale inverse 
medium problems [22, 31].

The spatial discretization of the parameter u on a standard finite difference (FD) or finite 
element (FE) mesh typically results in a huge number of (unknown) nodal values, in fact 
increasingly so, as the mesh is refined. For time-dependent scattering problems, the adaptive 
eigenspace inversion (AEI) method [8, 9] recently achieved a significant reduction in the num-
ber of parameters by projecting u to a finite-dimensional basis of eigenfunctions of a particular 
elliptic differential operator, which is iteratively adapted during the nonlinear optimization.

Here, we propose the AEI method for the inverse medium problem in the frequency domain, 
where the scattered field is governed by the Helmholtz equation. In section 2, we describe our 
AEI approach, which combines state-of-the-art techniques from large-scale nonlinear optim-
ization, such as inexact truncated Newton-like methods and frequency stepping [1, 5, 22], with 
an adaptive eigenspace representation of u for regularization. Next, in section 3, we present 
both analytical and numerical evidence which underpins the remarkable accuracy of our par-
ticular choice of basis functions. In particular, we show how adapting the dimension of the 
eigenspace basis effectively builds regularization into the inversion. Finally, we subject our 
AEI method in section 4 to a series of numerical tests that demonstrate not only its accuracy 
and robustness with respect to missing or noisy data, but also its versatility by combining it 
with a sample averaging approximation [14].
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2. Adaptive eigenspace inversion (AEI)

In this section, we present the adaptive eigenspace inversion (AEI) method for inverse medium 
problems in the frequency domain, when the scattered wave field is governed by the Helmholtz 
equation. First, we formulate the inverse medium problem for the squared wave speed u(x) as 
a PDE-constrained optimization problem. Next, we introduce the adaptive eigenspace repre-
sentation for u, the distinguishing feature of the AEI method. Finally we describe in detail the 
full AEI algorithm where both the dimension and the basis functions themselves are adapted 
during the optimization process.

2.1. Inverse medium problem

We consider a time-harmonic scattering problem in unbounded space from a penetrable inhomo-
geneity located inside a bounded convex domain dR⊂Ω , d  =  1, 2, 3. Outside Ω, the wave speed 
is known and may vary. Inside Ω, the scattered field y satisfies the Helmholtz equation together 
with a Sommerfeld-type radiation condition at the boundary Γ = ∂Ω, for simplicity:

ω− − ∇ ⋅ ∇ = Ω
∂
∂
− = Γ

⎧
⎨
⎪

⎩⎪

y c x y f x

y

n
k x y

, in ,

i 0, on .

2 2    ( ( ) ) ( )  

    ( )  
 (1)

Here 0ω>  denotes the constant frequency, c(x)  >  0 the wave speed and k x c x( ) / ( )ω=  the 
wave number.

Next, we perform Ns illuminations of the medium inside Ω with source terms f f= �, 
N1, ..., s=� , and denote by y� the corresponding (unique) solutions of (1). Given the meas-

urements yobs
�  on Γ, or part of it, we seek to reconstruct the (unknown) squared wave speed 

u  =  c2 inside Ω such that every solution y� of (1) with f f= � coincides at Γ with the meas-

urements yobs
� , N1, ..., s=� . In doing so, we assume that the wave speed c is known on the 

boundary Γ.
To solve the inverse medium problem, we now formulate it as a PDE-constrained optim-

ization problem and thus seek a minimizer u of the standard data misfit functional

L u y u y
1

2
.

N

L
1
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=

Γ
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Then, the inverse problem reads:
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=

= =

∞

∈

�� �
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  [ ]

  ( )   ( )      
 (3)

Since the inverse problem (3) is generally ill-posed, Tikhonov regularization term is typi-
cally added for stability. Instead, we shall incorporate regularization by restricting u to a  
finite-dimensional subspace VK, adaptively determined during the optimization.

To solve (3), we shall consider standard Newton or Quasi-Newton methods, which require 
the gradient of L[u]. For a direction p, it is given by

( )〈 [ ] 〉     ( ) ¯ ( )∫∑∇ = ∇ ⋅ ∇
= Ω

⎜ ⎟
⎛
⎝

⎞
⎠

�
� �L u p y u z u p, ,

N

1

s

 (4)
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where each Lagrange multiplier z�, N1, ..., s=� , solves the adjoint problem

ω− − ∇ ⋅ ∇ = Ω
∂
∂
+ = − Γ

⎧
⎨
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� �

�
� � �
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n
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i , on .

2
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 (5)

For the solution of (3), we can choose between the optimize-then-discretize or the  
discretize-then-optimize approaches. In the former case, we solve the inverse problem (2)–(4), 
whereas in the latter case, we consider the discrete functional

L u Py u y
1

2
,h
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obs
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2s

[ ]     ∥ ( ) ∥∑= −
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� � (6)

together with its corresponding discrete gradient
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where P denotes a projection matrix from the underlying discrete computational subspace to 
the observations. We will consider either approach indifferently and in doing so demonstrate 
that our approach does not rely on any particular choice of discretization.

2.2. Adaptive eigenspace basis

Instead of a standard nodal basis (FD, FE grid-based discretization), we shall use a basis of 
(global) eigenfunctions m m 1{ } ⩾φ  to represent the parameter u(x) as

u x u x x .
m

m m0
1

( )     ( )     ( )
⩾
∑ β φ= + (8)

Here the ‘background’ u x H0
1( ) ( )∈ Ω  solves the elliptic problem:

µ−∇ ⋅ ∇ = ∀ ∈Ω
= ∀ ∈Γ

⎧
⎨
⎩

x u x x

u x c x x

0, ,

, ,
0

0
2

( ( ) ( ))
( ) ( )

 (9)

where x( )µ  is defined by

x
u x

x
1

max ,
, , 0.( )    

{ ( ) }
 µ

ε
ε=

|∇ |
∀ ∈Ω > (10)

The parameter 0ε> , which ensures that the denominator of μ does not vanish, is typically set 
to a very small value such as 10 6ε = − . While the primary role of u0 is to accommodate the 
(known) inhomogeneous boundary values of u, we shall demonstrate in section 3, that u0 also 
captures much of the behavior of u in the interior.

Following [8], we choose for the functions mφ  the orthonormal basis of eigenfunctions 
Hm 0

1( )φ ∈ Ω  of the elliptic operator,

( )( ) ( ) ( )
( )
µ φ λ φ

φ
−∇ ⋅ ∇ = ∀ ∈Ω

= ∀ ∈Γ⎪

⎪
⎧
⎨
⎩

x x x x

x x

, ,

0, ,
m m m

m
 (11)

with corresponding eigenvalues 0 m m 1⩽λ λ< + , m 1⩾ . Clearly, at higher mλ , the eigenfunctions  

mφ  in (11) will be increasingly oscillatory.
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In section  3, we shall provide analytical and numerical evidence which underpins the 
remarkable accuracy of this basis for representing any given u(x). In our AEI approach, the 
eigenfunctions m m{ }φ  and the background u0 are repeatedly recomputed as the underlying con-
trol u(x) varies during the optimization. Hence, we call u m m0 1{ } { } ⩾φ∪  an adapted eigenspace 
(AE) basis.

Since u(x) is precisely the quantity we seek, and thus unknown, we always use in (10) 
the value from the previous optimization step. At the first step, when no information about 
u inside Ω is available yet, we simply set x 1( )µ ≡ . Then, u0 is a harmonic prolongation of 
c2 from Γ into Ω while the basis m m 1{ } ⩾φ  simply corresponds to the eigenfunctions of the 
Laplacian operator in Ω.

Remark 1. The elliptic operator in (9) and (11) essentially coincides with the gradient of the 
penalized total variation (TV) regularization term [32, 38],

( )     ∫ ε= |∇ | +
Ω

R u u x
1

2
d ,TV

2 2

given by

( )

( ( ) )

ε

µ

∇ = −∇ ⋅
|∇ | +

∇

−∇ ⋅ ∇

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

�

R u
u

u

x u

1

.

TV
2 2

Penalized TV-regularization is well-known in image processing for noise removal, while pre-
serving sharp interfaces. Instead of adding a Tikhonov regularization term to the objective 
functional, the AEI approach projects u to the basis of eigenfunctions of the gradient of the 
penalized TV-regularization functional; hence, the AE basis inherits similar properties.

2.3. AEI algorithm

In practice, we truncate the infinite sum in (8) at a finite number K 1⩾ :

u x u x x .
m

K

m m0
1

( )     ( )     ( )∑ β φ= +
=

 (12)

To keep both the memory requirements and the computational effort low, it is imperative to 
keep the number K of eigenfunctions minimal. The truncation of the eigenfunction expansion 
is also crucial for numerical stability, as it builds regularization into the AEI approach—see 
remark 1 above but also remark 3 below.

At higher frequencies, waves detect and carry more detailed information about the scat-
terer, yet the number of local minima of L[u] may also increase. To minimize the chance 
of landing in a (false) local minimum, we also apply a standard frequency continuation 
procedure [1, 5]. First, we solve the inverse problem (3) at the lowest frequency 1ω . Then 
we progressively increase , , n2ω ω ω= …  while re-initializing the optimization at every jω  
from the previous lower frequency j 1ω − . In doing so, we assume that the measurements 
are available through a range of frequencies, for instance via Fourier transform of a time-
dependent signal.
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AEI Algorithm.

Input: initial guess u  =  1, observations yobs
� . Output: u*.

      1. Choose K 1⩾  and compute m m
K

1{ }φ =  from (11) and u0 from (9) with 1µ≡
      2. Expand u x u x xm

K
m m0 1( ) ( )     ( )β φ= + ∑ =

      3. For , , n1ω ω ω= …
        (a) Compute L[u] and L u[ ]∇ , set H

        (b) STOP: if L u∥ [ ]∥⩽∇  Tol

            i. Solve Hp L u[ ]= −∇
            ii. Determine step size α and set u u p: α= +
            iii. Update L[u], L u[ ]∇  and H

        (c) Set μ from (10) with u∇
        (d) Update K, compute m m

K
1{ }φ =  from (11) and u0 from (9)

        (e) Expand u x u x xm
K

m m0 1( ) ( )     ( )β φ= + ∑ =
      4. u*  =  u

The AEI approach applies regardless of the underlying optimization method used. Here we 
consider truncated Newton-like methods [10, 24] and denote by H either the true Hessian or 
some approximation of it, depending on (Newton, BFGS, or Gauss–Newton) method used. In all 
cases the linear system in 3(b) is solved by a truncated CG-iteration with the Eisenstat–Walker  
criterion [11]. In 3(b)ii, the step size α of the search direction p is determined either by Armijo 
(Newton, Gauss–Newton) or Wolfe–Powell (BFGS) step-size control, depending on the 
underlying method [25]. In steps 1 and 3(d) of the AEI Algorithm, we compute the first K 
eigenfunctions in (11) by using a standard restarted Lanczos iteration [21].

3. Approximation properties of the AEI expansion

In the AEI method presented in section 2, the (unknown) parameter u is expanded as in (12) 
in the L2-orthogonal basis of eigenfunctions m m K1, ,{ }φ = …  defined by (11) together with u0 
defined by (9). In this entire section, we shall assume that u is known and shall now pro-
vide some analytical and some numerical evidence which underpins the remarkable accuracy  
provided by our particular choice of u0 and the AE basis.

3.1. One-dimensional case

In one space dimension, (9) reduces to

x
x

x
u x x a b

u a c a u b c b

d

d

d

d
0 , ,

, ,

0

0
2

0
2

( ) ( ) ( )

( ) ( ) ( ) ( )

⎜ ⎟
⎧
⎨
⎪

⎩⎪

⎛
⎝

⎞
⎠µ− = ∀ ∈

= =
 (13)

where

x
u x

x a b
1

max ,
, , .( )

{ ( ) }
( )µ

ε
=

| |
∀ ∈

′ (14)

The following result is immediate.

M J Grote et alInverse Problems 33 (2017) 025006



7

Proposition 1. Let u : →RΩ , a b,( )Ω = , a  <  b, u continuous, piecewise differentiable 
and with C u x 0⩾ ( ) ⩾ ε>′  or ε− − <′C u x 0⩽ ( ) ⩽ , at every differentiability point x∈Ω, 
u(a)  =  c2(a) and u(b)  =  c2(b). If u0 solves (13) then u0(x)  =  u(x), x∀ ∈Ω.

Proof. We first assume that u is strictly increasing and therefore u x 0( ) ⩾ ε>′ . Since 
x u x u x1 max , 1( ) / { ( ) } / ( )µ ε= | | =′ ′ , u itself also satisfies (13) with u a c a0

2( ) ( )=  and 
u b c b0

2( ) ( )= . As μ is strictly positive through Ω, the (weak) solution of (13) is unique and 
therefore u0(x)  =  u(x), x∀ ∈Ω.

If u is strictly decreasing, the proof is similar for x u x1 0( ) / ( )µ = − >′ . □

Remark 2. From proposition 1 we conclude that our choice for u0 is in fact optimal in one 
space dimension when u′ is strictly positive (or negative) throughout Ω, since it automatically 
yields u itself. The same conclusion immediately holds in higher dimensions, if the back-
ground medium is layered, that is if u x x x, , , n1 2( )…  depends on a single variable. In general, 
however, u0 will not equal u, in particular when u is not monotonic.

First, we illustrate the usefulness of our particular choice for u0 in (13) and (14) by com-
paring it to a straightforward choice where u0 is harmonic and satisfies (13) with x 1( )µ ≡ . If 
u is strictly increasing (or decreasing) over 0, 1( )Ω = , u0 defined by (13) and (14) automati-
cally coincides with u—see proposition 1. Clearly, if u0 is merely harmonic over Ω, it does 
not coincide with u, as shown in figure 1. If u both increases and decreases over Ω, neither the 
harmonic nor the adaptive u0 will coincide with u. However, the adaptively computed u0 will 
in general better approximate u inside Ω, as shown in figure 1; in fact, the adaptive u0 coincides 
with u over [0.6,1].

Next, we approximate the difference u  −  u0 in span , , , K1 2{ }φ φ φ… , where all mφ  satisfy 
(11) in one space dimension, that is

x
x

x
x x x a b

a b

d

d

d

d
, ,

0, 0,

m m m

m m

( ) ( ) ( ) ( )

( ) ( )

⎜ ⎟
⎧
⎨
⎪

⎩⎪

⎛
⎝

⎞
⎠µ φ λ φ

φ φ

− = ∀ ∈

= =
 (15)

with μ defined in (14).
Clearly, the local behavior of mφ  in the neighborhood of any fixed x0 ∈Ω is essentially 

determined by the magnitude of = | |′C u x0( ) . If u x C( ) ε| | >′ �  in a neighborhood of x0, mφ  
essentially behaves like

Figure 1. One-dimensional case. Comparison of adaptive and harmonic choices for u0. 
Left: u monotonically increasing; right: u arbitrary.
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x A C x B C xsin cosm m m m m( ) ( ) ( )φ λ λ+�

near x0 and hence is strongly oscillatory at higher m. However, if u is essentially constant near 
x0, u x 0( )| |′ � , then 1/µ ε=  there and mφ  essentially behaves like

x A x B xsin cos .m m m m m( ) ( ) ( )φ ελ ελ+�

Since ε is very small, mφ  will also remain essentially constant there for moderate values of m.
To illustrate this behavior, we now consider the piecewise linear profile u(x) shown in  

figure 2, where u x 3, 0 and 9( )    = −′  on the interval (0, 0.3), (0.3, 0.9) and (0.9, 1), respec-
tively. Since u′ is piecewise constant, we can immediately determine all eigenfunctions as:

x

A x B x x

A x B x x

A x B x x

sin 3 cos 3 , 0, 0.3 ,

sin cos , 0.3, 0.9 ,

sin 9 cos 9 , 0.9, 1 .

m

m m m m

m m m m

m m m m

,1 ,1

,2 ,2

,3 ,3

( )

( ) ( ) [ )

( ) ( ) [ )

( ) ( ) [ ]

⎧

⎨
⎪
⎪

⎩
⎪
⎪

φ

λ λ

ελ ελ

λ λ

=

+ ∈

+ ∈

+ ∈

 (16)

In figure 2, we show u together with some of the eigenfunctions from (15). On every subinter-
val, mφ  has a different frequency determined by the local value of C mλ . In [0.3,0.9), the 
frequency mελ  is very small, as 10 4ε = − , and mφ  appears essentially constant. As mλ  further 
increases, the frequency mελ  increases as well and oscillations appear. Clearly, the smaller ε, 
the more eigenfunctions mφ  essentially behave as constants wherever u is essentially constant. 
We remark that 1φ  nearly coincides with u up to a scaling factor.

Finally, we consider for u the smooth polynomial profile

u x x x x x x x1 89.95 281.35 339.51 199.56 60.85 9.40 .6 5 4 3 2( ) = − + − + − +

It is shown in figure 3 together with the first eigenfunction 1φ  obtained from (15) either with 
1µ≡  or μ as in (14). Again, we observe that the adaptively determined eigenfunction 1φ  captures 

well the main features of u up to a scaling factor, unlike the first eigenfunction of the Laplacian. 
To reach a relative error below 1% for the best approximation with respect to the L2-norm,  
only the first six eigenfunctions , ,1 6φ φ…  are needed in the adaptive case. In contrast, the first 
six eigenfunctions of the Laplacian yield a seven times larger relative L2-error, which drops 
below 1% only once thirteen eigenfunctions are included in the approximation; hence, the AE 
basis better captures the essential information about u.

3.2. Two-dimensional case

To illustrate the remarkable approximation properties of the AE basis in two space dimen-
sions, we now consider the profile u(x), x x x,1 2( )= , shown in figure 4. Next, we compute u0 
from (9) with 10 6ε = −  and μ as in (10). In figure 5, we observe that u0 matches with remark-
able accuracy the background medium but misses the embedded kite-shaped obstacle. The 
first eigenfunction 1φ  from (11), however, ignores the background and capture precisely the 
remaining obstacle. Using u0 and 1φ , we expand u as in (12) with K  =  1 and compute its best 
L2-approximation. Shown in figure 5, it is hardly distinguishable from the true u with well-
defined sharp contours and a relative L2-error below 2%.

In contrast, if we repeat the same experiment with 1µ≡ , we observe in figure 5 how u0 
indeed matches the boundary values of u but fails to capture any additional features inside Ω.  
Similarly, the first eigenfunction of the Laplacian is independent of u(x) and thus, as expected, 

M J Grote et alInverse Problems 33 (2017) 025006
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carries no information about it. Again, we expand u as in (12) but now use the first 1000 eigen-
functions of the Laplacian instead. Although the L2 best approximation with 1000 Laplacian 
eigenfunctions now yields a reasonable approximation of u with 6% relative L2-error, the 
contours are blurred while small high-frequency ripples appear due to the well-known 

Figure 2. One-dimensional case. The true profile u (top left), together with the 
eigenfunctions φ1, φ2, φ3, φ24 and φ25 from (15) with ε = −10 4.

M J Grote et alInverse Problems 33 (2017) 025006
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Gibbs-phenomenon. These results illustrate the remarkable accuracy even of but a few eigen-
functions of the AE basis.

Remark 3. For a given profile u, the corresponding AE basis u , , , K0 1{ }φ φ…  of relatively 
small dimension usually yields a remarkably accurate representation of u. At higher eigen-
values mλ , however, the (mutually orthogonal) AE basis functions mφ  become increasingly  

Figure 3. One-dimensional case. The true smooth profile u (top) and the first 
eigenfunction φ1 from (15): µ≡ 1 (left), and μ as in (14) (right).

Figure 4. Two-dimensional case. Left: the exact profile u. Right: cross-cut at x2  =  0.4.
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oscillatory and no longer carry useful information about u—see figure 6. Truncating the ex-
pansion in (12) at a finite value, K, thus effectively builds regularization into the AEI approach.

4. Numerical results

We shall now illustrate the usefulness and versatility of the AEI method through a series of 
numerical experiments. Clearly, the squared velocity u of the medium is now unknown and we 
shall attempt to recover it from boundary measurements by solving (2).

Figure 5. Two-dimensional case. Top, from left to right: the background u0 from (9), 
the first AE eigenfunction φ1 from (11), the L2 best approximation of u using { }φu ,0 1 . 
Bottom, from left to right: the harmonic u0, the first Laplace eigenfunction φ1, the L2 
best approximation of u using the first 1000 Laplace eigenfunctions { }φ φ…u , , ,0 1 1000 .

Figure 6. First AEI eigenfunction φ1 (left) and last AEI eigenfunction φN (right) on a 
×201 201 grid.
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First, we compare the adaptive eigenspace representation to a standard grid-based nodal 
representation of the control u to demonstrate the resulting significant reduction in degrees of 
freedom. Next we add yet another level of adaptivity by solving the auxiliary elliptic eigen-
value problem with an adaptive finite element method. We also present numerical experiments 
that underpin our choices for the background profile u0 and the varying dimension of VK with 
increasing frequency. Then, we show that the AE basis functions mφ  are highly localized, and 
hence easily sparsified; thus, the memory requirement of the adaptive eigenspace basis is kept to 
a minimum. Finally, we demonstrate the robustness of the AEI approach in the presence of noise 
or missing data and combine it with the sample average approximation (SAA) approach [14].

In the entire section, we consider the profile u displayed in figure 7, which mimics a lay-
ered material with regions of different wave speed. Unless specified otherwise, the typical 
parameter settings in the numerical experiments are the following: nine equispaced Gaussian 
sources are located along the upper boundary at 0.1, 0.8 , ,( ) …  (0.9,0.8), whereas the receivers 
are located on the four lateral boundaries of 0, 1 0, 1( ) ( )Ω = × . We use second-order stag-
gered finite differences on a 500 500×  Cartesian mesh for the discretization of (2), (9)–(11). 
To avoid any inverse crime, the reference solution is computed on a separate finer mesh, which 
does not contain the coarser computational mesh.

In the AEI algorithm described in section 2.3, we always set the initial guess to u x 1( )≡ . 
Starting at the lowest frequency 8ω = , we progressively increase the frequency 10, 12ω = , 
14, , 90… . The number of eigenfunctions K starts at K  =  16 or 32 and increases linearly with 
the frequency ω. For the optimization, we use a standard truncated Gauss–Newton method 
[13, 25] without extra regularization term. The search direction is by a truncated Conjugate-
Gradient iteration with the Eisenstat–Walker stopping criterion [10, 11, 22, 24] and the step-
size by a standard Armijo rule. In the definition of μ in (10), we always set 10 6ε = − .

In the following numerical experiments, we either use finite differences for the discretize-
then-optimize approach, or finite elements for the optimize-then-discretize approach. We shall 
not emphasize any particular choice for the discretization as it did not affect the results.

4.1. Adaptive eigenspace versus nodal basis

The use of an adaptive eigenspace (AE) basis for the control variable u instead of a standard 
grid-based nodal basis is the distinguishing feature of the AEI method. Thus, we now compare 
the AE versus a standard nodal representation for the reconstruction of u. In both cases, we 
omit extra Tikhonov-type regularization.

Figure 7. Left: true profile u; right: real part of �y  with �f  at (0.1,0.8) and ω = 90.
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First, we include an additional tenth source located at (0.15,0.15). The two corre sponding 
reconstructed profiles are shown in figure 8. Although both methods recover the essential fea-
tures of the medium, the AEI method clearly yields much crisper boundaries but also higher 
accuracy inside the various subregions. Moreover, the AEI method achieves the higher acc-
uracy with fewer than Nu  =  360 degrees of freedom versus N 501 000u =  for the standard 
nodal representation—see table  1. Clearly, adding regularization would certainly remove 
some of the artifacts in the grid-based approach and thus yield a smoother, but not necessarily 
more accurate, reconstruction.

Next, we repeat the previous experiment but now omit all the receivers at the lower bound-
ary of Ω together with the tenth source located at (0.15,0.15). Hence, much less informa-
tion about the lower part of the medium is available in the data. Nevertheless, as shown in  
figure 9, the AEI method is still able to recover u everywhere inside Ω, unlike the standard 
grid-based approach. Indeed, as shown in table 1, the relative L2-error for the nodal approach 
has now almost doubled whereas the error for the AEI method has hardly changed. Although 
the AEI method uses much fewer control variables than the grid-based approach, i.e. Nu  =  K, 
the reconstructions appear remarkably accurate and tolerant to missing data.

4.2. Adaptive finite element discretization

The AEI method uses two separate computational meshes, the first for the forward and adjoint 
problems (1) and (5) and the second for the auxiliary elliptic eigenvalue problems (9) and (11). 
So far both meshes were spatially uniform. Here we include yet another level of adaptivity by 
adapting the finite element (FE) mesh in the solution of (9) and (11) to better capture small-
scale features of u.

Figure 8. Adaptive eigenspace versus nodal basis. Full boundary data: reconstruction 
with a nodal basis (left) or an AE basis (right).

Table 1. Adaptive eigenspace versus nodal basis. Relative L2-error and number of 
degrees of freedom for u.

Basis

Full data Partial data

L2-error (%) Nu L2-error (%) Nu

Nodal 15.91 501 000 30.24 501 000
AEI 4.65 ⩽360 4.80 ⩽360
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In the AEI Algorithm, mesh adaptation is performed after the while loop in step 3b and 
before the update in step 3c. We use a standard a priori FE adaptive mesh strategy based on the 
Hessian of the current u [30], which is available in the open source software FreeFem++ [16]. 
Again, the mesh to solve the forward problem (1) and the adjoint problem (5) remains fixed and 
uniform (200 200×  Cartesian mesh) throughout the entire computation. For the optimization, 
we now use a truncated Quasi-Newton (BFGS) method with Wolfe–Powell step-size control.

In figure 10, we present the numerical results for the AEI method with and without mesh 
adaptation. The reconstruction on a uniform triangular mesh yields 4.86% relative L2-error, 
whereas the reconstruction with adaptive FE strategy yields 4.17% relative L2-error, yet with 
a ten times smaller number of vertices. Hence, we have not only reduced the error in the 
reconstruction with even crisper and smoother edges, but also greatly reduced the number of 
degrees of freedom in the control thereby dividing the overall execution time by 2.5. As shown 
in figure 10, the adapted mesh automatically concentrates the degrees of freedom along vari-
ations of u and is refined only where it is needed.

4.3. Adaptive versus harmonic background u0

As shown in section 3.2, the background state u0 defined through (9) allows the AEI method 
to accomodate varying boundary data. Here we compare the accuracy in the reconstruction for 
two different choices for u0:

 – harmonic: u0 is computed only once at the beginning of the AEI Algorithm by solving (9) 
with 1µ≡

 – adaptive: u0 is recomputed at each frequency step by solving (9) with μ as in (10)

In figure 11, we compare the recovered u for the above two different background states u0, 
both either with or without the adaptive mesh strategy from section 4.2. Clearly, the adap-
tive background u0 improves the accuracy of the reconstruction as the relative L2-errors are 
approximately halved—see table 2. Moreover, the artifacts near the exterior boundary, visible 
in the harmonic background approach, are now completely absent.

Hence the more accurate background state u0 enables the AEI method to better approximate 
the remainder u  −  u0 with the AE basis. Still, the adaptive strategy is also slightly more expen-
sive since it adaptively recomputes u0 for every frequency. These conclusions also appear to 
hold if an adaptive FE strategy is included in the solution of (9) and (11), which in fact seems 
to have little impact on the overall accuracy here.

Figure 9. Adaptive eigenspace versus nodal basis. Missing boundary data: 
reconstruction with a nodal basis (left) or an AE basis (right).
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4.4. Constant versus adaptive dimension of VK

Our AEI method does not require extra regularization term, such as standard Tikhonov regu-
larization. Instead it restricts the optimization to the AE subspace V uspan , , ,K K0 1{ }φ φ= … , 
which effectively acts as inherent regularization of the inverse problem. Here we focus on the 
choice of K to understand the regularization effect of the AEI method. To prevent any intrinsic 
regularization from a very fine mesh or over-abundant data, we omit the receivers at the lower 
boundary of Ω (missing data) and use a coarser 200 200×  Cartesian mesh.

First, we keep the number of eigenfunctions constant through the entire frequency step-
ping process. In figure 12, we present the numerical results for constant K  =  100 using either 
a truncated full-Newton or Gauss–Newton method. For the full-Newton method, the regu-
larization is not sufficient to reduce the perturbation at the top of the computational domain, 
although the reconstruction is more accurate than with the nodal basis. In contrast, for the 
Gauss–Newton method, the regularization is too strong and the method has difficulty recon-
structing the kite. Similar conclusions hold for other constant values of K, which underlines 
the need for K to vary with the frequency ω.

Next, we let K vary linearly with ω, starting at a small number of eigenfunctions (K  =  32) 
to reduce the risk of landing in a false local minimum. As ω increases during frequency con-
tinuation, we slowly increase K to capture smaller details of the scatterer. In figure 12, both 
reconstructions are now quite accurate with an L2-error of 6.50% for the Newton and 6.72% 
for the Gauss–Newton method, respectively.

Remark 4. The number of eigenfunctions K controls the regularization, similarly to the 
parameter α in a standard Tikhonov regularization term R u[ ]α . For Tikhonov regularization, 
α is initially large but then gradually decreases to zero as the nonlinear iteration approaches 

Figure 10. Adaptive FE discretization. Top: uniform triangular mesh with 30 534 
vertices (left) and recovered u (right). Bottom: with mesh adaptation, final mesh for 
ω = 90 with 2783 vertices (left) and recovered u (right).
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the desired minimum. In contrast for our AEI approach, K is initially small but then gradually 
increases during optimization so that the AE basis includes a higher number of eigenfunctions 
for better accuracy.

4.5. Sparse AEI method

The AEI method greatly reduces the number of parameter values by restricting the optim-
ization to the subspace V uspan , , ,K K0 1{ }φ φ= …  of much smaller dimension. Since the dis-
cretized version of the eigenvalue problem (11) leads to a sparse, symmetric and positive 
definite matrix, the first K eigenfunctions can be efficiently computed via a standard Lanczos 
iteration [21]. Still, the storage of the first K eigenfunctions, which are global functions in Ω, 
may at first appear quite large, especially in three space dimensions.

In fact, much of the information contained in those eigenfunctions is highly localized in 
space and essentially negligible in most of Ω. Again we consider the example described at the 

Figure 11. Adaptive versus harmonic background. Top: without mesh adaptation, 
harmonic u0 (left) and adaptive u0 (right). Bottom: with mesh adaptation, harmonic u0 
(left) and adaptive u0 (right).

Table 2. Adaptive versus harmonic background. Relative L2-error in u.

Background state u0 Harmonic (%) Adaptive (%)

Without mesh adaptation 10.73 4.86
With mesh adaptation 10.90 4.17
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beginning of section 4. Next, for each eigenfunctions mφ , we monitor all entries smaller than 

m∥ ∥η φ⋅ ∞ in magnitude. In figure 13, we display the percentage of small entries in mφ  for each 
frequency averaged over all m K⩽ ; recall that K increases linearly with ω. As ω increases, the 
percentage of small entries also increases and quickly saturates above 90% at higher frequen-
cies; hence, more than 90% of all entries are in fact negligible. To save memory space, we can 
therefore set to zero all those small values and simply replace the eigenfunctions mφ  by their 
sparse approximations.

In figure 14, we show the resulting reconstruction with the sparse AEI approach, where all 
small entries in the eigenfunctions below m∥ ∥η φ ∞ are set to zero for 0.1, 0.05, or 0.01     η = . 
Remarkably, the reconstruction hardly changes and, in fact, is even slightly better (L2-errors 
below 4%), while saving more than 90% of memory.

4.6. Noisy data

To illustrate the robustness of the AEI method with respect to noise, we now add multiplica-
tive noise to the observations for each observation point xi and frequency jω :

y x y x, , 1 ,i j i j i j
obs, obs

,( ) ( )( )ω ω δ ξ= + ⋅δ (17)

Figure 12. Constant versus adaptive dimension of VK. Top: for constant K  =  100, 
truncated full-Newton method with relative L2-error  =  14.79% (left) and truncated 
Gauss–Newton method with relative L2-error  =  7.95% (right). Bottom: for linearly 
varying K, truncated full-Newton method with relative L2-error  =  6.50% (left) and 
truncated Gauss–Newton method with relative L2-error  =  6.72% (right).
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where i j,ξ  are i.i.d. Gaussian random variables with mean zero and variance equal to one. The 
level of noise is denoted by δ.

Again, we consider the parameter settings described at the beginning of section 4, but 
use the adaptive finite element strategy from section 4.2. In figure 15 we present the recon-
struction results for two different levels of noise: for 10%δ =  (left) we obtain a relative 
L2-error of 4.01% and for 20%δ =  (right) we obtain a relative L2-error of 5.22%. As shown 
in figure 15, the AEI method is still able to reconstruct the profile without any added regu-
larization and without artifacts due to noise. In fact, at the smaller noise level 10%δ = , the 
relative L2-error is even slightly better than that without noise, 4.01% versus 4.17%; each 
case, however, leads to (slightly) different meshes and eigenfunctions due to the adaptive 
finite element strategy.

Figure 13. Sparse AEI method. Percentage of entries smaller than ∥ ∥η φ⋅ ∞m  in 
magnitude averaged over all ⩽m K at each frequency.

Figure 14. Sparse AEI method. Reconstruction of u with sparsified eigenfunctions. 
Left: with η = 0.1 (error = 3.83%). Center: η = 0.05 (error = 3.81%). Right: η = 0.01 
(error = 3.90%).
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4.7. Sample average approximation

As the number of sources Ns in (2) or (6) increases, the cost of computing Ns forward and 
adjoint solutions in (1) and (5) may become prohibitive. To limit the computational cost with-
out ignoring any of the available data, we consider the sample average approximation (SAA) 
approach from [14], which replaces the sources f� by Nr ‘super-shots’, N Nr s� ,

F f j N, 1, , ,j

N
j

r
1

s

   ∑ ξ= = …
=�

� � (18)

where the jξ� are i.i.d. random variables with zero mean and unit variance and corresponding 
observations

Y y j N, 1, , .j

N
j

r
obs

1

obs
s

   ∑ ξ= = …
=�

� � (19)

Figure 15. Noisy data for varying noise level δ. Left: δ = 10% (L2-error = 4.01%). 
Right: δ = 20% (L2-error = 5.22%).

Figure 16. SAA approach. Reconstruction of u with a single source. Left: without 
SAA and with Ns  =  1 (10.05% relative error). Right: with a single SAA ‘super-shot’, 
i.e. Nr  =  1, from Ns  =  201 sources (5.79% relative error). Note that the computational 
effort is identical.
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During frequency stepping, we choose for each ω a different realization of jξ�—here ξ =±� 1j  
with probability 0.5.

Again, we consider the parameter settings described at the beginning of section 4, but now 
with Ns  =  201 Gaussian sources located at 0.1, 0.8 , 0.11, 0.8 , , 0.89, 0.9 , 0.9, 0.8( ) ( ) ( ) ( )… . The 
SAA approach [14] with only a single ‘super-shot’, Nr  =  1, yields the reconstruction shown 
in figure 16. For comparison, we also display the reconstruction without SAA with a single 
source located at (0.5,0.8). Although the computational cost of both approaches is identical, 
the SAA approach yields better accuracy, remarkably so, given that only a single (‘super-shot’)  
source is used for the approximation.

5. Concluding remarks

We have presented a nonlinear optimization method for the solution of inverse scattering 
problems in the frequency domain, when the scattered field is governed by the Helmholtz 
equation. Instead of a standard (FD or FE) grid-based representation, the unknown (squared) 
sound speed u is projected to the finite-dimensional subspace V uspan , , ,K K0 1{ }φ φ= …  of 
much smaller dimension. The ‘background’ u0 is determined by solving (9) whereas the 
remaining orthonormal basis functions mφ  are determined by computing the first K eigenfunc-
tions in (11). The time-harmonic inverse medium problem is formulated as a PDE-constrained 
optimization problem and solved by an inexact truncated Newton or quasi-Newton iteration. 
During the optimization process, which includes frequency continuation, both the basis and 
the dimension of VK are repeatedly adapted to the current iterate. The full adaptive eigenspace 
inversion (AEI) Algorithm is given in section 2.3.

For monotonic one-dimensional or layered media, we have proved that our choice for 
u0 is in fact optimal. For arbitrary media, our numerical results suggest that it is clearly 
superior to a straightforward harmonic extension from the known boundary values. Together 
with but a few eigenfunctions, the adaptive eigenspace basis yields a remarkably accurate 
representation of u. At higher eigenvalues, the eigenfunctions become increasingly oscilla-
tory while no longer carrying useful information about u. Hence adapting the dimension of 
the eigenspace basis in (12), effectively builds regularization into the inversion, so that no 
additional Tikhonov regularization is needed—see remark 4. As the frequency ω increases, 
smaller scale features of the scatterer become visible and the dimension of VK thus ought to 
increase accordingly.

In contrast to a standard grid-based nodal representation, the AEI method uses much fewer 
control variables for u. Still the reconstructions are remarkably accurate, display less artifacts 
and prove more tolerant to partial or missing data. Moreover, our AEI method leads to a sig-
nificant reduction in execution time and proves robust with respect to added noise. By com-
bining it with the sample average approximation (SAA) approach from [14], it also efficiently 
handles large numbers of sources.

Since the discrete version of the eigenvalue problem (11) leads to a sparse, symmetric and 
positive definite matrix, the first K eigenfunctions can be efficiently computed via a standard 
Lanczos iteration. If finite element mesh adaptation is used for the numerical solution of 
(11), small-scale features and interfaces are captured with even greater accuracy in the recon-
struction, without increasing the computational effort. Although the eigenfunctions are global, 
their information content is highly localized in space so that most entries are in fact negligible.

Our current work involves the extension of the AEI method to multi-parameter inverse 
scattering problems [28, 29, 33]. We shall report on those results elsewhere in the near future.
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