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Abstract
Detailed knowledge of the dopant concentration and composition of wide band gap AlxGa - Nx1

layers is of crucial importance for the fabrication of ultra violet light emitting diodes. This paper
demonstrates the capabilities of wavelength dispersive x-ray (WDX) spectroscopy in accurately
determining these parameters and compares the results with those from high resolution x-ray
diffraction (HR-XRD) and secondary ion mass spectrometry (SIMS). WDX spectroscopy has
been carried out on different silicon-doped wide bandgap AlxGa - Nx1 samples (x between 0.80
and 1). This study found a linear increase in the Si concentration with the SiH4/group-III ratio,
measuring Si concentrations between ´3 1018 cm−3 and ´2.8 1019 cm−3, while no direct
correlation between the AlN composition and the Si incorporation ratio was found. Comparison
between the composition obtained by WDX and by HR-XRD showed very good agreement in
the range investigated, while comparison of the donor concentration between WDX and SIMS
found only partial agreement, which we attribute to a number of effects.

Keywords: nitrides, Si doping, WDX, AlGaN, SEM analysis

(Some figures may appear in colour only in the online journal)

1. Introduction

Wide bandgap group-III nitride semiconductors are of sig-
nificant current interest due to the numerous possible appli-
cations of ultra violet (UV) light emitting devices, including:
water purification [1], gas sensing, and medical diagnostics.
High quality AlxGa -x1 N:Si layers are needed for the n-type
layers in multi-quantum well based UV light emitting devices,
but the growth of these still presents challenges. AlxGa - Nx1

layers with a high AlN content >x 0.80( ) suffer from a

nonlinear increase in the activation energy of the silicon
donor from 12–17 meV in GaN [2] up to 238–255 meV in
AlN [3, 4]. This is due to formation of donor bound excitons
at the Si site as well as a reduction in the formation energy of
compensating and self-compensating defects [5, 6] resulting
in a reduced carrier density at room temperature. Furthermore,
it is not yet understood to what extent the incorporation of the
Si donor depends on the alloy composition, and no exper-
imental observation of a possible Si solubility limit has
been made.

As small variations in the composition as well as doping
and impurity concentration can have a strong effect on the
performance of a device, reliable methods for determining
these variables are required to underpin the optimization of
growth conditions and achieve high efficiency devices. In this
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paper we report on the determination of composition and
doping concentration in wide band gap AlxGa -x1 N:Si layers
using wavelength dispersive x-ray (WDX) spectroscopy in an
electron probe microanalyzer (EPMA) and compare the
results with: x-ray diffraction (XRD) and secondary ion mass
spectrometry (SIMS).

XRD measurements are widely used to obtain composi-
tional information of semiconductor structures. This is
achieved by measuring the lattice constant of a given layer
and requires prior knowledge of the strain state of the semi-
conductor in order to precisely determine the composition.
Due to the negligible effect of impurity atoms and dopants on
the lattice spacing, their concentration cannot be obtained by
XRD. In order to quantify these, SIMS is usually used in
tandem with XRD.

Using WDX-EPMA to measure the composition and
dopant concentration offers some distinct advantages. Unlike
SIMS, WDX is non-destructive and can readily be used for
quantitative multi-element analysis, allowing determination of
the composition and doping concentration at the same time.
Furthermore the calibration standards used for WDX are less
costly than the ion-implanted standards required for the
calibration of SIMS measurements determining the dopant
concentration. WDX also allows for correlation with other
scanning electron microscope (SEM) based techniques like
secondary/backscattered electron imaging, cathodolumines-
cence (CL), electron beam induced current, or electron back
scattered diffraction (EBSD), measuring multiple intrinsic
properties at the same time [7–10]. WDX furthermore enables
one to perform qualitative and quantitative element maps,
obtaining information about compositional variations on a
lateral scale with submicron spatial resolution [11]. The
capability to reliably determine the dopant concentration
using WDX in group-III nitrides has been demonstrated by
Deatcher et al [12] who measured Mg concentrations in GaN
as low as ´1.8 1019 cm−3 with very good agreement between
WDX and SIMS. The main disadvantages of using WDX
instead of SIMS for the analysis of semiconductor materials
are the higher detection limit and only a very limited ability to
probe the atomic concentration as a function of depth.
Additionally, the characterization of very thin films is chal-
lenging due to the requirement of a minimum electron energy
to excite characteristic x-rays, depending on the elements
under investigation.

2. Experimental

A number of samples have been characterized in order to
determine the incorporation properties of the Si-donor in wide
band gap AlxGa - Nx1 layers (see table 2). Each sample was
grown by metalorganic vapor phase epitaxy (MOVPE) on a
defect-reduced AlN/sapphire template [13] offering a
threading dislocation density down to ´5 108 cm−2 [14].
The AlN composition of the samples characterized by WDX
and XRD was varied from 80% to 100% and the SiH4/III
ratio during growth between ´ -9.7 10 6 and ´ -1.8 10 4.
The AlN composition of the very similar set of samples

characterized by SIMS was varied from 50% to 100% and the
SiH4/III ratio during growth between ´ -2.34 10 5 and

´ -2.84 10 4. TMAl, TMGa, NH3 and SiH4 were used as
precursors. The thickness of the doped layers is between
1000 nm and 1600 nm, but the AlN is 3000 nm thick. More
details on the growth of the AlxGa -x1 N:Si layers is given
elsewhere [15].

All WDX measurements in the EPMA (Cameca SX100)
were conducted with the incident electron beam normal to the
sample surface, with an acceleration voltage of 10 kV and a
beam current of 40 nA. At this acceleration voltage 90% of
the beam energy is deposited in the first 600 nm of an AlN
sample, according to Monte Carlo simulations using the
CASINO software [16]. The beam energy is well above the
minimum energy needed to excite the selected x-ray lines
while containing the interaction volume within the desired
layer, as for lower AlN% the penetration depth of the electron
beam will be smaller due to the higher material density (e.g.
for Al0.82Ga N0.18 90% of the beam energy is deposited in the
first 500 nm of the sample).

For the WDX characterization the peak-background
signals were compared with those from AlN:Si and GaN
standards to give the experimental k-ratios (sample intensity/
standard intensity). The Ga aL and Al aK signals were recor-
ded using a large TAP crystal (thallium acid phthalate,

=d2 25.75 Å) while for the NKα signal a synthetic pseu-
docrystal (PC1, =d2 60 Å) was used. The measured k-ratios
were converted to atomic percentages using correction rou-
tines on the EPMA.

In order to accurately determine the AlN content of
AlxGa - Nx1 layers grown on top of AlN/sapphire templates
by XRD, it is necessary to take the strain state in these layers
into account. Therefore XRD reciprocal space maps (RSMs)
near the asymmetric (10.5) reflection of AlN were recorded.
Figure 1 shows the RSMs obtained for AlxGa - Nx1 layers
with x = 0.80 (a) and x = 0.94 (b) grown on AlN. The
diagonal lines in figure 1 indicate a strain-dependent move-
ment of the reflection of a layer of fixed composition. The
lattice constants in the basal plane (alayer) and in the growth
direction (clayer) are determined from the peak position of the
AlxGa - Nx1 reflection.

Using the condition for biaxial strained layers (equation (1))
and the definition of isotropic strain (equations (2) and (3))
Schuster et al derived equation (4) [17]. By applying Vegard’s
law to the a, and c lattice parameters as well as the elastic moduli
C13 and C33 (see table 1) equation (4) can be solved analytically
in order to determine the AlN mole fraction x corresponding to
the measured alayer and clayer lattice parameters
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The measurement error due to a tilt of the sample in the
XRD sample holder was corrected by determining the tilt from a
(00.2) omega scan after aligning the goniometer for the (10.5)
reflex and correcting the measured RSM by the measured tilt
value. The error was calculated using the sum of the weighted
derivations of the tabulated material constants, as given in
table 1 [18–20] as well as the measured lattice parameters
(D = D =a c0.005 , 0.005layer layerÅ Å). An absolute error
of±1% in AlN fraction was obtained for all samples.

For the WDX characterization of the Si-dopant con-
centration in the different sample series, a pure Si wafer was
used as a standard to determine the k-ratios with a large TAP
crystal used to acquire the Si (Ka) signal. The detector
counting time was doubled compared to the counting times
for Ga and Al due to the lower Si concentration. Each of the
plotted WDX measurement points consists of the mean of 10
measurements performed along a line on each of the samples.
The WDX errors shown consist of the standard error and an
estimated systematic error of 3% of the measured signal (to
account for matrix effects, difference between standards and
samples, surface contamination, etc.) which is above the
deviation from the weight total which was at 100 2 %( ) for
each investigated sample.

The Si concentration was also measured by SIMS, which
(like WDX) is insensitive to either the elements site in the
crystal lattice or to lattice distortions. During SIMS of high
band gap AlxGa - Nx1 two effects influence the measurement.
Firstly, matrix effects [21, 22] have an important effect on the
relative ion yield as only a few percent of the sputtered species

are ionized. Therefore, a range of reference samples with dif-
ferent AlxGa - Nx1 composition were used with different sput-
tering ions to determine the relative sensitivity factors (RSF)
and the sputter rate. Secondly the accumulation of surface
charges due to ion bombardment can strongly influence the
secondary ion yield [23]. This was partially mitigated by
deposition of a conductive metal layer and electron beam
irradiation. The Si concentration was determined by the point-
by-point correction protocol. The RSF are adjusted at each data
point based on the AlxGa - Nx1 composition.

The SIMS detection limit, i.e. the lowest concentration
measured of an element for a given set of analysis conditions,
depends strongly on the AlN concentration. For example, in
GaN the Si detection limit is ´1 1016 atoms cm–3 compared
with ´3 1017 atoms cm–3 in AlN. In Al0.5Ga N0.5 the detec-
tion limit for Si is ~ ´6 1016 atoms cm–3

– ´9 1016

atoms cm–3. The errors of the SIMS measurements were
estimated by the companies who executed the measurements
as 20% and 50% respectively, largely due to errors introduced
by sample charging and possible matrix effects.

3. Results and discussion

3.1. Comparison of Al composition as determined by WDX
and XRD

In figure 2 the AlN content determined by WDX is plotted
versus the AlN content determined by XRD (10.5) RSMs of all
samples. Neglecting the one sample at a XRD aluminum

Figure 1. Reciprocal space maps near the asymmetric AlN (10.5) reflection of AlxGa - Nx1 layers with x=0.80±0.01 (a) and
x=0.94±0.01 (b).

Table 1. Material constants used for the XRD analysis [18–20].

a (Å) c (Å) C13 (GPa) C33 (GPa)

AlN 3.112±0.0005 4.982±0.0005 98.9±3.5 388.5±10
GaN 3.189±0.0005 5.185±0.0005 106.0±20.0 398.0±20

3
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nitride content of x=0.88 (WDX x = 0.92), there is very
good agreement between all of the WDX- and XRD-deter-
mined AlN compositions. In addition to the Si-doped
AlxGa - Nx1 samples, a GaN sample was investigated (see
table 2). The WDX technique enables a non-destructive
determination of the composition of wide bandgap AlxGa - Nx1

alloys and is in good agreement with XRD measurements, well
below the margin of error (2.5%–3%AlN%, see table 2). Note
that one can also quantify the composition of quaternary
InAlGaN alloys using WDX, as demonstrated by Bejtka et al
[24], which present further difficulties for XRD measurements
due to the uncertainty of uniquely attributing lattice constants
to compositions and strain.

3.2. Determination of the doping concentration by WDX

Figure 3 shows the Si concentration as determined by WDX
measurements on all investigated samples (see table 2) and
how this depends on their AlN concentration as well as the
SiH4/III ratio. As indicated by the horizontal lines, this result
shows that the Si incorporation of the investigated samples is
independent of the composition of the sample and only
depends on the SiH4/III ratio that was used during the
growth. Junxue et al [25] proposed an increasing Si incor-
poration with increasing Al content, which they attributed to
an increasing rate of parasitic prereactions in the gas phase
with increasing TMAl partial pressure. However, as the
TMAl partial pressure was kept constant for the samples in
the present study and the variation of the composition was
achieved by varying TMGa partial pressure, a negligible
change in the amount of gas phase prereactions is expected,
leading to a Si incorporation independent of the Al
composition.

In figure 4 the measured Si concentration (log scale) is
plotted against the SiH4/III ratio for all investigated samples.
The WDX was fitted to a linear function with a gradient of

´1.45 1023 cm−3 and an intercept with the concentration axis
of ´1.89 1018 cm−3. The very good fit of the measurement
data to a linear function shows that the Si incorporation in

wide band gap AlxGa - Nx1 layers increases linearly with the
SiH4/group-III ratio. This is in good agreement with findings
by other groups [26–28]. For the range of SiH4/group-III
ratios under investigation no saturation could be observed.

Comparing the WDX results for the Si concentration
with commercially performed SIMS results (see figure 4) we
found that both measurement methods show the same general
trend: a linear increase in the Si concentration with increasing
SiH4/III ratio. Comparing the Si concentration values we find
only partial agreement in the absolute concentration values
between the two measurement methods. The linear fits of the
two series show that the measured Si concentration differs by
a factor of approximately 2. For example for an Al0.95Ga N0.05

layer with a SiH4/III ratio of ´ -3.5 10 5 the Si concentration
was determined to be  ´3.6 0.7 1018( ) cm−3 by SIMS,
whereas the Si concentration determined by WDX is

 ´7.0 0.5 1018( ) cm−3. For an Al0.80Ga N0.2 layer with a
SiH4/III ratio of ´ -5.94 10 5 the discrepancy increases even
further, for the measurements done by the same company,
giving Si concentrations of  ´14 2 1018( ) cm−3 and

 ´4.1 0.8 1018( ) cm−3 for WDX and SIMS, respectively.
The SIMS measurements carried out by another employed
company on the same sample yielded a Si concentration of

 ´7.0 3.5 1018( ) cm−3 demonstrating that the values
obtained by SIMS are very sensitive to the measurement setup
and calibration standard.

The disagreement between the two measurement meth-
ods (and the two SIMS measurements) could be caused by a
variety of effects including the matrix effect and sample
charging. The matrix effect is a well known problem for
SIMS measurements, changing the secondary ion yield
depending on the matrix (i.e. composition of the sample) the
ions are embedded in. To compensate for this SIMS standards
with a known composition close to the investigated samples
are needed. Standards fulfilling this criteria were utilized in
these measurements reducing the possible influence of the
matrix effect. The same effect can also influence WDX
measurements [29]. To reduce the influence of the matrix
effect on the measured Si concentration a software correction
was applied. It has to be noted that in previous measurements
of Mg in GaN very good agreement between WDX and SIMS
was found [12]. The difference between the SIMS measure-
ments of both companies might stem from the use of different
standards for the Si determination.

Sample charging provides another challenge to overcome
in acquiring precise concentration measurements utilizing
charged particles for the group-III nitride system, and this
proves especially challenging in undoped AlxGa - Nx1 layers
with high AlN concentrations. Although the investigated
samples are all Si doped, charging effects were still observed,
influencing the measured concentrations. An estimate of the
charging on the WDX measurements can be gained by ana-
lyzing the weight total, where a deviation from the optimum
value (100%) can indicate that the obtained data has been
influenced by effects like sample charging. In this sample
series all WDX measurements resulted in a weight total of

100 2 %( ) , with no dependence on composition, indicating
that sample charging had a negligible effect on the WDX

Figure 2. AlN content of samples determined by WDX plotted
versus the AlN content determined by XRD (10.5) RSMs.
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measurement. SIMS measurements are expected to show a
stronger dependence on sample charging effects than WDX as
both the primary as well as the secondary ions will be affected
by a build-up in surface charge. To reduce the effect of
sample charging, Au coating and electron bombardment were
used for the SIMS measurements. However, even with the
discrepancy of a factor of 2 between SIMS and WDX mea-
surements (and no clear indication which technique is right)
WDX provides accurate measurements with small errors and

is capable in measuring impurity concentrations as low as
3×1018 cm−3.

In figure 5 the Si/III ratio in the bulk is plotted against
the SiH4/III ratio in the gas-phase. The Si incorporation
increases as expected linearly with the SiH4/III ratio, with a
gradient of 1.45, showing that no saturation of the Si

Table 2. Overview of the analyzed samples, values are rounded to the last significant figure.

Nr. SiH4/III ratio (10−5) AlN% XRD AlN% WDX Si WDX (1018 cm−3) Si SIMS (1018 cm−3)

1 1.92 82.3±1.0 82.2±2.5 4.2±0.4
2 5.94 80.3±1.0 80.1±2.5 14±2 7.0±3.5
2 4.1±0.8
3 17.7 82.7±1.0 82.6±2.5 28±1
4 4.16 86.8±1.0 86.2±2.6 6.3±0.6
5 6.00 84.7±1.0 83.8±2.6 9.0±0.7
6 7.06 84.2±1.0 84.9±2.6 11±1
7 10.1 85.1±1.0 85.3±2.6 14 0.7
8 14.8 86.3±1.0 86.3±2.6 25±1
9 0.972 95.9±1.0 95.7±2.9 3.0±0.4
10 2.14 93.7±1.0 94.1±2.8 5.7±0.5
11 3.50 94.7±1.0 93.8±2.9 7.0±0.5 3.6±0.7
12 4.50 94.7±1.0 94.5±2.9 9.3±0.7
13 5.50 95.6±1.0 94.8±2.9 12 0.7
14 6.62 94.7±1.0 94.7±2.9 13 0.6
15 1.99 87.1±1.0 87.2±2.6 5.4±0.6
16 2.06 88.3±1.0 91.7±2.8 5.0±0.4
17 2.14 94.4±1.0 94.8±2.9 5.4±0.5
18 8.09 100±1.0 99.9±3.0 3.0±0.5
19 00.0±1.0 00.0±0.0
20 28.5 100±1.0 20±10
21 5.91 80.0±1.0 8.3 4
22 5.91 80.0±1.0 7.2 4
23 2.34 50.0±1.0 2.2 1
24 6.35 100±1.0 1.0±0.5
25 5.11 80.0±1.0 4.1±0.8
26 5.85 90.0±1.0 4.7±0.9
27 5.11 80.0±1.0 3.8±0.8
28 5.85 90.0±1.0 4.9 1

Figure 3. The dependence of the Si concentration measured by WDX
on the AlN content and the SiH4/III ratio.

Figure 4. Log-linear plot of the Si concentrations determined by
WDX (black squares) as well as SIMS (green circles) versus the
SiH4/III ratio. Linear fits of the data are shown as lines.
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incorporation can be observed in the investigated range. As
the Si incorporation on group-III lattice sites is strongly
preferred over the incorporation on a N site, one can conclude
that the incorporation of Si atoms is slightly preferred over the
incorporation of group-III atoms [30, 31]. This is most likely
a result of pre-reactions in the gas-phase which reduce the
amount of available Ga and Al atoms for incorporation [32].
Additionally desorption of Ga adatoms from the surface could
further decrease the amount of III-atoms. All parameters as
determined by WDX, XRD, and SIMS are summarized in
table 2.

4. Summary

We have successfully demonstrated the use of WDX
spectroscopy in a commercially available EPMA for the
characterization of Si doped wide bandgap AlxGa - Nx1 layers,
determining the Si concentration as well as the composition of
the investigated layers. Very good agreement in the deter-
mination of the composition was found between WDX and
XRD, while comparison between SIMS and WDX measure-
ments of the Si concentration showed only partial agreement
which has been attributed to possible charging effects during
the SIMS measurements and matrix effects influencing both
SIMS and WDX characterization.

It was found that the Si concentration increases linearly
with the SiH4/III ratio, and no solubility limit of Si in
AlxGa - Nx1 could be found within the measurement range
investigated (up to  ´28 1 1018( ) cm−3).

The ability of WDX to determine the composition as well
as the Si doping concentration, in the concentration regime
important for the fabrication of devices (demonstrated in the
range of  ´3 0.5 1018( ) cm−3 -  ´28 1 1018( ) cm−3),
offers distinct advantages over XRD and SIMS measurements
which can only reliably provide the information on one of
these parameters. Furthermore, WDX allows the correlation
with other SEM-based techniques such as cathodolumines-
cence and electron channelling contrast imaging, possibly

providing information about interactions between threading
dislocations, luminescence properties, and compositional or
doping concentration variations.
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