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Abstract – We derive exact static as well as moving solitonic solutions to the one-dimensional
spin-orbit–coupled F = 1 Bose-Einstein condensates. The static polar soliton is shown to be
the ground state by the imaginary-time evolution method. It shows a helical modulation of
the order parameter due to the spin-orbit coupling. In particular, the moving soliton exhibits
a periodic oscillation among the particle numbers of the hyperfine states. We further explore
the temporal evolution of the static polar soliton and find that the spin-polarization exhibits
dynamical oscillations. This disappearance and re-emergence of the ferromagnetic state indicates
the mixing of the ferromagnetic and the antiferromagnetic manifolds.

Copyright c© EPLA, 2014

In the past few years, the spin-orbit coupling (SOC)
effects in multi-component Bose-Einstein condensates
(BEC) have attracted great attention [1–8]. The exper-
imental realization of synthetic magnetic fields in BECs
opens doors not only to provide an ideal pilot to model
the SOC systems, but also to bring out new physics
which has not been considered before in the materials sci-
ence, mainly due to the interplay between SOC and the
unique properties of dilute atomic gases [9,10]. One of the
novel properties resulting from the nonlinearity in BECs
is the existence of solitary-wave excitations [11]. For ar-
bitrary spin-F BECs, the order parameter has 2F + 1
complex components, producing a rich variety of spin
textures [12,13].

Multi-component vector solitons of spin-1 BECs with-
out SOC have been studied in refs. [14–17]. Recently, some
authors have studied the SOC effects on soliton struc-
tures in two-component BECs [18–20]. The spin-orbit
coupling cooperates and/or competes with spin-dependent
and spin-independent nonlinear interactions, giving rise
to the bright solitons of exotic density profile and non-
trivial dynamics as well. In this paper, we focus on the

(a)E-mail: yangshijie@tsinghua.org.cn (corresponding author)

one-dimensional (1D) spin-1 BEC with SOC. We derive
exact static as well as moving solitonic solutions to the
coupled Gross-Pitaevskii equations (GPE). The static so-
lution is proved to be the ground state by numerically
evolving the GPEs along the imaginary time. The textures
originate from the helical modulation of the order param-
eter due to the SOC. We obtain the explicit relations of
the characteristic parameters of the soliton with the var-
ious coupling strengths. On the other hand, the moving
solitonic solution shows that a population oscillates among
the hyperfine states due to the spin-orbit coupling.

In the temporal evolution of the static solitonic solution,
we find that the spin-polarization oscillates dynamically
which implies disappearance and re-emergence of the fer-
romagnetic state even though the initial state is entirely
constructed in the antiferromagnetic manifold. Our re-
sults show the same manifold mixing physics in the spinor
BEC concluded in ref. [21].

Hamiltonian. – The mean-field order parameters of
the spin-1 BEC are Ψ(x, t) = (ψ1, ψ0, ψ−1)T . The scaled
1D Hamiltonian is H = H0 +Hint. H0 =

∫
Ψ†(1

2k
2 − αk ·

f̂y)Ψdx, where α characterizes the strength of the SOC and
f̂ = (̂fx, f̂y, f̂z) are the spin matrices. The interaction term
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Hint =
∫

dx(1
2c0ρ

2 + 1
2c2|F|2), with ρ =

∑
m |ψm(x)|2 the

total density of the condensate and F =
∑

m ψ∗
mf̂mnψn the

spin-polarization vector. The nonlinear coupling constants
c0 = (g0 + 2g2)/3 and c2 = (g2 − g0)/3, with gF relating
to the s-wave scattering length of the total spin-F channel
as gF = 4πh̄2aF /M [5,12].

The energy functional reads

E =
∫

dx

{
1
2
|∂xψ1|2 +

1
2
|∂xψ0|2 +

1
2
|∂xψ−1|2

+
α√
2
(ψ∗

1∂xψ0 + ψ∗
0(−∂xψ1 + ∂xψ−1) − ψ∗

−1∂xψ0)

+
c0
2

(|ψ1|2 + |ψ0|2 + |ψ−1|2)2

+
c2
2

× [(|ψ1|2 − |ψ−1|2)2 + 2|ψ∗
1ψ0 + ψ∗

0ψ−1|2]
}
.

(1)

The SOC term iαf̂y∂x indicates that spin couples to the
momentum in the x-direction. The ground state of a uni-
form system is ferromagnetic (|F| = 1) for c2 < 0 or polar
(|F| = 0) for c2 > 0. For spinor BECs without the SOC,
the Hamiltonian is invariant under the global U(1) gauge
transformation, the SO(3) rotation in spin space, and time
reversal T ≡ e−iπf̂yK, where K takes complex conjuga-
tion [22,23]. For spinor BECs with SOC, the symmetry
is largely reduced due to the requirement of simultaneous
rotation in the spin space and in the space [23].

The stationary GPEs are written as

μψ1 =
[
−1

2
∇2 + (c0 + c2)(|ψ1|2 + |ψ0|2)

+ (c0 − c2)|ψ−1|2
]
ψ1 + c2ψ

2
0ψ

∗
−1 +

α√
2
∂xψ0,

μψ0 =
[
−1

2
∇2 + (c0 + c2)(|ψ1|2 + |ψ−1|2) + c0|ψ0|2

]
ψ0

+ 2c2ψ∗
0ψ1ψ−1 − α√

2
(∂xψ1 − ∂xψ−1),

μψ−1 =
[
−1

2
∇2 + (c0 + c2)(|ψ−1|2 + |ψ0|2)

+ (c0 − c2)|ψ1|2
]
ψ−1 + c2ψ

2
0ψ

∗
1 − α√

2
∂xψ0, (2)

where μ is the chemical potential. The dimension-
less wave functions ψ satisfy the normalization condition∫

dx(|ψ1|2 + |ψ2|2 + |ψ3|2) = 1. In the next section we will
construct an exact solution to eq. (2) in the polar state
|F| ≡ 0 manifold.

Solitonic solutions. – In order to derive an analytical
solution to the GPE (2), we focus on the polar state by
taking the relation between the hyperfine states ξ−1 = −ξ∗

1
and ξ∗ = ξ0, where ψ =

√
ρ(x)ξ(x) and ξ is a representa-

tive normalized spinor for the order parameter. This step
simplifies the complex spin-spin couplings, which lead the
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Fig. 1: (Color online) Static bright solitons for c0 = −1. Upper
row: α =

√
2. Lower row: α = 2

√
2. The solid curves are

numerical results by solving the GPEs with imaginary-time
evolution with a Gaussian initial wave packet. The circles are
from the analytical solution (4).

1D differential equations to be self-consistently solvable by
making use of the properties of hyperbolic functions [24].
We make a gauge transformation Ψ = eiαf̂yxΨ̃ which
results in

μψ̃m = −1
2
∇2ψ̃m + c0ρψ̃m + c1

∑
n

F · fmnψ̃n

− 1
2
α2

∑
n

(f2y )mnψ̃m. (3)

Equation (3) has the usual bright solitonic solution
for the attractive interaction (c0 < 0), (ψ̃1, ψ̃0, ψ̃−1) =
A(0, sech(kx), 0). For this form of solution the last term
contributes a constant which is absorbed into the chemical
potential. Hence we obtain a static solution as⎛

⎜⎝
ψ1

ψ0

ψ−1

⎞
⎟⎠ = A

⎛
⎜⎝

− 1√
2

sin(−αx)
cos(−αx)
1√
2

sin(−αx)

⎞
⎟⎠ sech(kx), (4)

where A and k are real constants. Substituting the solu-
tion into the stationary eq. (2), we get μ = − 1

2k
2 = 1

2c0A
2.

It is notable that the coefficients A and k are irrelevant
to the SOC strength α. It shows that the SOC affects
the relative distribution of the density among the hy-
perfine states. The solution (4) is proved to be stable.
We further demonstrate that the solution is exactly the
ground state by taking a Gaussian-type initial state to
the system and carrying out the imaginary-time evolu-
tion. Figure 1 shows that the analytical solution coincides
with the ground state quite well.

The bright soliton exhibits the sin(−αx) or cos(−αx)
oscillating modulation under the influence of SOC. The
oscillating frequency is directly related to the SOC
strength. The nodes in these bright solitons are new fea-
ture in comparison with the conventional BEC, which is
also addressed in the spin-orbit–coupled two-component
BECs [18]. The spin-1 matrices f̂ have different proper-
ties as compared to the Pauli matrices σ̂. For the real
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Fig. 2: (Color online) Real-time evolution of the moving soli-
ton for an initial wave packet of solution (6) at t = 0. The
parameters are c0 = −1, c2 = 1.5, α =

√
2. (a) |ψ1|2, (b) |ψ0|2,

(c) |ψ−1|2, (d) |ψ1|2 + |ψ0|2 + |ψ−1|2.

solution (4) with |F| = 0, and ξ1 = −ξ−1, the bright soli-
tons shown in fig. 1 satisfy T ψm = ψm, P̂ψm = (−1)mψm,
P̂ is the parity operator and f̂2yψ = ψ.

As to the polar state with |F| ≡ 0, the vector d
is introduced to describe the order parameter as ξ =
(−dx+idy√

2
, dz,

dx+idy√
2

)T [12,13]. From eq. (4), we note that
the d is changed from a constant vector to a cycloidally
varied vector with dy ≡ 0 which corresponds to a planar
spin. It carries a nonzero winding number and forms a
1D skyrmion so far as the boundary condition is satisfied,
as stated in ref. [25]. The more general polar solitonic
solution can be constructed as

Ψ = A

⎛
⎜⎜⎜⎜⎝

ε cos(αx) +
√

1
2 +

√
2ε2 sin(αx)

−
√

2ε sin(αx) +
√

1 − 2ε2 cos(αx)

−ε cos(αx) −
√

1
2 +

√
2ε2 sin(αx)

⎞
⎟⎟⎟⎟⎠ sech(kx),

(5)
where ε ∈ [0, 1/

√
2]. We have numerically verified

that all of these states are degenerate in energy and
are energetically stable by the imaginary-time evolution
method.

Due to the absence of Galilean invariance, it is no longer
a trivial task to construct a moving soliton for a BEC with
SOC [18]. We still find a moving solitonic solution of the
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Fig. 3: (Color online) Real-time evolution of the polar solu-
tion (4) by initially adding a perturbation. The parameters are
c0 = −1, c2 = 1, and α =

√
2. (a) |ψ1|2, (b) |ψ0|2, (c) |ψ−1|2,

(d) |ψ1|2 + |ψ0|2 + |ψ−1|2.

following form:

Ψ = A

⎛
⎜⎝

1√
2

sin(αx)

cos(αx)

− 1√
2

sin(αx)

⎞
⎟⎠ sech(k(x− vt))eivxe

i
2 (k2−v2)t,

(6)
where v is the velocity of the soliton. Figure 2 shows the
real-time dynamics of the moving solitonic solution (6)
with the velocity v = 0.1, we observe that the density
profiles of the hyperfine states exhibit periodic oscillations,
due to the effects of spin-orbit couplings.

Dynamics. – Now we study the dynamics of the static
solitons (4) by adding a small perturbation and tracing
the real-time evolution of the GPEs. The results are dis-
played in fig. 3, where the interaction strength c0 = −1,
c2 = 1 and α =

√
2. At first sight, the particle num-

ber in each hyperfine state is nearly unchanged and the
density profile is almost stable. In fact, it oscillates with
a small amplitude which indicates that a small amount
of the ferromagnetic part appears in the condensate. For
other parameters like c2 = 1.5 and c2 = 0.5, we have the
same result. We mention that the result will be the same
even if we do not add the perturbations.

In the following, we will investigate the underlying
physics of the oscillations in the dynamical evolution of
the static soliton. As we know, a dominant mechanism for
destroying the knot (3D soliton) in spin-1 polar BEC is
the spin current caused by the spatial dependence of the
d-field [26]. The spin current induces local magnetization
according to [12]

∂F
∂t

=
h̄

M

∑
d × ∂i(ρ∂id), (7)
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Fig. 4: (Color online) Evolution of the spin-polarization of (4)
without (a) and with (b) initial perturbations, respectively.
The parameters are c0 = −1, c2 = 1 and α =

√
2.

which will destroy the polar state. The same mecha-
nism applies in the present case. By substituting the
wave function eq. (4) into eq. (7), it is straightforward
to calculate the time evolution of the local magnetiza-
tion as ∂Fy

∂t |t=0 = 2αρktanh(kx). Consequently, the spin-
polarization will always evolve in time even if the initial
polar state is stable. This can also be verified by numer-
ical simulations. Let the initial polar state (4) evolve for
a short time Δt, we note that the spin expectation value
per atom fx = 0, fz = 0, and fy �= 0. It implies that the
temporal evolution cannot occur solely within the polar
manifold for t > 0.

This phenomenon is related to the dynamical mixing
of the polar (d) and ferromagnetic (F) manifolds. In or-
der to give a qualitative analysis, we study the quantity
P =

∫
dx|F| to show the extent deviating from the polar

state. P = 0 indicates that the state is a completely polar
state while P = 1 is a fully ferromagnetic state. From
fig. 4, we observe that the value of P becomes nonzero
which oscillates with time. In fig. 4(a) without initial per-
turbation, the emergence and disappearance of the ferro-
magnetic part is very small, i.e., Pmax < 0.005. In fig. 4(b)
with initial perturbation, a relatively large ferromagnetic
part Pmax < 0.08 emerges. This situation can be under-
stood as follows: Once the system starts to evolve, the
initial polar state with well-defined d-vector and inhomo-
geneous density will induce a nonzero polarization F, lead-
ing to a mixing dynamics of the polar and ferromagnetic
states. The dynamical evolution of F forms a competition
with the d-vector, yielding a reciprocation of growth and
reduction of the state that is close to the ideal polar state.
Since the static solution is exact and energetically stable,
it does not show a large oscillation, in contrast to the
2D skyrmion case in the antiferromagnetic spin-1 Bose-
Einstein condensate which is energetically unstable [27].

A recent paper has studied the hydrodynamics theory
of spin-1 BEC with the initial state defined solely within
the ferromagnetic or antiferromagnetic manifold [21]. It
concludes that the system evolves into a mixture of the
two manifolds, regardless of the sign and strength of the

spin-dependent interaction. The analysis also applies to
our case. In return, our results in the SOC spinor conden-
sate confirm the theory of ref. [21].

In summary, we have analytically presented static and
moving solitonic solutions to the SOC spinor BECs. We
find that the static solution is the ground state and the
moving solution exhibits population oscillations among
the hyperfine states. Due to the unique feature of the
spin-1 BEC, the dynamics is distinct with respect to the
two-component BEC. The polar state will evolve into a
state of mixed manifolds. A feasible experimental reali-
sation is proposed in [4,6,16]. Methods are expected to
realise a spin-1 spin-orbit–coupled quantum gas by the
Raman lasers.
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