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Abstract – Collisionless plasmas, such as those encountered in tokamaks, exhibit a rich variety of
instabilities. The physical origin, triggering mechanisms and fundamental understanding of many
plasma instabilities, however, are still open problems. We investigate the stability properties of a
3-dimensional collisionless Vlasov plasma in a stationary homogeneous magnetic field. We narrow
the scope of our investigation to the case of Maxwellian plasma and examine its evolution with
an electrostatic approximation. For the first time using a fully kinetic approach we show the
emergence of the local instability, a transient growth, followed by classical Landau damping in a
stable magnetized plasma. We show that the linearized Vlasov operator is non-normal leading
to the algebraic growth of the perturbations using non-modal stability theory. The typical time
scales of the obtained instabilities are of the order of several plasma periods. The first-order
distribution function and the corresponding electric field are calculated and the dependence on
the magnetic field and perturbation parameters is studied. Our results offer a new scenario of the
emergence and development of plasma instabilities on the kinetic scale.

Copyright c© EPLA, 2014

Introduction. – Stability theory, with its origins in
mechanics, has had a long history with works in the
18–19th century and contributions by mathematicians and
physicists [1–6]. The main strategy is a consideration of
small amplitude disturbances imposed on the base state,
and linearization of the equations. Assuming an expo-
nential time dependence of the perturbations, the Cauchy
problem reduces to an eigenvalue problem of finding a
spectrum of the governing operator. Then a dispersion
relation (frequency as a function of the wave number) is
derived and depending on the sign of the real part of the
eigenvalues one may deduce the stability characteristics
of the system under investigation. This analysis essen-
tially determines the stability as t → ∞. The further
evolution of the stability theory, also known as modal sta-
bility theory, was successful in explaining many physical
phenomena in fluid mechanics, plasma physics, etc. How-
ever, there were still a number of discrepancies between
theory and experimental observations, which the classical
stability theory failed to resolve, even by extending the
existing classical theory to nonlinear orders. Problems of
finite time scale stability in hydrodynamics are the typical

examples among such unresolved problems. One of the
most challenging puzzles was the discrepancy between the
calculated Reynolds numbers and the experimentally ob-
served critical Reynolds numbers in wall-bounded shear
flows (see, e.g., ref. [7]).

In the 1990s, classical stability theory underwent serious
reconsideration resulting in the emergence of the non-
modal stability theory, with the realization that the sta-
bility of a system must be understood in a broader sense.
Arguably, hydrodynamic stability theory was the first
branch of science that experienced a noticeable change in
this regard. Farrell et al. showed that a system can ex-
hibit an instability, or so-called transient growth, on finite
time scales having all the eigenvalues in the lower half-
plane, i.e. stable modes [8–10]. It was discovered that
the reason of transient growth is the non-orthogonality of
the eigenfunctions of the governing linear operator, i.e.
a non-normality of the linear operator. The linearized
Navier-Stokes operator is an example of a non-normal op-
erator, and many fluid systems can experience a period of
transient growth during which the perturbations increase
in magnitude [11,12]. Typical examples are the parallel
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viscous shear flows such as plane Poiseuille and Couette
flows (see, e.g., refs. [13,14]). The stability of such flows
was reconsidered with no assumptions about the form of
the disturbances in refs. [15,16]. The information about
the stability on finite time scales missing in the classical
stability theory was recovered in the framework of non-
modal approach [7–16].

It is natural to question whether plasma systems such as
tokamaks, space plasmas, etc. can also exhibit transient
growth or short time scale instabilities due to the non-
normality of the governing operators. The non-modal sta-
bility theory was used in magnetohydrodynamics (MHD)
(see, e.g., refs. [17–19]), however due to infrequent or no
collisions, a fluid treatment of plasma (e.g. using MHD) is
generally considered inadequate, and the most appropriate
framework is kinetic theory. Recall that early attempts by
Vlasov to examine the stability properties of the kinetic
equation for collisionless plasma systems were somewhat
flawed [20,21]. This was realized and improved by Landau
in ref. [22], where the Landau damping phenomenon was
discovered, predicting stability of the Maxwellian collision-
less plasma as t → ∞. In follow-on works on plasma sta-
bility (see, e.g., refs. [23,24]), the classical stability theory
was used. Recently, Podesta has addressed the issue of
transient growth for the case of one-dimensional collision-
less plasma and showed that, indeed, one may construct
solutions of the linearized problem leading to the emer-
gence of the short time scale instabilities [25]. In order
to examine transient growth of instabilities for a magne-
tized plasma such as that encountered in tokamaks, it is
imperative to consider the presence of a magnetic field.
One such attempt to include a magnetic field was ad-
dressed in ref. [26] in the context of a fluid model (due
to presumed complications using kinetic theory), and the
authors acknowledged that a fully kinetic approach based
on the Vlasov equation must be used in order to draw
physically relevant conclusions regarding the stability of a
magnetized plasma. It is precisely the goal of this work
to examine whether transient growth occurs in a collision-
less plasma governed by the kinetic Vlasov equation in the
presence of an external magnetic field. We turn our atten-
tion to the stability analysis of such a system next, on a
purely kinetic level, and further address the issue of non-
normality of the governing linearized stability operator.

Vlasov magnetized plasma: formulation of the
model and basic equations. – We begin our discus-
sion with the 3-dimensional kinetic Vlasov equation for
the distribution function f (r,v, t) [20]:

∂f

∂t
+ (v · ∇) f +

q

m
(E + v × B) · ∂f

∂v
= 0, (1)

where q,m,B (r, t) and E (r, t) are the electric charge,
mass, magnetic field and electric field, respectively. Addi-
tionally, these quantities are related self-consistently to
each other by the Maxwell equations of electrodynam-
ics. In general, a plasma system such as tokamak has a

complex magnetic field geometry. However, as a first step,
we consider a stationary homogeneous external magnetic
field, so that the electric field can be determined from an
electrostatic potential, leading to the Vlasov-Poisson sys-
tem to be studied. From a physical point of view it is
a reasonable assumption, since in tokamaks, typically, the
variation of the magnetic field occurs on much slower time
scales than those considered in our paper [27,28]. Follow-
ing the tenets of classical linear stability analysis, we im-
pose a small arbitrary perturbation f1 on the equilibrium
state f0:

f (r,v, t) = f0 (v) + f1 (r,v, t) , f1 � f0. (2)

Note that we do not specify any particular functional form
of the perturbation. As mentioned above, the non-modal
approach and full stability picture can be obtained only
when the disturbance is considered in its most general
form. The only assumption we make is the smallness of
the perturbation compared with the equilibrium state of
the plasma. Here we make the somewhat obvious choice
of a Maxwellian equilibrium. As it is known, the mag-
netic field introduces anisotropy resulting in different tem-
peratures in directions perpendicular and parallel to it,
possibly leading to the emergence of the instabilities in
the classical stability theory. Since our aim is to sepa-
rate a transient growth phenomenon from all other possi-
ble mechanisms leading to other types of instabilities, and
to show that it is an internal property of Vlasov plasma
driven by the non-normality of the Vlasov operator excep-
tionally, without loss of generality, we consider an isotropic
equilibrium given by

f0 (v) =
n0

(2π)3/2
v3

T

exp
(
− v2

2v2
T

)
, (3)

where vT =
√

KBT/m is the thermal speed, T is the tem-
perature and KB is the Boltzmann constant. As usual,
this distribution function is normalized to the particle den-
sity n0 to give

∫
f0 (v) dv = n0.

Linear stability analysis: non-normality of the
linear operator. – We obtain the linearized equation by
substituting eq. (2) into the Vlasov equation, eq. (1), and
by retaining terms up to first order only:

∂f1

∂t
+ (v · ∇) f1 +

q

m
[(v × B) · ∇vf1 + (E1 · ∇v) f0] = 0.

(4)
A traditional way to solve this type of problem is to use
the method of characteristics followed by the Fourier and
Laplace transformations [22,24,29]. It is more convenient
for us first to Fourier transform eq. (4) leading to

∂f1,k

∂t
+ i (k · v) f1,k +

q

m
(v × B) · ∇vf1,k

+
q

m
(E1,k · ∇v) f0 = 0. (5)

We henceforth omit subscript 1,k so the notation f,E
refers to the Fourier-transformed first-order distribution
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function and the electric field, respectively. The dy-
namics of the electric field is determined by the Fourier-
transformed linearized Maxwell equation for the curl of
the magnetic field:

∂E
∂t

= − q

ε0

∫
vfdv. (6)

Rewriting eqs. (5) and (6) in the form of a linearized
dynamical system,

∂X
∂t

= ÂX, where X =
(

f

E

)
, Â =

(
a11 a12

a21 a22

)
,

(7)
where Â is a linear operator of the magnetized Vlasov
plasma, or Vlasov operator, with the following elements:

a11 = −i (k · v) − q

m
(v × B) · ∂

∂v
,

a12 = − q

m

∂f0

∂v
·, a21 = − q

ε0

∫
vdv·, a22 = 0,

(8)

where “(·)” denotes the inner product. A necessary condi-
tion for a system governed by eq. (7) to exhibit transient
growth, even if the eigenvalues of Â indicate stability, is
the non-normality of the operator Â, i.e., ÂÂ+ �= Â+Â,
where Â+ is the adjoint of Â. Straightforward algebra
shows that the Vlasov operator given by eq. (8) with the
inner product 〈X1,X2〉 =

∫
X1

∗X2dt, where “(∗)” de-
notes conjugate transpose and Xi is given by eq. (7), is
indeed non-normal. A consequence of this non-normality,
as shown later, is the emergence of the growth of the
perturbations on short time scales corresponding to the
plasma period. Note that Podesta [25] considered a one-
dimensional field-free plasma, and examined a zero initial
perturbation of the distribution function and a non-zero
initial perturbation of the electric field. A linearized equa-
tion of the form ∂E/∂t = AE (eq. (12) in ref. [25]) was ob-
tained and the non-normality of the linearized operator A
was examined. In contrast, our non-normality analysis is
to consider all governing equations simultaneously and to
analyse the full operator, as we have done in eqs. (7), (8).

Non-modal stability approach and transient
growth. – We employ the method of integration along
the particles unperturbed trajectories, which is one of the
standard methods to solve eq. (5) (the reader may consult,
for example, ref. [30]). We introduce new variables (t′,v′),
such that

dv′

dt′
=

q

m
v′ × B, with v′ (t = t′) = v, (9)

meaning that for all times t < t′ the dynamics of charges is
described simply by Lorentz equations. This implies that
eq. (5) can be rewritten as a non-homogeneous ordinary
differential equation:

df

dt′
+ i (k · v′) f +

q

m
(E · ∇v′) f0 = 0. (10)

For simplicity we assume the magnetic field B in the
Z-direction, and the wave vector k in the XOZ -plane. Un-
der the electrostatic approximation, it is evident that in
our new reference frame the electric field is parallel to the
wave vector so that E

k k · v′ = E · v′. Integrating eq. (9)
gives the unperturbed trajectory

v′
x = vx cos ω (t − t′) − vy sin ω (t − t′) ,

v′
y = vx sin ω (t − t′) + vy cos ω (t − t′) ,

v′
z = vz,

(11)

where ω = qB0/m is the cyclotron frequency and B0 is
the magnitude of the magnetic field B. These trajectories
are taken into account in eq. (10) to obtain the first-order
distribution function

f = f (k,v, 0) exp {−i (Atvx − Btvy + kzvzt)}

+
q

mk

∫ t

0

dτ

v

df0

dv
E (vx (kx − ωBt−τ ) − vyωAt−τ + kzvz)

× exp {−i (vxAt−τ − vyBt−τ + kzvz (t − τ))} , (12)

describing the perturbations propagating in a collisionless
magnetized Vlasov plasma, where

At =
kx

ω
sin ωt and Bt =

kx

ω
(1 − cos ωt) . (13)

To demonstrate transient algebraic growth of perturba-
tions followed by late-time Landau damping [22], we focus
on the temporal evolution of the electric field, namely, we
use the Fourier-transformed Maxwell equation for the di-
vergence of the electric field:

E (k, t) = − q

iε0k

∫
f (k,v, t) dv, (14)

where we have taken into account the fact that the elec-
tric field is parallel to the direction of propagation. The
substitution of the distribution function, eq. (12), into the
previous equation results in the following Volterra equa-
tion of the second kind:

E (k, t) = J (k, t) +
∫ t

0

K (k, t − τ) Edτ, (15)

where

J (k, t) = − q

iε0k

∫ +∞

−∞
f (k,v, 0)

× exp {−i (Atvx − vyBt + kzvzt)}dv (16)

and the integral kernel is

K (k, t − τ) = − q2

iε0mk2

∫ +∞

−∞

1
v

df0

dv

× (vx(kx − ωBt−τ ) − vyωAt−τ + kzvz)
× exp {−i (vxAt−τ − vyBt−τ + kzvz (t − τ))}dv. (17)

Note that the function J (k, t) depends on the initial per-
turbation f (k,v, 0), while the kernel K (k, t − τ) depends
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on the velocity derivative of the initial equilibrium func-
tion f0. The freedom in f (k,v, 0) choice is limited only
by the assumption of the smallness of the perturbations,
eq. (2). Here we limit our choice to odd functions of v
so that the total number density of particles, n0, is un-
changed, and consider one such possibility:

f (k,v, 0) =
vT

(2π)3/2
v5

f

(C · v) e−v2/2v2
f , (18)

where in general C = (Cx, Cy, Cz) and vf are some charac-
teristic parameters of the initial data. Note that a similar
choice was made by Podesta [25]. These parameters are
related to the amplitude and the duration of the tran-
sient regime in plasma. Further simplifying, we consider
an isotropic case when C = C0e and v = v√

3
e, where C0

is some constant and e = (1, 1, 1). We further also con-
sider three cases of perturbation modes: kx = kz (oblique
modes), kx = 0 (parallel modes), kz = 0 (perpendicular
propagation modes) and introduce the following dimen-
sionless quantities:

t̂ =
t

τp
=

ωpt

2π
, ω̂ = 2π

ω

ωp
, α =

vf

vT
, k̂ = kλD, (19)

where ωp =
√

n0q2/mε0 is the plasma frequency, τp is the
plasma period and λD is the Debye length. Given the
initial profile, eq. (18), and the Maxwellian equilibrium,
eq. (3), we derive the following expressions for K (k, t − τ)
and J (k, t) as follows:

K (k, t − τ) ≡ 1
τp

K̂(k̂, t̂ − τ̂)

= − (2π)2

τpk2

[
k̂2

z

(
t̂ − τ̂

)
+

k̂2
x

ω̂
sin ω̂

(
t̂ − τ̂

)]

× exp

{
−2π2

[
2k̂2

x

ω̂2

(
1−cos ω̂

(
t̂−τ̂

))
+k̂2

z

(
t̂−τ̂

)2

]}
,

(20)

and

J (k, t) ≡
(

qvT τp

ε0

)
Ĵ

(
k̂, t̂

)

=
(

qvT τpC0

ε0k

) [
k̂x

ω̂
sin ω̂t̂− k̂x

ω̂

(
1−cos ω̂t̂

)
+k̂z t̂

]

× exp

{
−2π2α2

[
2k̂2

x

ω̂2

(
1 − cos ω̂t̂

)
+ k̂2

z t̂2

]}
,

(21)

where the prefactor
(

qvT τp

ε0

)
in J(k, t) has units of the

Fourier-transformed electric field. The non-dimensional
equation governing the electric field is then

Ê
(
k̂, t̂

)
= Ĵ

(
k̂, t̂

)
+

∫ t̂

0

K̂
(
k̂, t̂ − τ̂

)
Êdτ̂ . (22)

Within the context of the linear stability analysis, the am-
plitude C0 may be scaled out, or normalized to unity.

ω π

ω π

ω π

^

^ ∧ ∧

∧ ∧ ∧

∧ ∧ ∧

Fig. 1: (Colour on-line) Transient growth of the electric field
for different propagating modes with α = 0.05.

Evidently, the functions J and K for small times grow
algebraically and are dominated by exponential decay at
later times. A standard way to solve eq. (22) involves
Laplace transforms. However, in our case due to com-
plexity of eqs. (20) and (21), we solve eq. (22) directly
by numerical means (several verification and convergence
tests were conducted and are not reported here). We note
that one may independently choose the strength of the ex-
ternal magnetic field B0, the equilibrium number density
n0 and the temperature T . These choices fix the ther-
mal speed vT , the Debye length λD and the frequencies ω
and ωp. After non-dimensionalization, the three essential
parameters are: ω̂, the ratio of the two frequencies, and
essentially the only non-dimensional parameter relevant
to the dynamics of the Vlasov equation; α, the parame-
ter governing the initial perturbation of the distribution
function; and the wave number k̂. In fig. 1 we plot the so-
lution of eq. (22) with α = 0.05 for three cases of oblique
(k̂x = k̂z = 0.25), parallel (k̂z = 0.3) and perpendicu-
lar (k̂x = 0.33) propagating modes. The non-dimensional
frequency ω̂ is chosen to be relevant to tokamak parame-
ters so that for a choice of B0 = 1T , n0 = 1019/m3 and
T = 108K, we obtain ω̂ ≈ 2π. As it can be seen, there
is a transient growth of the electric field over ∼ 10–15
plasma periods followed by the classical Landau damping.
Depending on the parameters ω̂, k̂ and α, the duration
and the amplitude of the transient growth can vary, thus
one may prolong or shrink the instability region. Obvi-
ously, this instability is limited and cannot be extended
to infinitely large times and amplitudes. The smallness of
the perturbations, eq. (2), leads to a constraint imposed
on the initial parameters, which for the planar waves, for
instance, reduces to C0 � α4 exp

[(
1 − α2

)
/2

]
.

Transient growth: regimes and limits. – We now
study the dependence of the transient growth on three
parameters of the system, i.e. ω̂, k̂ and α for the case of
the isotropic wave numbers, k̂x = k̂z, which we denote as k̂
henceforth. First we consider the influence of the magnetic
field strength. In fig. 2 we plot the time history of the elec-
tric field for k̂ = 0.25 and α = 0.05 for various values of the
non-dimensional frequency ω̂ ranging from 0 (zero mag-
netic field) to ∞ (infinitely strong magnetic field). For all
values of ω̂ we observe the transient growth of the electric
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Fig. 2: (Colour on-line) Dependence of Ê on the magnetic field
(or non-dimensional parameter ω̂) for k̂ = 0.25, α = 0.05.
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Fig. 3: (Colour on-line) Dependence of Ê on the wave number
k̂ for α = 0.05, ω̂ = 2π.

field over 10–15 plasma periods. The solution exhibits two
frequencies: one corresponding to the plasma frequency
ωp (non-dimensionalization leads to a plasma period of
unity) and the second frequency corresponding to the cy-
clotron frequency. The gyroperiod for the case ω̂ = 2π100
is 0.01τp and is evident in the inset in fig. 2. The lim-
iting case of ω̂ = 0 solution, which can be qualitatively
compared to that in ref. [25], exhibits only the plasma os-
cillations. As ω̂ increases the peak electric field decreases
and occurs at a slightly later time, and the oscillations
decrease in amplitude until the limiting case of ω̂ → ∞,
which is shown as the dashed black curve in the inset in
fig. 2. The electric field solution follows the same profile as
Ĵ (not shown) with its maximum lagging slightly behind
the maximum of Ĵ . The leading-order term in Ĵ for ω̂ = 0
(respectively, ω̂ → ∞) is t exp(−2π2α2k̂2t̂2) (respectively,
t exp(−4π2α2k̂2t̂2)), and the time when maximum Ĵ (and
an estimate of when maximum of Ê) occurs is tmax|ω̂=0=
1/(2παk̂) and tmax|ω̂→∞=1/(

√
22παk̂). Thus, increasing

the magnetic field from 0 to very high values shifts the
maximum of the transient growth and reduces its value
only by the factor of

√
2. We now examine the depen-

dence of Ê on the wave number k̂. Perturbations of the
wavelength shorter than Debye length are of no physical
interest, thus we obtain a natural upper cut-off of the per-
turbations, i.e. k̂max = π

√
2, with the limit of k̂ → 0

indicating very long wavelength perturbations. Figure 3
shows the dependence of the transient growth on k̂ for

100 101 102 103 10410-2

10-1

100
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102

∧
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∧ E
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α=0.0005

α=0

0 1 2 3 4 5
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∧
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Fig. 4: (Colour on-line) Dependence of Ê on α for k̂ = 0.25,
ω̂ = 2π.
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α

∧
k

||E
|| ∞

∧

Slope ~ 1/α

Fig. 5: (Colour on-line) ||Ê||∞ as a function of k̂ and α for
ω̂ = 2π.

α = 0.05 and ω̂ = 2π. Perturbations on the scale of the
Debye length die out very quickly on the order of a few
plasma periods. As k̂ decreases the peak Ê increases and
then decreases with the time at which the maximum oc-
curs shifting to the right. Also instabilities corresponding
to the smaller k̂ (longer wavelengths) have slower decay
in time, which is in agreement with the Landau theory,
showing that the Landau damping is weaker for longer
wavelengths. For very long wavelength perturbations (see
inset in fig. 3) we observe a very oscillatory solution with
large amplitude. In order to see the tendency of the elec-
tric field, we filter the solution to remove these oscillations,
revealing a small growth followed by the Landau damping
over time scales of hundreds of plasma periods. Note that
the limiting solution (k̂ = 0) is simply oscillatory with no
growth at all.

The dependence of Ê on α is shown in fig. 4. From
these plots we can draw several conclusions. The first one
is that by varying α one can control the peak electric field
and the duration of the transient growth. In particular,
by setting the ratio between the characteristic velocities
sufficiently small, one can enhance the amplitude of the
transient growth and prolong the duration of this local in-
stability (see fig. 4). The second is that large α perturba-
tions decay quickly in less than a couple of plasma periods
(see top-left inset in fig. 4). The asymptotic solution for
α = 0 grows without limit in time and is plotted in fig. 4
for reference purposes. The first term in the series solu-
tion for α = 0 indicates that the time at which Ê attains
its peak scales as 1/α and the peak magnitude of Ê also
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scales as 1/α. This is borne out by numerical results in the
bottom-right inset in fig. 4, wherein we plot the scaled elec-
tric field αÊ vs. scaled time αt̂ for α = 0.05, 0.005, 0.0005,
showing the universality of these solutions.

We plot the maximum of Ê, denoted by the ∞-norm
||Ê||∞, by varying α and k̂ in fig. 5. Maximal transient
growth can be achieved when α approaches its minimal
value, i.e. α = 0 and vice versa, the transient growth can
be neglected, if α is infinitely large. The largest transient
growth occurs for k̂ ≈ 0.7. Another interesting observa-
tion concerns the dependence of the maximal transient
growth for different wavelength perturbation regimes. As
one can see in fig. 5, the amplitude of the transient growth
is not a monotonic function of k̂. In other words, there is
a specific perturbation of a specific wavelength leading to
the highest value of the transient growth amplitude ||Ê||∞.
In our case this value is k̂ ≈ 0.7. All the perturbations of
shorter or longer wavelengths lead to the lower amplitudes
of the perturbations.

Conclusions. – The main contribution of the work
presented here is that using a fully kinetic approach,
we have investigated the stability properties of the mag-
netized Vlasov plasma in the magnetic field, and have
clearly demonstrated that such a plasma exhibits tran-
sient growth. The obtained local instability emerges due
to the non-normality of the governing operator and is fol-
lowed by the classical Landau damping. The typical time
scale of this transient growth is of the order of several
plasma periods. The existence of kinetic instabilities in
magnetized plasma is of crucial importance in essentially
collisionless plasma systems such as tokamaks. Transient
growth for a nominally stable plasma may be detrimental
for plasma confinement, especially, as we have shown, that
even in the limit of an infinite magnetic field the transient
growth is barely suppressed. Therefore, it is important
to identify such possible transient instabilities and study
their physical properties and behaviour. We have shown
that depending on the initial conditions and perturbation
parameters one can control the transient growth regime,
i.e. its speed, duration and amplitude. The maximal tran-
sient growth is calculated and its behaviour is studied as
well. Our work is an initial step towards understanding
the kinetic instabilities in tokamak physics. Although we
discuss the emergence of transient growth in a station-
ary homogeneous magnetic field, we conjecture that more
complex magnetic field laboratory configurations will also
exhibit such transient growth. Stability analysis of the
magnetized plasma in more realistic magnetic field ge-
ometries is an ongoing project and will be a topic of our
future work.
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