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Abstract – We introduce a stochastic sandpile model where finite drive and dissipation are
coupled to the activity field. The absorbing phase transition here, as expected, belongs to the
directed percolation (DP) universality class. We focus on the small drive and dissipation limit, i.e.
the so-called self-organised critical (SOC) regime and show that the system exhibits a crossover
from ordinary DP scaling to a dissipation-controlled scaling which is independent of the underlying
dynamics or spatial dimension. The new scaling regime continues all the way to the zero bulk drive
limit suggesting that the corresponding SOC behaviour is only DP, modified by the dissipation-
controlled scaling. We demonstrate this for the continuous and discrete Manna model driven by
noise and bulk dissipation.

Copyright c© EPLA, 2014

Introduction. – Sandpile models [1–10] show scale
free avalanche patterns and are taken as prototype mod-
els of self-organized criticality (SOC). In these models
sand grains (particles or energy) are added randomly to
an empty lattice. Whenever the number of grains in a
site crosses a predefined threshold value, it becomes un-
stable (active) and relaxes by toppling. In a toppling
event, particles or energy from each active site is redis-
tributed among the neighbours, which may further create
new topplings. Such a cascade of toppling events, com-
monly known as an avalanche, continues in the system un-
til all sites become stable (inactive); a new grain is added
then. The large avalanches usually hit the boundary where
some energy is dissipated out of the system. The interplay
of the slow driving, fast relaxation, and dissipation at the
boundaries brings in a self-organized critical state with-
out any fine-tuning of parameters. It is well known that
the critical behaviour of sandpile models with stochastic
toppling rules differ from that of those having determinis-
tic dynamics and form a generic universality class, namely
the Manna class [6].

It was argued by Dickman and co-workers [11], and
supported by several other works [12], that the critical
behaviour of SOC can be understood as an ordinary ab-
sorbing phase transition (APT) in a fixed energy sandpile

(FES). The slow drive and boundary dissipation in SOC
ensure that density gets adjusted to the critical value.
Since the most robust universality class of absorbing state
phase transitions is DP, one naturally asks whether the
self-organised criticality of stochastic sandpile models is
in any way connected to DP. This doubt is bolstered by
the fact that the exponents of the Manna class are not
very different from DP. Several attempts have been made
over the last decades to understand this riddle [13–15].
In fact, both stochastic and deterministic sandpile models
flow to DP when perturbed [14]. It was also suggested re-
cently that the ordinary critical behaviour of fixed energy
stochastic sandpiles belongs to DP [16], though this issue
is still being debated [17]. All these works raise a possibil-
ity that the observed self-organised criticality in stochastic
sandpile models is also related to DP.

In this letter we attempt to explore this possibility and
bridge the gap between DP and SOC. Conventionally self-
organised sandpile models are studied with dissipation
only at the boundaries. Another equivalent approach,
where dissipation is incorporated in the bulk of a closed
system [14,18], has certain advantages; it avoids difficulties
like non-zero particle current from the bulk towards the
boundary [19,20], inhomogeneous correlated height pro-
files [13] and other unusual boundary effects [15]. Here we
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Fig. 1: (Colour on-line) (a) Schematic phase diagram: the grey
shaded area represents the scaling regime around the DP criti-
cal line. In the small drive-dissipation regime, the crossover line
(dashed) separates ordinary DP and SOC-like scaling (orange
shaded area). Ordinary DP scaling disappears in the zero drive
limit. (b) The actual phase diagram for the driven dissipative
Manna model in 1d.

choose to work with bulk dissipation (parametrized by λ)
and introduce the additional finite drive σ coupled to the
activity in a way that the dynamics of the driven dissipa-
tive sandpile model reduces to SOC in the σ → 0 limit
and site DP when λ → 1. We find that in the small drive-
dissipation limit, a new scaling regime emerges in the sub-
critical phase when one moves away from the critical λc

—observables which ordinarily scale as (λ − λc)a crosses
over to (λ−λc)ã. We argue that the new exponent ã can be
expressed in terms of the known DP exponents a and γ as

ã = a/γ. (1)

This new scaling regime persists all the way down to
the σ = 0 line suggesting, first, that what is commonly
know as bulk dissipative SOC (for σ = 0 and small λ) is
nothing but DP with modified scaling, and secondly, that
a SOC-like behaviour can also be observed in systems
with finite drive and dissipation, both local. A schematic
representation of this scenario is presented in fig. 1(a).
We use a numerical simulation to verify this picture for
the continuous Manna model in one dimension (1d) and
2d, and the discrete Manna model in 1d.

Driven dissipative continuous Manna model. –
The driven dissipative continuous Manna model can be

defined on a general graph as follows. Each site R on
the graph has a continuous variable ER, called energy,
associated with it; sites with ER ≥ 1 are declared active.
At any given instant, let Sa be the set of active sites and
Sn, the set of neighbours of the active sites (which may
or may not be active). The dynamics proceeds as a three-
step parallel update:
I. Dissipation: All sites belonging to Sa∪Sn, i.e. the sites
which are active themselves or have at least one active
neighbour, dissipate the λ fraction of their energies,

ER → (1 − λ)ER ∀ R ∈ Sa ∪ Sn. (2)

II. Distribution: All active sites distribute their remaining
energy randomly among the neighbours, i.e. for all R ∈

Sa, if NR is the set containing neighbours of R

ER′ → ER′ + rR′ER ∀ R′ ∈ NR

and ER → 0 ∀ R ∈ Sa, (3)

where {rR′ ∈ (0, 1)} are random numbers satisfying∑
R′∈NR

rR′ = 1.

III. Drive: Finally, the drive is added with probability σ
independently to all the sites belonging to Sn (i.e. the
receiving sites) in the form of

ER → ER + 1 with probability σ. (4)

Note that, in this dynamics, the energy is added to or
dissipated from the system only when it is active, ensur-
ing that absorbing configurations are not spontaneously
activated by noise.

Some of the limiting cases of this dynamics are of special
interest. Without any drive or dissipation σ = 0 = λ, this
model maps to the conserved continuous Manna model
(CCMM) in d-dimension [16]; the conserved density needs
to be tuned to locate the absorbing phase transition in this
fixed energy sandpile model. On the other hand, when
λ = 1, the active site surely becomes inactive after each
update, and each of the sites which have at least one active
neighbour gets activated itself with probability σ. This is
the dynamics of site-directed percolation; thus for λ = 1
the present model would show an absorbing state transi-
tion at [21]

σDP
c =

{
0.705489, d = 1,

0.34457, d = 2, square lattice.
(5)

For non-zero noise and dissipation, the parameters λ
and σ control the average energy of the system. However,
the absorbing configurations of this model are no differ-
ent from those of CCMM since the additional dynamics I.
and III. cannot be executed on inactive states. For any
given λ, the system is expected to fall into an absorbing
configuration when σ is decreased below a critical thresh-
old σc(λ). Since the model satisfies all the criteria of the
DP conjecture [22], one naturally expects that the critical
behaviour along the critical line σc(λ), which includes the
site DP critical point (λ = 1, σ = σDP

c ), would belong to
the DP universality class.

Let us consider the d = 1 case in detail. On a one-
dimensional periodic lattice with L sites i = 1, 2, . . . , L,
each having a continuous variable called energy Ei, the
three-step parallel dynamics reads as follows. (I.) All sites
belonging to Sa∪Sn, dissipate the λ fraction of their ener-
gies Ei → (1− λ)Ei. (II.) Then the active sites distribute
their remaining energy randomly among the two neigh-
bours, i.e. Ei±1 → Ei±1 + [12 ± (ri − 1

2 )]Ei and Ei → 0.
Here ri is a random number distributed uniformly in (0, 1).
(III.) Finally, all the sites i ∈ Sn, are activated by adding
unit energy independently and randomly with probability
σ, i.e., Ei

σ−→ Ei + 1.
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Table 1: Directed percolation exponents along with the modified values in SOC-like scaling.

τs γ κs τt τ κt γ̃ κ̃s τ̃ κ̃t

1d 1.108 2.277 2.553 1.159 1.45 1.724 1 1.121 0.636 0.757
2d 1.267 1.594 2.174 1.457 0.712 1.295 1 1.364 0.447 0.812

We have studied the absorbing state phase transition
here for a set of values of λ taking σ as the tuning param-
eter σ and verified explicitly that the whole critical line
σc(λ), shown in fig. 1(b) belongs to the DP universality
class. For details of this study see the supplementary text
in [23].

Our main aim is to study the small drive-dissipation
limit of this dynamics and to relate the critical behaviour
to SOC. One way is to generate clusters from a single
seed in the sub-critical regime of the APT and ask if
their statistics close to the critical point relates to that
of SOC [24]. To this end, starting from a fully active
state, first the system is allowed to relax; absorbing
configurations are then activated by generating a seed at
a randomly chosen site by adding one unit of energy [25].
This seed-simulation process is repeated to obtain statis-
tics of the clusters generated. For any fixed σ the clusters
are expected to be characterised by DP critical exponents
and scaling functions,

P (s) ∼ s−τsf(sΔκs); P (T ) ∼ T−τtg(TΔκt), (6)

Here Δ ≡ λ − λc, and s, T denote the size and lifetime
of clusters. Consequently their averages diverge as
〈s〉 ∼ Δ−γ and 〈T 〉 ∼ Δ−τ near the critical point with
γ = κs(2 − τs) and τ = κt(2 − τt) (see table 1). However,
the average energy added and dissipated per cluster
must balance to maintain a stationary state; this puts an
additional constraint [26] on 〈s〉, effective primarily in the
small drive regime, and prompts

〈s〉 ∼ Δ−1. (7)

This opens up the possibility that 〈s〉 might show a
different scaling for a small drive σ.

Figure 2(a) shows plots of 〈s〉 as a function of Δ ≡
λ − λc for different values of σ including 0. For large
σ the average cluster size diverges as 〈s〉 ∼ Δ−γ with
γ = 2.277 as expected for DP. However, a new scaling
regime emerges as σ is decreased; 〈s〉 shows a crossover
from the DP behaviour to 〈s〉 ∼ Δ−γ̃ with γ̃ = 1 as λ
is increased further away from the corresponding critical
point λc(σ). We must emphasize that this crossover is not
an artefact of long relaxation time or small system size. If
that were the case, unusual scaling would rather appear
closer to the critical point as opposed to what we see here,
i.e. the DP critical behaviour prevails near the critical
line. This endorses the fact that the cluster statistics is
obtained correctly —the system is fully relaxed and the
results do not suffer from finite-size effects.

The crossover starts at smaller λ as noise strength σ
is decreased; indeed for σ = 0 (lowest red curve) the DP
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Fig. 2: (Colour on-line) (a) The average cluster size 〈s〉 and
(b) average lifetime 〈T 〉 vs. Δ = λ − λc for different val-
ues of σ. Panels (c) and (d) show the scaling collapse of
P (s) following (6): the curves corresponding to Δ = λ −
λc = (2, 5, 10) × 10−5 in (c) could be collapsed with the DP
value κs = γ/(2 − τs) = 2.55, whereas the curves for Δ =
0.0256, 0.0380, 0.0512 in (d) are collapsed with the modified
exponent κ̃s = 1/(2 − τs) = 1.12. Here, L = 104, σ = 0.004438
(corresponding critical point λc = 0.003) and the statistical
averaging is done over 105 to 107 independent clusters.

regime completely disappears, and we only see

〈s〉 ∼ λ−1. (8)

This dissipation-controlled behaviour is characteristic to
bulk dissipative SOC models [10,14]. Indeed the σ = 0 line
is the SOC limit in this model as will be discussed later
in this paper. Although dissipation-controlled avalanches
are familiar in SOC (rather necessary to maintain a self-
critical state), the possibility of their presence and effect
in ordinary absorbing transitions is explored in this work.
What it brings in here is a crossover from ordinary DP
critical behaviour 〈s〉 ∼ Δ−γ to Δ−1. The immediate
question is then whether it affects other critical exponents.
Since the underlying universality is still DP (for any non-
zero σ), it is natural to expect that other exponents would
be modified in a way that the DP signature is retained.
We put forward a conjecture that eq. (7) prompts Δ →
Δ1/γ and observables which ordinarily scale as Δa would
crossover to Δã with ã = a/γ. Accordingly in the new
scaling regime, which we refer to as “SOC-like” regime,
the cluster statistics would then be given by

P (s) ∼ s−τsf(sΔκ̃s); P (T ) ∼ T−τtg(TΔκ̃t), (9)

with κ̃s,t = κs,t/γ. Consequently 〈s〉 = Δ−γ̃ and 〈T 〉 =
Δ−τ̃ with γ̃ = κ̃s(2 − τs) = 1 and τ̃ = κ̃t(2 − τt) = τ/γ;
see table 1 for the numerical values.
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Fig. 3: (Colour on-line) The DP and SOC-like scaling regimes:
(a) 1d driven dissipative continuous Manna model. The data
used for illustration corresponds to σ = 0.015312 for which
λc = 0.01. The dashed lines are best-fit curves obtained fol-
lowing eq. (10). The solid lines are for guidance. (b) The same
for the 210 × 210 square lattice, when σ = 0.01, λc = 0.011974.
Here, statistical averaging is done over 104 to 106 clusters.

To verify this proposition we measure 〈T 〉 and P (s).
Figure 2(b) shows 〈T 〉 as a function of Δ for different val-
ues of σ. Clearly, DP behaviour prevails near the critical
point, whereas the exponent that dictates 〈T 〉 further away
is nothing but τ̃ = τ/γ. Change in the functional form of
P (s), from eq. (6) to eq. (9) can be captured from the
data collapse of P (s)sτs as a function of sΔκs . As seen in
fig. 2(c), the use of the DP exponent κs results in a perfect
data collapse for small values of Δ, but fails for relatively
large Δ (inset of fig. 2(d)). P (s) data for larger Δ could
be collapsed with modified DP exponent κ̃s = κs/γ.

At this point, we arrive at the following picture —the
sub-critical scaling regime of the driven dissipative Manna
model in 1d is divided into two regions in the small drive-
dissipation limit, ordinary DP scaling near the critical
line crossing over to an emerging SOC-like scaling as one
moves away. This is depicted in fig. 1(a) with a schematic
crossover line that separates DP and SOC-like scaling; the
actual phase diagram in fig. 1(b) shows the critical line.

Let us look at the generality of this scenario. Equa-
tion (8), which originates from a generic energy balance
condition in the stationary state [26], is expected to hold in
other stochastic sandpile models, in one and higher dimen-
sions; the crossover from ordinary DP to SOC-like scaling
in the sub-critical regime can be viewed as a generic multi-
scale behaviour,

〈s〉 = AsΔ−γ + BsΔ−γ̃ ; 〈T 〉 = AtΔ−τ + BtΔ−τ̃ , (10)

where the σ-dependent coefficients As,t, Bs,t determine
the crossover scale. Of course, the DP exponents γ and
τ depend on the spatial dimension d, but they would still
rescale as γ̃ = 1, τ̃ = τ/γ. In fig. 3(a) and (b) we verify
the same for the continuous Manna model in 1d and 2d,
respectively. The dashed lines there are the best fit of
the data points according to eq. (10), with exponents in
table 1.

Now we turn our attention to the σ = 0 line. Here the
unit energy added to create an active seed initiates a clus-
ter which runs until all the sites become inactive; there is
no energy input during the propagation. This is exactly
how avalanches are created and propagated in the cor-
responding SOC models. The average energy dissipated
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Fig. 4: (Colour on-line) The SOC limit σ = 0 for the (a) 1d
continuous model: data collapse for P (s) according to (9) with
κ̃s = 1.121 for different values of λ. The inset shows the same
for P (T ) with κ̃t = 0.757. (b) The same as (a) for the 2d
continuous model. Here κ̃s = 1.364, κ̃t = 0.812. (c) Plot of 〈s〉
and 〈T 〉 with λ. The corresponding exponents are γ̃ = 1 and
τ̃ = .636 (solid lines). The inset shows 〈s〉 ∼ 〈T 〉γ/τ . Panels (b)
and (d) are the same as (a) and (c), but for the 2d continuous
model with exponents in table 1.

per cluster is proportional to λ〈s〉, which must balance
the unit energy added initially, leading to eq. (8) under a
stationary condition. This condition, as we have already
mentioned, is common to all bulk dissipative SOC mod-
els. It also has a well-known analogue in the context of
boundary dissipative sandpiles. There 〈s〉 ∼ L2 [4] inde-
pendently of the dynamics [27] and spatial dimension [5].
In boundary dissipative SOC models the slow dissipation
required to reach a self-critical state is naturally achieved
by taking L → ∞. In contrast, models with bulk dissipa-
tion are studied in thermodynamically large systems and
criticality is reached in the limit λ → 0.

Next we explore whether the modified DP scaling seen
for non-zero but small σ persists up to the SOC line σ = 0.
If this scenario continues all the way to σ = 0, one must
observe that the avalanche statistics there obey eq. (9)
with the modified exponents. In fig. 4 we have verified
this both for d = 1, 2. The data collapse according to
eq. (9) for P (s) and P (T ) are shown in fig. 4(a) and its
inset, respectively. Figure 4(c) shows plots of 〈s〉 and 〈T 〉
which clearly agree with the modified DP exponents γ̃ = 1
and τ̃ = τ/γ. This particular modification does not affect
the DP scaling form 〈s〉 ∼ 〈T 〉γ/τ . Indeed, the plot of
〈s〉 vs. 〈T 〉 in the inset of fig. 4(c) shows that the DP
exponent γ/τ is retained even in the SOC. The same sce-
nario also holds in higher dimensions —figs. 4(b) and (d)
demonstrate it for the driven dissipative Manna sandpile
model in 2d.

These results encourage us to propose that the critical
behaviour of bulk dissipative SOC is only DP with rescaled
exponents. To provide additional evidence next we study
the stochastic sandpile models with discrete variables [6]
by adding finite drive and diffusion.
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Driven dissipative discrete Manna model. – The
drive-dissipation mechanism can be extended to sandpile
models with discrete variables. In the context of the
Manna model, we consider a d-dimensional cube with
each site R holding a discrete variable nR called parti-
cle number —sites with nR ≥ nc, a predefined thresh-
old (usually 2), hop independently to a randomly chosen
neighbouring site R′. Drive and dissipation can be imple-
mented as follows.
I. Dissipation: All the sites belonging to Sa ∪ Sn attempt
independently with probability λ to get vacated, i.e. to
throw out all the particles out of the system,

nR → 0 with probability λ. (11)

II. Distribution: The active sites which did not dissipate
distribute their particles to the neighbouring sites; each
particle independently moves to one of the neighbours.
III. Drive: Finally, the sites belonging to Sn, i.e. all the
neighbours of active sites, are activated with probability
σ, by receiving nc particles

nR → nR + nc with probability σ. (12)

Unlike the continuous case (eqs. (2)–(4)) here λ denotes
the probability with which a site decides to dissipate.

In the absence of drive and dissipation λ = 0 = σ
this dynamics only allows distribution of the particles of
the active site and indeed is identical to the well-known
fixed energy Manna model [6]. When the conserved par-
ticle density ρ = 1

L

∑
i ni is tuned beyond the critical

value ρc = 0.89236, this model undergoes an ordinary
APT belonging to the directed percolation universality
class [16]. On the other hand, in the maximal dissipation
limit λ = 1 the dynamics once again becomes exactly that
of site-directed percolation with active sites infecting their
neighbours with probability σ. As expected, this shows an
absorbing phase transition at σDP

c = 0.705489 [21]. For
any non-zero σ < σDP

c , the discrete model undergoes a
phase transition at a critical λc < 1, belonging to DP
class (details are omitted here as this study closely follows
the one for the continuous version).

Table 2: Connecting bulk and boundary dissipative SOC.

Dissipation: Bulk Boundary
Critical limit λ → 0 L → ∞

∼ s−τsf(sΔκ̃s) ∼ s−τsf
(
s/LDs

)
P (s) ⇒ 〈s〉 ∼ λ−γ̃ ⇒ 〈s〉 ∼ Lμs

γ̃ = κs(2 − τs) μs = Ds(2 − τs)
∼ T−τtg(sΔκ̃t) ∼ T−τtg

(
s/LDt

)
P (T ) ⇒ 〈T 〉 ∼ Δ−τ̃ ⇒ 〈T 〉 ∼ Lμt

τ̃ = κt(2 − τt) μt = Dt(2 − τt)
Constraint 〈s〉 ∼ λ−1 〈s〉 ∼ L2

In the small drive-dissipation limit, 〈s〉 and 〈T 〉 of the
discrete model too show a crossover from DP to SOC-
like scaling, which is described in fig. 5(a). The dashed
lines here are the best fit to the data points according
to eq. (10). Again for σ = 0, as shown in fig. 5(b), the
ordinary DP feature is completely lost and one observes
only SOC-like scaling. Thus, we conclude that the dis-
crete version of the driven dissipative Manna model in 1d
also shows a crossover from DP to SOC-like scaling, which
continues all the way to the SOC line σ = 0.

Stochastic sandpile models with boundary dis-
sipation. – Conventionally self-organised criticality is
modeled with boundary dissipation and no additional
drive (i.e. σ = 0 = λ). Usually a particle or unit
energy is added to a randomly chosen site to initi-
ate an avalanche which propagates following a conserv-
ing dynamics; avalanches which reach the boundary can
dissipate particles at the boundary. With increasing sys-
tem size, the dissipation rate decreases and accordingly
the avalanche size increases such that, on the average, one
particle is dissipated per cluster. Since the conserving bulk
dynamics can be described by a diffusive process, the av-
erage size of avalanche 〈s〉 is proportional to the residence
time of a random walker (starting from a random site) on
the lattice with absorbing boundary,

〈s〉 ∼ L2, (13)

where L is the linear size of the lattice. The similarity
between (13) and 〈s〉 ∼ λ−1 obtained for bulk dissipative
models (in eq. (7)) is that both are derived from the re-
quirement of stationarity and hold independently of the
type or of the spatial dimension of the lattice.

It was shown in ref. [28] that cluster statistics of
bulk dissipative SOC can be made equivalent to those
obtained from boundary dissipation by using a system-
size–dependent dissipation parameter λ. Following this
argument, we use an equivalence λ ∼ L−2 to calculate
the exponents of SOC models with boundary dissipation
(see table 2) from the exponents obtained in this work.
They can be expressed in terms of DP exponents as

μt = 2τ̃ =
2
γ

τ and Ds,t = 2κ̃s,t =
2
γ

κs,t. (14)
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Table 3: The exponents obtained (from ref. [29]) for SOC mod-
els with boundary dissipation are compared with what one ex-
pects from the modified DP picture, i.e. from eq. (14).

Ds τs Dt τt

SOC(1d) 2.253(14) 1.112(6) 1.445(10) 1.18(2)
eq. (13) 2.242 1.108 1.514 1.159
SOC(2d) 2.750(6) 1.273(2) 1.532(8) 1.4896
eq. (13) 2.728 1.267 1.624 1.457

Note that τs,t are not affected, they remain the same
as in ordinary DP. In table 3 we compare the recent
numerical estimates of the exponents, measured in the
discrete Manna model with boundary dissipation, with
eq. (14). They are in good agreement —small discrep-
ancies could come from discreteness (energy vs. particle).
The study of continuous models, with boundary dissipa-
tion, is desirable.

Conclusion. – To summarize, in this paper we study
absorbing phase transitions in stochastic sandpile models
in the presence of bulk drive and dissipation, both coupled
to activity. To facilitate the study of connection between
SOC and DP, the stochastic sandpile model is designed
in a way that in any dimension the dynamics reduces
to site-directed percolation and self-organised criticality
in two limiting cases. In addition to the generic DP
critical behaviour, in the slow drive-dissipation regime
the system shows a crossover in the subcritical phase
from ordinary DP to SOC-like scaling. We explain that
the exponents that characterise the emergent scaling
regime are different, but can be expressed in terms of
DP exponents. Moreover, this SOC-like scaling continues
up to the zero dissipation line (SOC limit). Hence we
argue that the critical behaviour of bulk dissipative SOC
is only DP, modified by the dissipation control. We
illustrate these phenomena explicitly for the continuous
Manna model in 1d and 2d, and its discrete version in 1d.
These results are not restrictive to the specific way we
introduce drive and dissipation here. What is important
is that they must be coupled to the activity field so that
the absorbing configurations are not destroyed [30]. The
specific drive-dissipation mechanism used here has an
advantage —it maps to the site DP model for λ = 1.

Self-organized criticality in stochastic sandpile models,
conventionally studied with boundary dissipation, is be-
lieved to belong to the Manna universality class. Our re-
sults in the context of bulk dissipative SOC suggest that
what is ordinarily known as Manna class is possibly DP
with modified exponents. It would be interesting to ex-
plore models with boundary dissipation from this point of
view.
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