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Abstract – It is demonstrated that broad-bandwidth ultrasonic signals containing frequency
components in excess of 200 kHz can be created in spherical chains using harmonic excitation
at 73 kHz. Multiple reflections created a periodic waveform containing both harmonics and sub-
harmonics of the original forcing frequency, due to non-linear Hertzian contact. These discrete
frequencies represented some of the many allowed non-linear normal modes of vibration of the
whole chain. Excitation at a single fixed frequency could thus be used to produce wide-bandwidth
impulses for different lengths of spherical chains. Experimental results were in good agreement
with theoretical predictions.
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Introduction. – The study of acoustic wave propa-
gation in chain-like materials has shown that some dis-
tinctive properties arise [1,2]. Hertzian contact between
spheres or other particles can lead to non-linear behaviour.
In addition, the presence of dispersion in such systems
means that solitary waves can be created [1], provided that
the balance between dispersion and non-linearity is cor-
rect [3]. Non-linearity leads to interesting effects in terms
of the normal modes of vibration (or resonances) of such
chains [4,5]. Jayaprakash et al. [5] predicted the presence
of non-linear normal modes (NNMs) of vibration within
resonant chains. Two types of frequency bands were iden-
tified: propagation bands (PB —allowed) and attenuation
bands (AB —disallowed). This was a function of input
energy level and the mode of vibration present (either in
phase or out of phase).

The wave propagation characteristics in a particu-
lar chain depend upon many factors, such as the am-
plitude and frequency content of the input signal (in
terms of an applied dynamic force Fm), the diame-
ter of the spheres, and the relative values of Fm and

any pre-compression force (F0). Spadoni and Daraio [6]
demonstrated that interesting effects occur in chains of
stainless-steel spheres held within columns and put under
variable pre-compression forces. The columns were then
impacted with a transient force at one end. The properties
of the signal output at the far end of the chain could be ad-
justed by changing the parameters of excitation and static
pre-compression of the stack of spheres. When Fm � F0,
the value of F0 could be used to adjust the propagation
velocity, leading to the possibility of focussing and the con-
cept of a sound bullet. A later paper extended the process,
using more convenient piezoelectric actuation [7].

In the present work, large amplitudes available from res-
onant ultrasonic sources have been used as the source of
harmonic inputs into chains of spheres to give high val-
ues of Fm. Travelling ultrasonic wave impulses are then
created, due to both non-linearity and dispersion between
adjacent spheres, and reflection within the chain, the latter
acting as a system with non-linear resonant modes. The
resulting impulses have both wide bandwidth and high
amplitude, at frequencies in excess of 200 kHz.
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Fig. 1: (Colour on-line) Schematic diagram of the apparatus.

Fig. 2: (a) Particle velocity waveform and (b) corresponding
spectrum (bottom) for vibrations at the horn tip at the maxi-
mum excitation voltage level.

Apparatus and experiment. – A schematic diagram
of the experimental arrangement is shown in fig. 1. An
ultrasonic transducer/horn arrangement was constructed,
to produce high ultrasonic amplitudes, and hence large
driving forces (Fm) for input into the chain of spheres.
The horn was driven into vibration using a tunable
tone-burst voltage waveform, typically using a 20-cycle
tone-burst drive signal at 73 kHz. This produced a max-
imum peak velocity at the horn tip of 0.45ms−1, corre-
sponding to a peak-to-peak displacement of 2μm. This
tip was then positioned so as to just touch one end of a
set of spherical chrome steel spheres of 1mm diameter,
held horizontally within a cylindrical holder, as shown in
fig. 1. Chain lengths of 6 and 10 spheres were tested ini-
tially. Ultrasonic coupling gel was used between the horn
tip and the first sphere to minimise pre-compression force
F0. The holder had a plate at the far end, containing a
0.6mm diameter aperture, through which the outermost
sphere could protrude. The ultrasonic waveform at both
the horn tip and at the output sphere at the far end of the
chain was recorded in terms of particle velocity using a

Fig. 3: (a) Waveform and (b) spectrum of signals generated
experimentally within chains of both 6 and 10 spheres of radius
R = 0.5 mm using the resonant horn at 73 kHz.

Polytec OFV 5000 vibrometer. The signals were recorded
as a function of the input waveform (Fm). Measurements
of the resonant horn tip (fig. 2) showed a signal with
frequencies predominantly at 73 kHz, with small amounts
of harmonic content.

Experimental results. – It was observed experimen-
tally that, as the amplitude of the input Fm increased,
both harmonics and sub-harmonics were observed to be-
come more prominent. Example waveforms for chains of
both 6 and 10 spheres are shown in fig. 3(a), in terms of
the particle velocity amplitude (vm) waveform, with their
corresponding spectra (obtained via an FFT) shown in
fig. 3(b). This used an input signal at 73 kHz, of the form
shown earlier in fig. 2.

Consider first the time waveform for the 6-sphere chain
(fig. 3(a)). Although some of the original input frequency
of 73 kHz dominated at the start of the arrival, a set of im-
pulsive signals then built up, with a periodicity of 41μs.
These represent multiple reflections within the chain, with
an acoustic group propagation velocity of cg = 293ms−1.
These are the expected solitary wave impulses, which gain
energy and build up amplitude from the original forcing
frequency of the input, but then decay due to damping
once the forcing function stops. The periodicity within
the waveform is associated with the lowest sub-harmonic
at 24.3 kHz in the spectrum of fig. 3(b), which is also the
fundamental resonance of the chain. It is also at 1/3 of the
original forcing frequency of 73 kHz. Prominent harmon-
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ics also exist, that extend beyond 200 kHz, and these are
also separated in frequency by a value of 1/3 of the input
frequency. The frequency peaks thus correspond to some
of the many allowed non-linear normal modes (NNMs) of
the system, and this is consistent with the propagation
band (PB) concept described in Jayaprakash et al. [5]. It
is this use of the resonant NNMs of the chain to allow
impulses to be generated that is the distinguishing feature
of this present approach.

The experimental waveform for the longer 10-sphere
chain, also shown in fig. 3(a), demonstrates that in
this case the impulses gradually built up over a longer
timescale, before again decaying away once the excitation
was removed. Note that the input frequency of 73 kHz
was a prominent peak for both chain lengths, as would be
expected. However, the frequency spectrum of the longer
chain contained three sub-harmonics, instead of the two
seen for the 6-sphere case. The fundamental resonance was
now at a lower frequency of 18.25 kHz (i.e. 1/4 that of the
input). The corresponding group velocity of the impulses
was 364ms−1, an increase compared to that measured in
the 6-sphere chain. The harmonic content also increased
in the longer chain. The result can be interpreted as the
system now selecting a different fundamental NNM of res-
onance within the PB regime than was present for a chain
with 6 spheres. It is interesting to note that for both the
6-sphere and 10-sphere chains, the lowest resonant spectral
peak, in each case, is a sub-harmonic of the original forc-
ing frequency (at 1/3 and 1/4 of this value, respectively).
Hence, in both cases, energy can be efficiently transferred
from the input frequency into the various NNM resonances
within each chain. This, in turn, allows the creation of
wide-bandwidth impulses.

Experiments at other chain lengths —as well as con-
current simulations of the type to be outlined below—
have shown that the behaviour described above for 6 and
10 spheres is often not obtained. For example, systems
with 7, 8 and 9 spheres showed only the creation of har-
monics due to the expected non-linear Hertzian behaviour
between the successive chain elements. It would thus ap-
pear that a certain combination of factors including the
input signal and the physical properties of the chain of
spheres is necessary to obtain the resonant behaviour and,
hence, the creation of reflecting impulses.

Comparison to theory. – The above results can
be compared to theory using established modelling ap-
proaches for wave propagation in a single chain of
spheres [1,8,9]. These spheres are assumed to be touch-
ing, and a static pre-compression can be applied if re-
quired. The system can be considered to be displacement
driven [8], and this displacement u0 can be calculated by
the velocity that would be measured experimentally at the
horn tip, which is assumed to have planar surface contact
with the spheres. At the far end of the chain, the motion
of the last sphere can be predicted, assuming that it is in
contact with a fixed planar wall (the holder used to con-

tain the spheres). Thus, both contact between the spheres,
and the interactions between spheres and materials at ei-
ther end of the chain, can be modelled. The starting point
of the theoretical formulation is the classic Hertzian 3/2
power law (cf. ref. [1]) for the elastic force F between two
spheres under compression. The displacements of the cen-
tre of the spheres in a chain of length N are denoted as ui

with (i = 1 . . . N). Assuming that all spheres have the
same radius R and the same material properties, the dy-
namic equations of motion can be determined. The model
can also consider the effect of the flat surfaces at each
end of the chain (the horn tip at the input and the con-
tainer wall at the output). A static applied force F0 can
be modelled by deriving the initial static displacements
between the horn and the centre of the first sphere (δ0l),
between successive sphere centres (δ0), and between the
last sphere and the holder wall (δ0r). The equation for
the input sphere (nearest the horn) is

m
d2u1

dt2
=

2
√

R

3

[
2θl(δ0l+u0 − u1)

3
2 − θm√

2
(δ0+u1 − u2)

3
2

]

+λ

(
du0

dt
− du1

dt

)
H (δ0l + u0 − u1)

−λ

(
du1
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− du2

dt

)
H (δ0 + u1 − u2). (1a)

For subsequent spheres, up to and including the penulti-
mate one, the equation is

m
d2ui

dt2
=

√
2R

3
θm

[
(δ0+ui−1 − ui)

3
2 −(δ0+ui − ui+1)

3
2

]

+λ

(
dui−1

dt
− dui
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)
H (δ0 + ui−1 − ui)

−λ

(
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)
H (δ0 + ui − ui+1). (1b)

Finally, for the last sphere next to the container wall the
equation is

m
d2uN

dt2
=

2
√

R

3

[
θm√

2
(δ0+uN−1−uN )

3
2 −2θr(δ0r+uN )

3
2

]

+λ

(
duN−1

dt
− duN

dt

)
H (δ0 + uN−1 − uN )

−λ
duN

dt
H (δ0r + uN ), (1c)

where θm, θr and θl are given by

θm =
Es

1 − νs
2
, (2a)

1
θr

=
1 − νr

2

Er
+

1 − νs
2

Es
, (2b)

1
θl

=
1 − νl

2

El
+

1 − νs
2

Es
, (2c)

where Es and νs are Young’s modulus and Poisson’s ratio
of the spheres, Er and νr those of the end wall, and El and
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νl those of the horn, respectively. Note that only positive
arguments for the 3/2-power-law terms in eq. (1) have to
be considered, as these are associated with the spheres
being in contact. The terms are set to zero for negative
values, i.e. tensionless behaviour, when the spheres lose
contact.

The theory can now be used to evaluate the expected
waveform for a given dynamic input force Fm. It should
be noted that the modelling of such non-linear systems
is inherently highly sensitive to the input and boundary
conditions, so that exact agreement between theory and
experiment can be difficult. However, we show good agree-
ment to the experimental observations. In order to model
the experiments more accurately we follow Lydon et al. [8]
and introduce a linear viscous damping coefficient λ be-
tween successive spheres in the dynamic equations. The
damping force is only relevant when the spheres are in con-
tact, and was needed to eliminate high-frequency chaotic
instability from the dynamics. Note that damping was
evident in the experimental waveforms, making this a rea-
sonable approach.

The particle velocity waveforms, calculated for the two
spherical chains with a small static applied force (< 0.1N)
and a linear viscous damping coefficient λ = 0.27Nsm−1,
are shown in fig. 4(a). The input signal (Fm) used in
the model was that measured experimentally for the horn
tip in each case, an example of which was shown earlier
in fig. 2. In both cases, the theoretical prediction is for
a set of impulses which build up with time. In agree-
ment with experiment, the impulses take more time to
establish for the longer 10-sphere chain, with an increased
periodicity. The frequency spectra (fig. 4(b)) both con-
tain a peak at the input frequency of 73 kHz, plus promi-
nent sub-harmonics and higher-order harmonics. Again
in agreement with experiment, the lowest (fundamental)
frequency peak in each case is predicted to be at 1/3
and 1/4 of the input frequency for the 6-sphere and 10-
sphere chains, respectively, with a different group velocity
of propagation along the chain. The relative amplitude
of each harmonic is not quite the same as in the exper-
iment, but modelling has predicted the main features of
the process.

Discussion. – The results shown above are compatible
with the known behaviour of acoustic propagation along
spherical chains [1], namely that the interaction between
spheres is highly non-linear, due to Hertzian contact, and
dispersive. In this particular example, the spheres were
chosen to have a smaller diameter than in many other
studies [6–9] so that the expected behaviour could be ob-
served conveniently in the ultrasonic range.

At the high input signal levels (Fm) used, the input
energy was sufficient to generate both harmonics and sub-
harmonics. This situation exhibits the expected pass
band (PB) behaviour described by Jayaprakash et al. [5].
The results of fig. 3 demonstrated that impulses could
be created by multiple reflection within two different

Fig. 4: Waveforms (top) and spectra (bottom) of waveforms
predicted theoretically for the same conditions as those used
experimentally in fig. 3.

lengths of chain. Each impulse had a spectrum that was
much broader than that of the original forcing signal.
An important difference to previous studies is that the
input was from a high-amplitude, highly-resonant excita-
tion system, chosen to be of narrow bandwidth at 73 kHz;
this maximised input energy. The observed build-up of
solitary wave impulses was also predicted by the numer-
ical simulations based on the discrete dynamic equations
of spheres in Hertzian contact with one another. The fact
that particular NNMs appear for sets of 6 and 10 spheres,
but not for other systems with 7, 8 and 9 spheres, for
example, is one of the most interesting conclusions of this
work. Given that in similar systems with steady harmonic
excitation this type of resonant motion should also exist,
it is likely that this finding is closely related to the specific
time duration of the applied load. In fact, in other exper-
iments we have observed that, for applied excitations of
longer or shorter duration, the results change for a partic-
ular chain length. This is a topic for further investigation
by the authors.

An interesting point in the present experiments is that
impulses were generated only when particular forcing con-
ditions, in terms of amplitude and time duration, were
present for a particular forcing frequency Fm, at which
point discrete frequency peaks also appeared. This, we
believe, is an important factor in that it allows the natu-
ral build-up of energy into the solitary-wave impulses, by
feeding energy into a set of natural frequencies of the sys-
tem of spheres which are harmonics and sub-harmonics of
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Fm. This interesting observation is also consistent with
the NNM theory outlined in refs. [4,5], in that when
Fm � F0, there are many allowed natural modes of
the system, including both harmonics and sub-harmonics
of Fm. The fact that a different group propagation velocity
was observed for impulses within the two lengths of chain
is also consistent with the NNM theory. The system could
select a mode, from the many that were available; this
resulted in a frequency separation between spectral peaks
that was exactly either 1/4 or 1/3 that of the forcing fre-
quency depending on the length of the chain. It is evident
also from the experiments that the longer chain resulted in
more closely-spaced harmonics which extended to higher
frequencies. This would be expected due to the extended
non-linearity in a longer chain.

Conclusion. – It has been shown experimentally that
solitary wave impulses can be generated using high-
amplitude resonant excitation. The results are consistent
with modelling studies, which show that the generation
of solitary wave impulses depends on the exact nature of
both the chain and the excitation waveform. When condi-
tions are such that Fm � F0, solitary wave impulses can
be produced using sinusoidal excitation at 73 kHz, as ob-
served by both experiments and numerical calculations.
Comparison of the behaviour in the two chain lengths sug-
gests that such a system could adapt to exist within many
different chain configurations, provided that the system is
consistent with the PB region for the non-linear normal
modes of the chain.

The fact that only certain chain lengths show the
behaviour demonstrated in fig. 3 and fig. 4 is interesting.
Experiments with much longer chains of 20 spheres were
not successful due to the high damping/attenuation of
the high-frequency signals. Further modelling studies
are needed to define the exact parameters that determine a

successful resonant system. However, the modelling of the
present arrangement indeed confirms that 6- and 10-sphere
chains give the best response for the type of sphere chains
considered in our present study.
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