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Abstract – Effective confining particles in a finite space region where an accelerating electric field
exists are very crucial to maintain an accelerator to be small sized. The mere use of a magnetic
field to drive particles back into the accelerating electric field was widely applied in cyclotron but
did not well control the size of the whole accelerator. A more effective mechanism of confining
particles in the accelerating electric field is studied in detail here.

Copyright c© EPLA, 2015

The importance of a high accelerating electric field to
particle acceleration is self-evident. A higher accelerating
electric field favors an accelerator to be small sized [1–3].
This promotes investigations on the non–solid-state accel-
eration mechanisms which depend on the strong electric
field beyond what a conventional solid-state accelerator
can sustain [4–29]. On the other hand, the difficulty in
generating a sufficiently high electric field is also marked.
This naturally drives one to consider repeated usage of the
accelerating electric field by driving back particles into the
accelerating electric field. The well-known cyclotron is a
typical example embodying this idea [30].

In a cyclotron, particles out of the accelerating region
are driven back by a static magnetic field. Maybe in or-
der to maintain the particle’s energy during the process of
driving it back into the accelerating region, one only uses a
static magnetic field to “bend” the particle back. As a re-
sult, the “bending” region is usually very space-consuming
and is almost the main factor hindering the conventional
solid-state accelerator from being small sized. Namely,
maybe the “bending” region is far larger than the acceler-
ating region. Using a higher magnetic field can, of course,
cut down the “bending” region. This is similar to using
a higher electric field to cut down the accelerating region.
Also, a similar difficulty remains.

We change the idea above to achieve a small-sized con-
ventional solid-state accelerator. That is, we do not stick
to the belief that “during the process of driving it [a par-
ticle] back into the accelerating region, there should not
be any energy loss”. Instead, we allow little energy loss

which is below the energy gain in a round of travelling
through the accelerating region (denoted as Egain). Thus,
the energy in a longer time-scale can keep rising but the
size of the “bending” region may be effectively controlled.
Guided by this idea, we use both static electric field and
static magnetic field to “bend” particles back into the ac-
celerating region. We call such a “bending” region as re-
flecting “mirror”.

An electron in this “bending” region can be described
by dimensionless 3D relativistic Newton equations (RNEs)

ds [ΓdsZ] = 0, (1)
ds [ΓdsY ] = WBdsX, (2)
ds [ΓdsX] = −WB [η + dsY ] , (3)

where the dimensionless relativistic factor reads
1
Γ

=
√

1 − (dsX)2 − (dsY )2 − (dsZ)2. (4)

Moreover, Es and Bs are the constant-valued electric and
magnetic fields satisfying Es = ηcBs; λ = c/ω and ω are
the reference wavelength and frequency. s = ωt, Z = z

λ ,
Y = y

λ , X = x
λ are dimensionless time-space coordinates;

the dimensionless intermediate parameter WB = ωB

ω mea-
sures the strength of the magnetic field, ωB = eBs

me
is the

cyclotron frequency.
Equations (1)–(3) will lead to

dsZ = 0, (5)

ΓdsY − WBX = const = Cy; (6)
ΓdsX + WB [ηs + Y ] = const = Cx, (7)
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where the values of these constants (const) are determined
from the initial conditions (X,Y,Z, dsX, dsY, dsZ)|s=0 =(
0, 0, 0, Cx√

1+C2
x+C2

y

,
Cy√

1+C2
x+C2

y

, 0
)
.

Equations (5)–(7) can yield an equation set of dsX and
dsY

(dsY )2 =

[Cy + WBX]2 ∗
[
1 − (dsX)2 − (dsY )2

]
, (8)

(dsX)2 =

[Cx − WB ∗ (ηs + Y )]2 ∗
[
1 − (dsX)2 − (dsY )2

]
(9)

whose solution reads

(dsX)2 =
[Cx − WB ∗ (ηs + Y )]2[

1 + [Cy + WBX]2 + [Cx − WB ∗ (ηs + Y )]2
] ,

(10)

(dsY )2 =
[Cy + WBX]2[

1 + [Cy + WBX]2 + [Cx − WB ∗ (ηs + Y )]2
] .

(11)

It is easy to verify that the solutions (10), (11) will lead

to Γ =
√

1 + [Cy + WBX]2 + [Cx − WB ∗ (ηs + Y )]2 and,
with the help of eqs. (6), (7), dsΓ = −WBη ∗ dsX (i.e.
mec

2dtΓ = eEdtX). If the note that Γ can be formally
expressed as Γ =

√
1 + C2

y + C2
x −WBη ∗X, which agrees

with Takeuchi’s theory [29,31], we can find the electronic
trajectory being expressed as

Γ2 = 1 + [Cy + WBX]2 + [Cx − WB ∗ (ηs + Y )]2 , (12)

or

(
1 − η2

) [
X+

(η + υy0)
1 − η2

Γ0

WB

]2

+
[
(Y +ηs) − υx0

Γ0

WB

]2

=
[
(η + υy0)

2 +
(
1 − η2

)
υ2

x0

]
1 − η2

(
Γ0

WB

)2

, (13)

where Γ0 =
√

1 + C2
y + C2

x is the initial dimensionless rel-

ativistic factor, υx0 = Cx

Γ0
and υy0 = Cy

Γ0
are initial dimen-

sionless velocity components.
In the (Y + ηs)-X plane, there will be an elliptical tra-

jectory for η < 1 and a hyperbolic one for η > 1 [29].
The time history can be exactly calculated by re-writing
eq. (10) as

±ds =
1

WB
Γ0 − η ∗ X

√
aX2 + bX + c

dX =

η√
a

XN − X√(
X + b

2a

)2 − b2−4ac
4a2

dX, (14)

where a =
(
η2−1

)
, b = −2

[
η
√

1 + C2
y + C2

x+Cy

]
1

WB
, c =

C2
x

(
1

WB

)2 and XN = 1
η

1
WB

Γ0 are intermediate variables

introduced for simplicity purpose. Equation (14) is in a
more general form

±ds = σ
M − u√
u2 − 1

du, (15)

where u = X+ b
2a

q

b2−4ac

4a2

= X−XR+XL
2

XR−XL
, XL = min(−b−

√
b2−4ac
2a ,

−b+
√

b2−4ac
2a ) and XR = max(−b−

√
b2−4ac
2a , −b+

√
b2−4ac
2a ) are

left and right ends of the regime (−b−
√

b2−4ac
2a , −b+

√
b2−4ac
2a )

in the X-axis. In addition, σ = η√
a

√
b2−4ac

4a2 and M =
XN+ b

2a
q

b2−4ac

4a2

= XN−XR+XL
2

XR−XL
are also intermediate variables for

simplicity purpose. Clearly, for the a > 0 case, it should
be u < −1 or u > 1. It is easy to verify that for η2−1 > 0,
M = − 1+ηυy0

η
√

(η+υy0)
2+(1−η2)υ2

x0

< 0. Initially, (X,Y ) |s=0 =

(0, 0) and hence ust = 0+ b
2a

q

b2−4ac

4a2

= −(η+υy0)√
(η+υy0)

2+(1−η2)υ2
x0

. A

strict and reasonable solution reads: For u rising from
ust to −1, it is ds = −σ M−u√

u2−1
du and hence s(u) =

s1(u) = σ ∗
{
M ∗ log(

√
u2 − 1 − u) +

√
u2 − 1

}
− sst,

where sst = σ ∗
{
M ∗ log(

√
u2 − 1 − u) +

√
u2 − 1

}
|u=ust

and s1 (u = −1) = −sst. For u decreasing from−1 to −∞,
it is ds = σ M−u√

u2−1
du and hence s (u) − s1 (u = −1) =

s2 (u) = σ ∗
{
−M ∗ log(

√
u2 − 1 − u) −

√
u2 − 1

}
. Here,

the choice of the sign at the left-hand side of eq. (15) is de-
scribed as follows: When u rises from ust to −1, the chosen
sign should ensure the solution of eq. (15) to correspond
to an ascent of s. Therefore, for u rising from ust to −1,
a “−” is reasonable in eq. (15) (because for the parameter
values υx0 and υy0 we considered, “+” will correspond
to s (u) = σ ∗

{
−M ∗ log(

√
u2 − 1 − u) −

√
u2 − 1

}
−

const which decreases with respect to u rising from
ust to −1). Namely, even though it is always

M − ust =
η− 1

η√
(η+υy0)

2+(1−η2)υ2
x0

> 0, ds = σ M−u√
u2−1

du can-

not always warrant a solution of s rising with respect to
u (from ust to −1).

Y can be expressed in terms of u (from u = ust to
u = −1): Y =

√
c −

√
aX2 + bX + c − ηs =

√
c − a

η σ ∗√
u2 − 1 − ηs(u) and hence corresponds to a curve in the

u-Y plane or the X-Y plane. Note that both X and Y can
be normalized to Γ0

WB
. Moreover, from u = −1 to u = −∞,

there is a different formula Y =
√

c+
√

aX2 + bX + c−ηs.
According to eq. (13), the trajectory in the (Y + ηs) -X

plane is a hyperbola. The trajectory in the X-Y plane will
be the envelope of those hyperbolas at different values of
s. Note that in the X-Y plane, the hyperbola described
by eq. (13) has a time-dependent center position (the
Y -coordinate of the center is υx0

Γ0
WB

− ηs). Thus, a parti-
cle moving along such a hyperbola might always move in
the Y < 0 region if the center of the hyperbola moves suffi-
ciently fast toward the Y = −∞ direction. Namely, if the
center is fixed, the particle which is moving along the hy-
perbola will enter into the Y > 0 region when moving from
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Fig. 1: Typical examples of trajectory in the X-Y plane. The trajectory starts from (X, Y ) = (0, 0) and is an evelope of many
hyperbolas whose Y -coordinates of the centers are time dependent.
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Fig. 2: The effect of parameters on the type a trajectory belongs to.

X = 0 to X = XL. Once the center moves sufficiently
fast, it is possible for the increment in the Y -coordinate
due to the increment in the X-coordinate along the hy-
perbola with fixed center to be less than the shift in the
Y -coordinate of the center. In such a situation, the parti-
cle cannot enter into the Y > 0 region.

As shown in fig. 1, there are 3 types of trajectory. The
most common type, as shown in the bottom-right panel,
shows that both X and Y rise during u evolving from
ust to −1, after arriving at u = −1, Y continues to rise
(in a different formula Y =

√
c +

√
aX2 + bX + c − ηs)

and X decreases. Another, or the second, common type,
as represented by the downward curves in the upper two
panels of fig. 1, shows that both X and Y decrease during

u evolving from ust to −1. Between these two common
types, a relatively rare type is represented by the curve in
the bottom-left panel, which displays both X and Y rising
during u evolving from ust to −1− δ (δ is a small positive
value) but Y begins to decrease from u = −1−δ to u = −1.
Which type a trajectory belongs to depends on η, Γ0 and
the incident angle θ = arctan υx0

υy0
. Figure 1 displays the

effect of η on the classification of a trajectory. Figure 2
reflects the effect of Γ0.

The practical value of the second common type is that
it means a large-angle deflection, up to π, in particle mo-
tion and such a large-angle deflection can be achieved in a
very small space region. According to figs. 1 and 2, those
type-II trajectories have width < 10−6 Γ0

WB
(in both the
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X-direction and Y -direction) and hence this corresponds
to a very weak energy loss ∼10−6η Γ0

WB
. In contrast, when

only the magnetic field is applied, the width of an ellipti-
cal trajectory in the η = 0 case is equal to 1 Γ0

WB
and hence

a π-deflection demands at least a 1 Γ0
WB

-long length in one
direction.

This implies that a more compact bending region and
a smaller energy loss can be achieved by choosing a small
incident angle and a small η-value. Small incident angle
means that the static electric field applied in the “bend-
ing” region is nearly vertical to the initial direction of the
electron moving in the “bending” region. Moreover, the
electron should be arranged to be initially decelerated by
this electric field.

To utilize this π-deflection, an electron is introduced
into the “bending” region, whose Y -direction width is de-
noted as Wy, in a “diving” manner. The electron “dives”
into the bending region with a small velocity component
along the direction of B. The Y -direction position when
it arrives at the surface of the E-field is denoted as Ly.
By choosing 0 < Ly < Wy, we can control the mov-
ing direction of an electron when it leaves the “bend-
ing” region. Both the acute-angled deflection and the
obtuse-angled one can be achieved by controlling Wy, Ly,
η, etc.

In a π-deflection, if the shift in the X-direction is too
small, the deflected electron, as shown in fig. 3, will en-
counter a decelerator unit. Therefore, we wish the route
of the deflected electron might have a not-too-small shift
from that of the incident electron. If this cannot be ful-
filled through a 1-step π-deflection, a 2-step π-deflection
(see fig. 3) should be attempted.

Actually, a hyperbolic trajectory (in the (Y + ηs) -X
plane) implies a deflection angle π − 2 arctan

[√
η2 − 1

]
.

Therefore, even not pursuing the 1-step π-deflection
and the 2-step one, we can still achieve a π-deflection
through multiple steps (each step contributes a deflec-
tion angle π − 2 arctan

[√
η2 − 1

]
). This requires to use

some “bending” units rather than a large “bending” re-
gion. Namely, the usage of the static magnetic field
B should be finer. A crude usage of B is to apply it
directly on a large region. Clearly, such a crude usage is
neither economic nor efficient (because a large space is re-
quired to finish a deflection at the desired angle and B is
required to exist always in such a large space.) In con-
trast, in a finer usage mode, B and E exist in many speci-
fied space regions (i.e. “bending” units), but particles can
freely fly outside those “bending” units. Even if there are
multiple steps, the total volume required by these steps
is still considerably smaller than that by merely a pure
magnetic-field–induced π-deflection. The total volume re-
quired for a multi-step π-deflection will be slightly above

π

π−2 arctan
[√

η2−1
] ∗ [

10−6∗2] ∗ [
Γ0
WB

]2 while that for a pure

magnetic-field–induced π-deflection is at least 1
[

Γ0
WB

]2.
A very significant difference in magnitude is obvious!

Fig. 3: Design of a compact accelerator. Two neighboring
accelerating units are of opposite electric fields. The inicident
angle when an electron enters a bending unit can be adjusted
by rotating the bending unit. Clearly, if each bending unit
contributes a small energy loss |Eloss(i)| < Egain, the whole
apparatus can generate higher output energy by using more
stacks of such a combination of 1 accelerating unit + 2 bending
units. According to the current technique level, Egain = 1MeV
and 1 meter long accelerating units are available.

If we do not use the above-described “diving” manner
to introduce an electron into the “bending unit and in-
stead we introduce the electron completely into the X-Y
plane, we can also achieve an acute-angled deflection. Ac-
cording to the type-II trajectory shown in figs. 1 and 2,
each type-II trajectory has a limit value of the slope,
limX→0

dY
dX . Because Es = 0 and Bs = 0 at Y < 0 half-

space, an electron will move, in the Y < 0 half-space, along
this angle arctan

(
limX→0

dY
dX

)
. This implies a deflection

angle arctan
(

υx0
υy0

)
+ π

2 − arctan
(
limX→0

dY
dX

)
, which is an

acute angle because arctan
(

υx0
υy0

)
is very small.

The values of E and B are common enough and hence
easy to be achieved according to current technique condi-
tion. For example, B is about 0.1–1T and E is about
3 ∗ 105–7 V/m. It is not difficult to achieve E = 3 ∗
102–4 V/mm by adjusting the inter-plate distance and
voltage. B = 0.1T corresponds to ωB = 1.85 ∗ 1010 Hz
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and ωB

ω = 1.85
6π ∗ 10−4–10−5 if ω = 3 ∗ 2π ∗ 1014 Hz (i.e.

λ = 1μm).
If Frad = 2

3
e2

c3 (dttυ) is ignored, the energy loss in a
bending unit will be proportional to −eE ∗ Xexit + eE ∗
Xentrance = −eE ∗Xexit (because Xentrance is taken as 0).
Here, if the trajectory can be expressed as an equation
f (X,Y ) = 0, Xexit will satisfy f (Xexit,Wy − Ly) = 0.
Actually, we can on purpose let Xexit < 0 by using a
suitable value of Wy −Ly and hence cause the energy loss
to be a gain.

According to the formula on radiation power Power =
2
3

e2

mc2
1

mc (dtp)2, where e2

mc2 = 2.82 ∗ 1015 m, we can find a
relation between the ratio Power

dtEnergy and the force felt by

the particle: Power
dtEnergy = Power

Force∗υ ∼ 2
3

e2

mc2
1

mc
Force

c ∗ c
υ . Here,

dtEnergy = Force ∗ υ and dtp = Force. Clearly, Force is
120
282 ∗ 102 ∗ c

υ N if it is Power
dtEnergy ∼ 1. For the strengths of E

and B considered here, we have Force ∼ 1.6 ∗ 10−19+6 N
and hence Power

dtEnergy ∼ 1.6 ∗ 2.5 ∗ 10−13−2 ∗ υ
c , which means

radiation loss Power is really negligible. Therefore, the
energy loss due to Frad is negligible for the case studied.
It also means that the above-described hyperbolical and
elliptical trajectories are robust relative to the effect due
to Frad.

We have described in details a more effective and
simple way of controlling the size of a conventional solid-
state accelerator. Completely relying on Bs to achieve a
π-deflection is very space-consuming. In contrast, some
reasonable methods of usage of Es and Bs can achieve a
π-deflection in a satisfactory small space. This suggests
that it is possible for the most common conventional
solid-state accelerator to have a table-top size. By using
two π

2 -deflections, we can make the electron run back-
ward, and the forward path and the backward path are
spaced by an adjustable distance (see fig. 3). The distance
between two paths can be adjusted to a small value which
is a practically meaningful level such as 0.1m–0.01m
(a too small value is unnecessary because the size of
whole apparatus (accelerating and bending regions) is
also determined by the length of the accelerating region).
Namely, the bending region can be of far smaller size than
that of the accelerating region. Repeated usage of the
accelerating region and the compactness of the bending
region can warrant that the whole solid-state accelerator
be at the table-size level.
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