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Abstract – Time-reversal symmetry of most conservative forces constrains the properties of linear
transport in physical systems. Here, we study the efficiency of energy transfer in dissipative os-
cillator networks where time-reversal symmetry is broken locally by Lorentz-force–like couplings.
Despite their linearity, such networks can exhibit mono-directional transport and allow isolation
of energy transfer in subsystems. New mechanisms and general rules for mono-directional trans-
port are discussed. Combining network topology with Lorentz-force–like coupling, we show how
efficiency at maximum power can surpass the common bound of 1/2 and may even approach unity.
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Introduction. – Onsager symmetry holds for the vast
majority of coupled linear phenomena on the mesoscopic
and macroscopic scale. However, the symmetry of trans-
port coefficients is generally lost when time-reversal sym-
metry is broken through a magnetic field. Recently, it
has been suggested that magnetic breaking of Onsager
symmetry may allow for the existence of finite-time heat
engines with vanishing entropy production and also al-
low an efficiency at maximum power that exceeds the
Curzon-Ahlborn limit [1]. Although subsequent studies
established a number of positive lower bounds for entropy
production in concrete quantum-mechanical systems [2–5],
and classical heat engines [6,7], the results highlight the
non-trivial nature of coupled transport in the presence of
a magnetic field. A logical next step is to combine the
properties of magnetic couplings with topological features
of a network.

Networks with classical oscillators, such as vibrating
spring-damper collections, electric power grids [8,9], or
electronic circuits are omnipresent in daily life. Desired
system properties, e.g., in terms of frequency response or
current rectification, often require active or non-linear el-
ements, such as amplifiers or diodes. We hypothesize here
that linear elements that break Onsager symmetry could
be a possible alternative. Such elements can be built in
a variety of ways: mechanically, a coupling via Lorentz
forces can be realized with a charge on a forced, two-
dimensional pendulum in a magnetic field. Alternatively,
electrical circuits can be connected via perpendicular

sides of a Hall element, which is called a gyrator [10–12].
Also, similar devices with microwaves are based on the
Faraday effect [13]. In principle, even Coriolis forces
can be employed as a time-reversal symmetry-breaking
coupling.

In this letter, systems of linear oscillator equations
are studied as a generic model for the above examples.
Oscillators interact by time-reversal symmetric forces as
well as through Lorentz-force–like couplings. In spite of
the simplicity, these systems are found to exhibit a rich
linear response and unusual energetics. Two aspects are
particularly notable. Namely the possibility of fixing a
transport direction through network properties and a
highly efficient energy transfer. While details of the system
matter for mono-directional transport, network topology
imposes very general and easily perceivable constraints.
Corresponding rules are provided. Next, general limits for
the efficiency are assessed. It is shown that both network
loops and breaking of Onsager symmetry are necessary to
remove technically important constraints on linear energy
transfer. Finally, the system behavior in the presence of
additive and multiplicative noise is discussed briefly.

Framework. – Our networks consist of coupled real
variables xj(t) that obey a Langevin equation as

ẍj = −
∑

l

(κjl xl + bjl ẋl) − γj ẋj + ξj + fj . (1)
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The symmetric matrix κ = κT represents, e.g., elas-
tic constants for a mechanical system or capacitance for
an electric network. κ must be positive definite for
stability [14]. The antisymmetric matrix b = −bT rep-
resents Lorenz-force–like couplings. γj are positive fric-
tion constants. The noise ξj obeys 〈ξj(t)〉 = 0 and
〈ξj(t)ξl(t′)〉 = δjl2γjkBTδ(t − t′) with the thermal energy
kBT . We assume that the two of the oscillators with in-
dices a and b are driven as

f{a,b} = 2 F{a,b} cos(ωt + ϕ{a,b}), fj /∈{a,b} = 0, (2)

where ω is a fixed angular frequency. Phase differences
will be written as ϕjl ≡ ϕj − ϕl. Non-dimensional units1

are used throughout the article.
Since the system is driven with frequency ω we can write

for the expectation value 〈xj(t)〉 = 〈x̃∗
j 〉e−iωt + 〈x̃j〉eiωt.

Fourier coefficients are always denoted by a tilde (̃ ), aster-
isks ( ∗) denote complex conjugation. Equation (1) then
yields ∑

l

Ajl〈x̃l〉 = f̃j , (3)

Ajl ≡ (−ω2 + i ω γj)δjl + κjl + i ω bjl. (4)

Inversion of A yields the complex admittance

χ = A−1, (5)

which determines the system’s response to the driving
forces. When b = 0, the conservative forces are sym-
metric under time reversal and the complex admittance
is symmetric χ = χT [15], which is usually referred to as
Onsager symmetry.

Energy transfer. – The energetics in steady state are
governed by average work rates at the actuated oscillators,

Ẇ{a,b} ≡ ω

2π

∫ 2π
ω

0
f{a,b}(t) 〈ẋ{a,b}〉dt. (6)

A net energy transmission through the system occurs when
the power at one of the driven oscillators becomes nega-
tive. However, the overall dissipation is necessarily posi-
tive semi-definite. It is given by the sum of the work rates

Ẇdiss ≡ Ẇa + Ẇb ≥ 0. (7)

For broken Onsager symmetry, the direction of the en-
ergy flow and hence the choice of input and output oscilla-
tors generally matters. In the following, the index b will be
used for the oscillator that provides energy output. Then,
the efficiency of the energy transfer can be defined as

η ≡ −Ẇb/Ẇa = −Ẇb/(−Ẇb + Ẇdiss) ≤ 1. (8)

1We fix a force scale F̂ and a typical coupling constant κ̂.
Time is non-dimensionalized by τ̂ ≡ 1/

√
κ̂. Since eq. (1) is non-

dimensionalized by F̂ , x is scaled by x̂ ≡ F̂ /κ̂. Accordingly, bij and
γij are non-dimensionalized by

√
κ̂. All energies are scaled by F̂ x̂

and power with F̂ x̂/τ̂ .

Fig. 1: (Colour on-line) (a) Three-oscillator system with vari-
ables x1,2,3 where oscillators 1 and 2 can be forced. Red
and black lines symbolize coupling with b, κ, respectively.
(b) Working principle of the three-oscillator diode. (c) Ex-
emplary diode response from a solution of eqs. (2), (3) with
parameter conditions for example 1 and γ1 = 0.2, γ2 = 0.1.
Left: blocking state; right: transmitting state. (d) Efficiency
at maximum power η′ of the diode approaches unity when γ1

and γ2 vanish. Parameters: κ11 = κ22 = 2, κ13 = κ23 = −1,
b23 = 1, γ3 = 2.

A key figure of merit is the efficiency at maximum power
output, which is here defined for fixed frequencies as

η′ ≡ η(−Ẇb|ω → max), (9)

where the maximum −Ẇ ′
b|ω of the power output is found

by searching for an optimal phase difference ϕba and
magnitude of the driving force fb. In linear systems
with conserved Onsager symmetry efficiency at maximum
power is generally expected to be smaller than 1/2 [16].
However, the following examples will demonstrate that
networks of the type of eq. (1) do not necessarily obey
such an energetic constraint. Moreover, the interplay of
network topology and local breaking of Onsager symmetry
will allow further truly remarkable properties.

Example 1: a highly efficient diode. – Consider a
network of three oscillators as depicted in fig. 1(a). The
dynamics is described by eq. (1) where j = 1 . . . 3, thus we
have

A =

⎛
⎝κ11 − ω2 + iωγ1 κ12 + iωb12 κ13 + iωb13

κ12 − iωb12 κ22 − ω2 + iωγ2 κ23 + iωb23

κ13 − iωb13 κ23 − iωb23 κ33 − ω2 + iωγ3

⎞
⎠ ,

which yields a lengthy expression for χ on inversion. Bro-
ken Onsager symmetry now allows to choose coupling
parameters in A such as to have χ12(ω) = 0 for any fre-
quency while χ21(ω) �= 0. This condition yields the pa-
rameters b12 = 0, b13 = −κ12/b23, κ33 = κ13κ23/κ12, and
κ12 = −(κ13b

2
23)/(κ23 + b23γ3). Note that stability con-

ditions on κ now impose a stronger constraint on the re-
maining free parameters. As illustrated in fig. 1(b), (c) the
system is a dynamic, but genuine diode. Forcing with f2
always leads to an anti-phase effect of oscillators 2 and 3
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on oscillator 1, which completely blocks the response of
the latter. In contrast, forcing with f1 leads to no can-
cellation of 1 and 3, such that the energy can be carried
around both sides of the structure.

In fig. 1(d) the efficiency at maximum power η′ is dis-
played. Explicit expressions can be found in the following
sections. For this diode η′ generally has only one maxi-
mum located at ω = 0. As shown, the system can asymp-
totically reach a unit efficiency at maximum power, which
is achieved when friction in oscillators 1 and 2 vanish since
lim(γ1,γ2)→0 η′ = 1. In contrast to systems with conserved
Onsager symmetry, this diode can reach its upper bound
of efficiency at almost arbitrary values of γ3. Analytical
calculations for γ3 → ∞ show that the upper bound of η′

is reached when γ1,2 tend to zero as γ−h
3 with h > 1. In the

limit γ3 → 0, the system always becomes unstable since κ
is then no longer positive definite. It should be emphasized
that the theoretical reachability of η′ ≈ 1 in a genuine
linear-response steady state makes this new diode unique.

Example 2: isolated transmission chain. – The
working principle of the diode in example 1 can also allow
for isolation of energy transfer in spatially extended sys-
tems. Consider two chains as shown in fig. 2(a), consisting
of N + 1 and N − 1 oscillators, respectively. The sought-
for isolation mechanism should allow energy transfer in
the lower chain without exciting the upper chain. The
oscillating variables of upper and lower chains xu

j , xl
j are

assumed to obey

ẍu
j = κ

[
xu

j−1 + xu
j+1 − 2xu

j

]
+ d

[
xl

j − xu
j

]− γuẋu
j

+ b
[
ẋl

j−1 + ẋl
j+1
]
,

ẍl
j = κ

[
xl

j−1 + xl
j+1 − 2xl

j

]
+ d

[
xu

j − xl
j

]− γlẋ
l
j

− b
[
ẋu

j−1 + ẋu
j+1
]
, (10)

where noise is dropped for simplicity and the constants
of time-reversal symmetric couplings are denoted by κ, d.
The boundary conditions at the ends of the chains are
given below2. Isolated energy transfer requires a can-
cellation mechanism in the upper chain that holds for
both forward- and backward-traveling waves. Therefore,
the system is made left-right symmetric by giving the
two magnetic couplings with b at each oscillator in
eq. (10) always the same sign. The wave mode ansatz
(x̃u

α, x̃l
α) ei(ωt−kα j) in eq. (10) yields(

w2 − 2κ(1 − cos(kα)) − d − iωγu d + iω2b cos(kα)

d − iω2b cos(kα) w2 − 2κ(1 − cos(kα)) − d − iωγl

)(
x̃u

α

x̃l
α

)

= 0. (11)

2The boundary conditions for the chains in example 2 read

ẍl
0 = κ[xl

1 − xl
0] − γlẋ

l
0 − bẋu

1 + f0,

ẍl
N = κ[xl

N−1 − xl
N ] − γlẋ

l
N − bẋu

N−1 + fN ,

ẍu
1 = κ[xu

2 − xu
1 ] + d[xl

1 − xu
1 ] − γuẋu

1 + b[ẋl
0 + ẋl

2],

ẍu
N−1 = κ[xu

N−2 − xu
N−1] + d[xl

N−1 − xu
N−1] − γuẋu

N−1

+ b[ẋl
N + ẋl

N−2].

Fig. 2: (Colour on-line) (a) Oscillator system that allows
mono-directional isolation of the upper chain from the lower
chain. (b) Snapshots of the whole-chain responses x

{u,l}
j (t) for

t = 0 (N = 15). Top graph: when driven at the frequency
ωI , the upper chain is not excited by the energy transfer in
the isolated lower chain. Bottom graph: driving at any other
frequency leads to excitations in both chains. (c) Efficiency at
maximum power for isolated energy transfer through the lower
chain at ωI . Here, time reversibility of couplings is conserved in
the isolated state, thus η′

I ≤ 1/2. Parameters: F0 = 1, d = 0.1,
γu = 0.1.

The asymmetry of the matrix in eq. (11) allows x̃u to be
independent of x̃l if the upper off-diagonal and the lower
diagonal entries vanish. Such a state can be achieved if the
parameters are chosen as b = κ/

√
d + 2κ, γl = d/

√
d + 2κ

and the forcing frequency is ωI ≡ √
d + 2κ. Equation (11)

then yields the wave vectors k1,2 = ± arccos(i d/(2κ)) +
2π n, n ∈ Z. Given proper boundary conditions2, we now
have a one-way isolation of the upper chain from the lower
chain as illustrated by the responses x

{u,l}
j in fig. 2(b).

Note that isolation is here independent of the phase be-
tween the forces ϕ0N and force magnitudes F{0,N}. Energy
transmission is now also insensitive to spatial variations or
friction in the upper chain.

General rules for mono-directional transport. –
Diode-like directional links as in example 1 can emerge
in any network with broken Onsager symmetry when off-
diagonal elements of the complex admittance vanish asym-
metrically. If excitations are to travel from oscillator j to
l but not the reverse way, the following conditions must
hold for any ω:

χjl = (−1)i+j det
(
A(lj)

)
det (A)

= 0, χlj �= 0. (12)

Here, χjl = (A)−1
jl is expressed with the submatrix A(lj)

that results on elimination of row l and column j from A.
To design a network with mono-directional links, system
parameters must be determined by solving an expansion
of eq. (12) for all orders of ω, which can be tedious. How-
ever, inspection of the network topology already provides
important insight about the feasibility of such links in sys-
tems of type (1). Three general rules are found to hold,
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Fig. 3: (Colour on-line) Illustration of the rules that con-
strain mono-directional transport in arbitrary networks. Black
arrows are mono-directional links where excitations can only
travel in one direction. Red/black lines indicate any coupling
(bjl, κjl).

and are illustrated in fig. 3:

1) Mono-directional links require network loops.

2) A mono-directional link between immediately coupled
oscillators requires a loop of three oscillators.

3) No oscillator can be connected in a totally mono-
directional way where all links are directed towards
or away from it.

Brief derivations are given in the last section of this letter.
Rule 1) can be understood intuitively by thinking of mono-
directional transport as intrinsic negative interference that
occurs only in one direction. Since interference requires su-
perposition of at least two signals, the necessity of loops is
plausible. An extension of this argument provides physi-
cal understanding of the second rule. Rule 2) derives from
matching of powers of ω for the high-frequency limit of
eq. (12). Here, a direct connection between two oscillators
picks up the same power of ω as an indirect, magnetic
coupling via a third oscillator. In order to balance each
other, both must be present. Note that rule 2) also holds
when different oscillators in the system (1) are augmented
with individual, but non-zero, “mass” factors at the sec-
ond time derivatives.

Rule 3) can be justified by an interesting thermodynam-
ical interpretation: Consider for now a force-free situation
fj = 0 and assume that the oscillators are embedded in
individual heat baths, keeping them at different temper-
atures. The resulting variation of noise levels leads to
preferred dissipation at the “colder” oscillators. Heat ex-
change is given by the deviations of the kinetic oscillator
temperatures from the temperatures Tj of the heat baths
as Q̇j = γj(〈ẋ2

j 〉 − kB Tj) [17]. If it was now possible to
connect one oscillator j in a totally mono-directional way
to all the rest of the network, heat would always flow either
towards j or away from j, regardless of the temperature
difference. Such a network is physically impossible since it
would allow the construction of a perpetuum mobile and
violate the second law of thermodynamics.

Topology and efficiency at maximum power. – To
substantiate the conclusions drawn from example 1 above,
this section provides general formulae and limits for the
efficiency at maximum power. We begin by rewriting the
work rates conveniently in Fourier space with the complex
admittance split into real (χjl) and imaginary �(χjl)
parts. Using j, l ∈ {a, b} for the input and output, we
have from eq. (6)

Ẇj = iω
∑

l

(
f̃∗

j χjlf̃l − f̃jχ
∗
jlf̃

∗
l

)
(13)

= −2ω|f̃j|2�(χjj) − 2ω
∑
l �=j

|f̃j ||f̃l|αjl, (14)

where αjl is a function of the phase difference ϕjl as

αjl ≡ �(χjl) cos(ϕjl) − (χjl) sin(ϕjl). (15)

Inserting eq. (13) into the formula for overall dissipa-
tion (7), the condition Ẇdiss ≥ 0 requires positive semi-
definiteness of the matrix i(χjl − χ∗

lj).
To calculate efficiency at maximum power η′, we first

maximize Ẇb with respect to phase and force. Variables
with values at maximum power are primed (′). On setting
the ϕba and |f̃b| derivatives of Ẇb in eq. (14) equal to
zero we find tan ϕ′

ba = −(χba)/�(χba) and |f̃ ′
a|/|f̃ ′

b| =
−2�(χbb)/α′

ba with α′2
ba = αba(ϕ′

ba)2 = |χba|2. Some care
must be taken when selecting ϕ′

ba since work is periodic
in the phase. The maximum power output becomes

Ẇ ′
b = ω α′2

ba |f̃ ′
a|2/(2 �(χbb)). (16)

The above relations can be straightforwardly inserted into
eqs. (8), (14) to obtain for the efficiency at maximum
power

η′ =
α′2

ba

2 (2�(χbb)�(χaa) − α′
baα′

ab)
≤ 1. (17)

As demonstrated in fig. 1 for example 1, the bound η′ = 1
can indeed be reached asymptotically when Lorentz-force–
like couplings are present. Note, however, that this high
efficiency η′ does not require in general mono-directional
links.

Next, we calculate the efficiency at maxium power when
Onsager symmetry holds. Thus, we set b = 0. Us-
ing the symmetry of χ together with the above con-
ditions determining ϕ′

ba and α′
ba we have here α′2

ab =
−α′2

ba(cos2(ϕ′
ba)−sin2(ϕ′

ba))2. The efficiency at maximum
power for networks with Onsager symmetry results in

η′
s =

1

2
(
[ 2�(χbb)�(χaa)

�(χba)2 − 1] cos2(ϕ′
ba) + sin2(ϕ′

ba)
) ≤ 1

2
.

(18)
The last inequality follows from �(χbb)�(χaa) ≥ �(χab)2,
which is for symmetric χ equivalent to Ẇdiss ≥ 0. The
here-derived bound of 1/2 is analogous to the Curzon-
Ahlborn limit for heat machines [16,18,19]. In the qua-
sistatic limit of vanishing ω we have 0 ≈ �(χba) ≈ �(χbb).
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Therefore, cosϕ′
ba ≈ 0 and |f̃ ′

a|/|f̃ ′
b| ≈ 0. Consequently,

for conserved Onsager symmetry, the efficiency at max-
imum power attains its absolute maximum at vanishing
driving frequency limω→0 η′ = 1/2 and the transmitted
power vanishes here. On the other hand, it is possible to
show with examples that the absolute maximum of η′ need
not be located at ω = 0 when Lorentz-force–like couplings
are present.

Finally, we investigate the case of broken Onsager sym-
metry for a network without loops. In such a system each
connected pair of elements is connected via a unique path,
which allows to express χ as follows [20]. Consider a path
from oscillator with index j to oscillator l and denote the
overall number of oscillators on the path by np. Since the
sequence of indices on the path may be non-monotonic,
we rename them by k1 . . . knp where k1 = j and knp = l.
For j �= l the inverse of the non-singular matrix A can
then be written as

χjl =
[
(−1)np−1det(A(j−l))

det(A)

] [np−1∏
m=1

Akm,km+1

]
≡ C K,

(19)
where A(j−l) denotes the submatrix from which all the
rows and columns carrying indices corresponding to ele-
ments of the path are removed. When np = 2 we replace
det(A(j−l)) by unity. Only the factor K, representing
the second bracket, depends on the direction of the path.
For our systems (1), we have Akm,km+1 = A∗

km+1,km
and

the reverse path thus yields χlj = C K∗. This rela-
tion is now used together with the maximum-power con-
dition for ϕ′

ba in eq. (15) to give (α′
ba)2 = |CK|2 and

α′
abα

′
ba = −[C2 + (C∗)2]|K|2/2. Inserting everything in

eq. (17) yields for any loop-free system

η′
l =

1
2 + 4 (�(χbb)�(χaa) − |K|2�(C)2) /(|CK|2) ≤ 1

2
,

(20)
where the bound follows from positivity of energy dissipa-
tion, eqs. (7), (14). This equation shows that achieving an
efficiency at maximum power larger than 1/2 not only re-
quires broken Onsager symmetry, but also network loops.

Tunable high-frequency efficiency. – A further en-
ergetic advantage of Lorentz-force–like coupling occurs
when a direct link bab �= 0 between input and output ex-
ists. An expansion of efficiency, eq. (8) with eq. (14), shows
that systems of type (1) all have the same high-frequency
limit

lim
ω→∞ η = max

(
−|f̃b|2γb + |f̃a||f̃b|bab cosϕab

|f̃a|2γa + |f̃a||f̃b|bab cosϕab

, 0

)
. (21)

Lorentz-force–like coupling thus allows to extend the good
efficiency to high frequencies.

Fluctuations and multiplicative noise. – The net-
work equation (1) contains a source of additive noise ξj

for completeness. Such noise does not affect the results in

this article. Mechanisms for mono-directional transport
depend only on system parameters and apply to noise-
driven excitations as much as to any other excitation. In
contrast to other definitions of efficiency [21], the here-
defined efficiency η does not fluctuate. Concerning the
work rates, eq. (6), these contain expectation values 〈xj〉
and additive noise is thus averaged out.

However, multiplicative noise resulting from parame-
ter fluctuations, in particular from unsteady magnetic
fields, could have a more pronounced effect. On using
the Stratonowich interpretation it can be shown that
white noise in b renormalizes the friction constants γj

in the equation for the first moments of xj [22]. Mul-
tiplicative noise in b increases the effective friction, but
does not lead to instabilities. Therefore, the principles de-
scribed in this letter continue to work for averages when
the magnetic coupling fluctuates. Mono-directional trans-
port remains possible on average.

Concluding perspectives. – Although linear oscilla-
tors are an established paradigm of physics, the energetics
of oscillator networks with Lorentz-force–like couplings
has hardly been explored. Focussing on networks with
only the most generic types of coupling, it has been shown
here that unusual transport properties entail favorable en-
ergetics and result from the interplay of network topology
and time-reversal symmetry breaking.

Other types of couplings could also be studied with
the present framework. Firstly, one could consider fric-
tional/resistive interaction of the network elements via
a symmetric matrix of coefficients γjl. With such cou-
pling the off-diagonal elements of A no longer form a Her-
mitian matrix and the above rules do not hold. Most
notably, a diode-like device could be made in a system
with only two elements. Combining here a magnetic cou-
pling b12 with an equally strong frictional/resistive force
γ12 = b12 yields a diode since the off-diagonal elements
become A21 = −iωb12 + iωγ12 = 0 and A12 = 2iωγ12,
respectively. Such a device has been realized using a Hall
element [11,23]. However, frictional coupling causes ex-
tra dissipation and one might therefore expect that this
article’s mechanisms for mono-directional transport gen-
erally display a superior efficiency. Secondly, one could
generalize the system through coupling of the second time
derivatives. Such coupling is realized physically by shared
moments of inertia or by mutual induction. It affects the
high-ω regime and allows efficient energy transfer there.
Finally, one could go beyond the assumption of network
linearity. In this case, the efficiency at maximum power
is generally not limited by 1/2, even when Onsager sym-
metry is conserved [18]. Besides energetic issues, it might
also be interesting to study correlations or synchroniza-
tion [24–26] of non-linear oscillators in networks with
Lorentz-force–like couplings.

It is tempting to speculate about a few applica-
tions of the studied system. Periodic structures related
to the oscillator chain in example 2 might allow for
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cloaking-inspired [27] mono-directional shielding. Mechan-
ical devices, such as a mono-directional vibration damper,
are at least in principle conceivable. Realization of the
suggested high efficiency in electric circuits hinges on
the availability of low-resistance symmetry-breaking cou-
plings [28–30]. With these, efficient magnetic-field pro-
grammable networks could operate much like a transistor
circuit, with the major distinction of being linear.
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Appendix: brief derivations of rules 1)–3). –
Rule 1): Mono-directional links require network loops.

This rule is shown most easily with eq. (19) by
demonstrating that conditions (12) cannot be satisfied in
a connected, but acyclic system. Since the offdiagonal el-
ements of A are Hermitian, χlj and χjl are here related
to each other through complex conjugation of the terms
∼ Akm,km+1 in the factor K. Thus, if χjl = C K = 0, also
χlj = CK∗ = 0 and diode-like behavior is impossible.

Rule 2): A mono-directional link between immediately
coupled oscillators requires a loop of three oscillators. This
rule demands a direct link between j and l, therefore we
assume ajl + iωbjl �= 0. On using the Leibniz formula for
determinants it can be shown that

χjl ∼ det
(
A(lj)

)
= ibjlω

2No−3 + bjl

∑
m,m/∈{j,l}

γmω2No−4

+

⎡
⎣κjl −

∑
m,m/∈{j,l}

bmlbjm

⎤
⎦ω2No−4 + O(ω2No−5),

where No is the number of oscillators in the system. This
expansion is to vanish for all ω. Hence, the first term
requires bjl = 0. In the bracketed expression, κjl can only
be balanced by a non-zero last term ∼ bmlbjm. This last
term requires oscillators with index m that are directly
connected to both oscillators j and l, hence making a loop
of three oscillators necessary.

Rule 3): No oscillator can be connected in a totally
mono-directional way. Assuming that an oscillator with
index k has only mono-directional links, we show that
such a system would have unphysical properties. Accord-
ing to eq. (12), we require for all j with j �= k that
χkj ∼ det

(
A(jk)

)
= 0. On using this statement in

Laplace’s formula the determinant of the system matrix
becomes

det (A) =
∑

j

Ajk(−1)k+jdet
(
A(jk)

)
= Akk det

(
A(kk)

)
.

However, on writing out det
(
A(jk)

)
= 0 for all j’s with

j �= k it becomes clear that also det
(
A(kk)

)
= 0 since

all rows in A(kk) are made linearly dependent on each
other if Akj,j �=k �= 0. Therefore, we have det (A) = 0 and
a totally mono-directional coupling of k would make the
system singular, which is unphysical.
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