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Abstract – We identify a fundamental challenge for any non-perturbative approach based on
finite clusters resulting from the reduced symmetry on graphs, most importantly the breaking of
translational symmetry, when targeting the properties of excited states. This can be traced back to
the appearance of intruder states in the low-energy spectrum, which represent a major obstacle in
quasi-degenerate perturbation theory. Here a generalized notion of cluster additivity is introduced,
which is used to formulate an optimized scheme of graph-based continuous unitary transformations
allowing to solve and to physically understand this major issue. Most remarkably, our improved
scheme demands to go beyond the paradigm of using the exact eigenvectors on graphs.

editor’s  choice Copyright c© EPLA, 2015

Introduction. – The collective behaviour of quantum
matter is one of the most fascinating topics of modern
physics. Understanding it is crucial, as it holds the key
to a variety of correlated many-body states —realised, for
example, in spin liquids or superconductors. In particular,
it is decisive to gain a systematic understanding of collec-
tive phenomena to identify fundamentally new behaviour.
One attractive route is to study the physics of strongly
interacting quantum lattice models, which very often de-
mands the use of efficient numerical tools in order to gain
quantitative insights.

Besides exact diagonalizations, quantum Monte Carlo
simulations, or variational tensor network calculations,
so-called linked cluster expansions (LCEs) became, over
the last decades, a standard tool to study quantum
many-body systems [1]. Based on the linked-cluster the-
orem, high-order series expansions of various physical
quantities can be evaluated directly in the thermody-
namic limit by performing calculations on finite systems.
The latter include zero-temperature properties like the
ground-state energy [2,3], order parameters, or entangle-
ment entropies [4] as well as high-temperature expansions
giving access to thermodynamic quantities [5]. Interest-
ingly, it took until 1996 to set up similar expansions
for the physical properties of elementary excitations like
one-particle dispersions [6], two-particle interactions [7–9]
or dynamical correlation functions [10,11], i.e. physical

properties which are of direct importance for the inter-
pretation of inelastic neutron or inelastic light scattering
experiments.

The usefulness of high-order series expansions is limited
due to its perturbative nature. It is therefore desirable to
reflect about non-perturbative linked cluster expansions
(NLCEs) [12–16]. The essential idea behind all NLCEs is a
non-perturbative treatment of graphs, achieved via an ex-
act (block) diagonalization, yielding results in the thermo-
dynamic limit after an appropriate embedding procedure.
Indeed, many exciting developments have been achieved
in this direction recently, e.g. the derivation of effective
low-energy spin models [17–19], the calculation of entan-
glement entropies [20] or the extension to time-dependent
quantities out of equilibrium [21,22]. Hence, NLCEs are
a promising tool for the investigation of quantum lattice
models with a vast range of applications without finite-size
effects.

All LCEs share at their core that the physical system on
clusters has a reduced symmetry compared to the infinite
system, e.g. the translational symmetry is broken by con-
struction. For the perturbative LCEs, the full symmetry
is nevertheless restored after embedding, and exactly the
same fluctuations present in the thermodynamic limit are
taken into account. However, as we demonstrate in this
letter, this inherent symmetry reduction represents gener-
ically a fundamental challenge for any non-perturbative
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approach based on finite clusters when calculating excita-
tion energies of elementary excitations. Here we introduce
a generalized notion of cluster additivity which allows to
solve this challenge by an adapted version of graph-based
continuous unitary transformations (gCUTs) [17]. Fasci-
natingly, this generalization requires not to use the exact
eigenvectors on graphs, revealing once more the non-trivial
connection between finite systems and the thermodynamic
limit in quantum many-body systems.

Set up. – We consider a generic quantum lattice
Hamiltonian H at zero temperature. By decomposing the
original lattice into a superlattice of supersites, one can
always rewrite exactly H as H = H0 + λV [23]. Here a
supersite might be a spin, two linked spins like a dimer,
or any other finite set of linked sites which can be eas-
ily diagonalized. In the following we focus on elementary
excitations of such quantum lattice models.

The part H0 = E0+
∑

i,α aα
0 f̂†

i,αf̂i,α is diagonal in super-
sites i of the lattice containing the local quantum degrees
of freedom which interact via short-range operators of V
building the bonds of the lattice. E0 denotes a constant
and the sum runs over all supersites i and all local exci-
tations α. Generically, H is expressed in normal-ordered
form with respect to H0 as H = Hc +Hnc using annihila-
tion (creation) operators f̂

(†)
i,α ,

Hc = E0(λ) +
∑

i,δ,α,β

aαβ
δ (λ) f̂†

i+δ,αf̂i,β + h.c. + . . . , (1)

Hnc =
∑

i,δ,α,β

Γαβ
δ (λ) f̂†

i+δ,αf̂†
i,β + h.c. + . . . , (2)

where dots refer to other particle-conserving (-non-
conserving) terms in Hc (Hnc). The goal is then to de-
rive a renormalized particle-conserving Hamiltonian H̃c

accounting for the influence of Hnc quantitatively. This
represents a substantial simplification, since fundamental
quantities like a one-particle dispersion can be determined
straightforwardly. The derivation of H̃c is well defined as
long as no quantum phase transition occurs as a function
of λ.

LCEs and cluster additivity. – The general concept
behind any LCE is to decompose physical quantities in
the thermodynamic limit into a sum of reduced contribu-
tions from finite linked clusters. We define a cluster of the
infinite system as a finite subset of supersites and their
linking bonds. The reduced contribution of a cluster is
then obtained by subtracting reduced contributions of all
subclusters to avoid double counting. Consequently, a re-
duced contribution corresponds to the fluctuations which
are specific to a given cluster. The latter is based on the
so-called cluster additivity which is defined as follows. Let
us call two clusters A and B disconnected, if they do not
have any sites in common and there is no bond linking
sites from cluster A and B (see fig. 1(a) for x = 0). For a
disconnected cluster C = A∪B any quantity MC is called

Fig. 1: (Color online) (a) Sketch of two clusters A and B
which are linked by a single bond of strength x. (b) Sketch
of the eigenvalues E as a function of x for the joined system
A + B linked by a single bond. Inset: zoom on the first anti-
level crossing. Dashed lines represent the appropriate evolu-
tion of eigenvalues respecting the generalized notion of cluster
additivity.

cluster additive if it can be expressed as

MC := MA ⊗ �
B + �

A ⊗MB , (3)

so that MC splits into a part associated with the Hilbert
space HA (HB) of subcluster A (B). The Hamiltonian
HC as well as H̃C

c are cluster additive, which implies a
proper LCE for the ground-state energy Ẽ and for the
one-particle hopping amplitudes ãδ. Overall, the cluster
additivity allows therefore to unambiguously identify the
reduced contributions of clusters and thus to consistently
define the embedding into the infinite system.

Generalized cluster additivity. – Cluster additivity
is sufficient to perform an NLCE if the reduced symmetry
of the physical system on graphs before embedding into
the infinite system does not matter. But this is not always
the case. Let us consider a physical system where the one-
particle mode is stable, i.e. the one-particle dispersion
is below any many-particle continuum for any momen-
tum, and the maximum of the one-particle dispersion is
larger than the minimum of many-particle energies. Con-
sequently, it is the translational symmetry of the system
which protects the one-particle mode from decaying. But
this protection is a priori not at work on open clusters and
one therefore expects an artificial entanglement between
certain states. In such a situation, one has to general-
ize the notion of cluster additivity as we introduce in the
following.
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For clarification we consider a cluster C consisting of
two subclusters A and B which are linked by only one
link of coupling strength x as illustrated in fig. 1(a), and
one aims at evaluating the reduced contribution for x = λ.
Any quantity MC like the Hamiltonian H̃C

c takes then the
form

MC = MA ⊗ �
B + �

A ⊗MB + Mx, (4)

where Mx gives rise to the reduced contribution of clus-
ter C. One prototypical evolution of the eigenenergies of
H̃C

c are displayed in fig. 1(b). One observes two regimes:
For small x, the change of eigenvalues and eigenvectors is
smooth while, for larger x, there are characteristic anti-
level crossings starting from xc where eigenenergies and
eigenvectors change drastically. If the corresponding fluc-
tuations are not present in the thermodynamic limit, e.g.
a pseudo decay of a quasi-particle only present on finite
clusters as described above, these anti-level crossings can
affect MC severely in an unphysical fashion leading to the
breakdown of NLCEs for λ � xc.

One therefore has to generalize the notion of cluster
additivity by demanding that any physical quantity MC

like H̃C
c is sufficiently smooth as a function of x for 0 ≤ x ≤

λ with respect to the thermodynamic limit. For a single
anti-level crossing at xc this can be naturally discussed
by focusing on the two involved energy levels as sketched
in the zoom of fig. 1(b). Denoting by |i〉 and |j〉 the two
eigenvectors for x < xc, the eigenvectors at (or close to)
xc are entangled superpositions of |i〉 and |j〉. Artificial
anti-level crossings should now be replaced by true level
crossings as indicated by the dashed lines in fig. 1(b), since
the two involved levels have different quantum numbers in
the thermodynamic limit implying a smooth behaviour of
all quantities. In other words, one has to systematically
avoid unphysical entanglement and associated anti-level
crossings. As a direct consequence, one cannot use the
exact eigenvectors as is done so far in all implementations
of NLCEs.

Solving the challenge. – A systematic disentangle-
ment of specific levels involved in artificial anti-level cross-
ings is a priori a very complicated task and it is by far not
obvious that a general solution exists. Nevertheless, in the
following we formulate an optimized version of gCUTs tak-
ing fully into account the generalized notion of cluster ad-
ditivity which therefore solves the fundamental challenge
stated above.

The gCUT [17] is a non-perturbative variant of contin-
uous unitary transformations (CUTs) [24–26] where the
full CUT in the thermodynamic limit is rephrased as an
NLCE by summing up reduced contributions of graphs
(for other variants see also refs. [27,28]). In practice, only
a finite set of graphs can be treated numerically which
sets a characteristic length scale L of quantum fluctua-
tions captured. Consequently, if the physical system has a
finite correlation length ξ the gCUT converges as long as
ξ ∼ L. Therefore, at quantum critical points with ξ → ∞,
one relies on appropriate scalings in L.

A CUT maps the initial Hamiltonian H by
H(�) = U†(�)HU(�) unitarily using the continuous flow
parameter �. The goal is to derive an effective, in our case
quasi-particle–conserving, Hamiltonian H̃c ≡ H(� = ∞)
via the flow equation ∂�H(�) = [η(l),H(�)] where η(�) is
the antihermitian generator of U(�). In gCUTs the flow
equation is solved numerically on each graph, which is
done exactly due to the finite Hilbert space dimension [17].
The graph-dependent effective Hamiltonian matrix H̃C

c

is then embedded into the infinite system yielding the
effective Hamiltonian H̃c in second quantization.

Here we use on each cluster C the quasi-particle (QP)
counting operator Q̂C(�) =

∑
i n̂i(�) with n̂i = f†

i fi (re-
stricting to a single α in H0), and define the QP-generator
ηC

i,j = sgn(qi − qj)hC
i,j with Q̂C |i〉 = qi|i〉 [27]1. For this

generator the effective Hamiltonian matrix H̃C
c is block-

diagonal in the numbers of QPs. We focus on the 1QP
sector, and we set q = 0 for 0QP, q = 1 for 1QP, and
q = 2 for all other channels. The truncation of the cluster
basis is crucial to treat large graphs. Without any form of
truncation, the method is limited to smaller graph sizes,
because a matrix of size DH × DH must be stored, where
DH denotes the Hilbert space dimension of the cluster
under consideration. Here we use a block-Lanczos algo-
rithm along the lines described in ref. [19] which allows
to treat graphs of length L = 12 (size N = 22) for the
two-leg Heisenberg ladder (transverse-field Ising model on
the square lattice).

For q = 1, let us consider the L states with q = 1
of HC

c on cluster C. These states constitute the initial
block in our block-Lanczos algorithm. Now one acts suc-
cessively with the full Hamiltonian HC generating a new
set of states which, after orthonormalization with respect
to all previous states, build the next block of our optimal
cluster basis. This procedure is performed until the dif-
ference in the q = 1 block of H̃C

c is negligible. Note that
the states of the initial block remain unchanged during the
generation of the cluster basis. For the calculation of the
ground-state energy (q = 0), our scheme simply reduces to
a standard Lanczos algorithm for the lowest eigenenergy
of a given cluster C.

The gCUT is expected to converge if no artificial anti-
level crossings are present in the spectrum of the graphs
considered. This is for example the case for the single-
valued 0QP sector containing Ẽ0. For this (scalar) quan-
tity, gCUTs is exactly equivalent to NLCEs using exact
diagonalization.

The situation is more complex in the 1QP sector when
artificial anti-level crossings are present between 1QP and
nQP (n > 1), since the QP-generator follows always the
lower branch of an anti-level crossing on each cluster. This
implies a breakdown of the gCUT for λ � λc, when λc

denotes the location of the first artificial anti-level cross-
ing. Such avoided level crossings are known to represent

1For simplicity, we restrict the discussion to a single type of exci-
tation on supersites i, so that no index α appears in the equations.
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Fig. 2: (Color online) Sketch of HC(�) in the diagonal basis of
sub-blocks. The upper left (lower right) diagonal block con-
tains the sub-block eigenenergies εC

i of the sub-block eigen-
states |1〉 (|n〉) with q = 1 (q = 2). The matrix elements
h1n between such sub-block eigenstates constitute the filled
off-diagonal blocks.

a major obstacle in quasi-degenerate perturbation theory,
since either one always picks the lowest state and gets non-
reliable results, or one chooses instead the diabatic proce-
dure which results in discontinuous properties [29,30].

Our aim is therefore to perform a CUT which does not
fully separate the 1QP sector from the rest of the states, so
that elements hij , giving rise to artificial anti-level cross-
ings, stay finite after the CUT2. Interestingly, it is the
additional “flow dimension” � which gives the freedom to
do so.

To this end let us consider a one-quasi-particle (q = 1)
eigenstate |1〉 and an n-quasi-particle (q = 2) eigenstate
|n〉 during the flow in the diagonal basis of sub-blocks (see
fig. 2), i.e. any QP sector is diagonalized disregarding the
finite matrix elements between different sectors. This is
the optimal basis to investigate anti-level crossings, since
the interaction between sub-block eigenstates |1〉 and |n〉
with different number of QPs is contained in the single ma-
trix element h1n(�). Physically, one disentangles the states
|1〉 and |n〉 involved in the anti-level crossings as sketched
in the inset of fig. 1(b). This is achieved by adapting the
generator during the flow as follows. Typically, states |1〉
and |n〉 are almost unentangled in the window 0 ≤ � ≤ �c1n,
since the purely non-perturbative artificial entanglement
between both states builds up significantly only for rather
large values � � �c1n. Consequently, one sets η1n = 0 at
�c1n for each artificial anti-level crossing. The correspond-
ing element h1n(� = ∞) is then finite representing the
artificial interaction due to the reduced graph symmetry.
Finally, the �c1n are located using reduced weights WC

ν de-
fined for any sub-block eigenstate |ν〉 which are natural
quantities in contractor renormalization group (CORE)
approaches [31–33]. The reduced weights WC

ν̄ = 〈ν̄|ν̄〉 are
defined for any state as

|ν̄〉 =

(
1 −

∑
μ̄

|μ̄〉〈μ̄|
Wμ̄

)
P |ν̃〉

〈ν̃|P |ν̃〉 , (5)

2One may also adapt the generator such that it always follows
the upper branch of anti-level crossings for λ � λc, which becomes
clearly problematic close to λc.

where |ν̃〉 represents |ν〉 in the original basis at � = 0 and
P projects to the one-particle states of Hc(� = 0). For
1QP (nQP), the sum runs over all 1QP states |μ̄〉 having
a (sufficiently) smaller sub-block energy.

The physical logic behind the WC
ν̄ ∈ [0, 1] becomes ap-

parent for � = ∞ as a function of λ. If λ � λc, then all
WC

ν̄ of 1QP states are O(1) while WC
ν̄ ≈ 0 for all other

levels. In contrast, for λ ≈ λc, one observes a significant
transfer from the 1QP to the nQP sector for the two lev-
els |i〉 and |j〉 so that Wj ≈ 1 after the anti-level crossing.
A large reduced weight in the nQP sector is therefore di-
rectly linked with the artificial entanglement due to the
reduced cluster symmetry. From a certain value of �, al-
most all (no) weight is contained in the 1QP (nQP) sector
which remains true until �c1n. At this point one observes
a significant decrease (increase) of WC

1 (WC
n ) and we put

η1n = 0 for � � �c1n. A large reduced weight in the nQP
sector is therefore directly linked with the artificial entan-
glement due to the reduced cluster symmetry.

Applications. – Next we apply the optimized gCUT
to two specific quantum spin models. We start with a
two-leg antiferromagnetic spin-(1/2) Heisenberg ladder,
setting the exchange on rungs (legs) of the ladder to 1
(λ). This model is gapped for all values of λ [34,35] and
has therefore a finite correlation length ξ, but it displays
strong interactions among the elementary S = 1 triplon
excitations [7,10] and it is therefore an optimal playground
to test the performance of the optimized gCUT.

In practice, we choose to describe the two-leg ladder
from the perspective of isolated rungs, i.e. at λ = 0 one
has a product state of singlets as the exact ground state
while triplets represent elementary excitations with S = 1
and energy gap Δ = 1. Taking rungs as effective super-
sites, graphs GL of the two-leg ladder corresponds to sim-
ple chain segments of length L. For each GL there are L
1QP reference states with fixed Sz, since the triplet can be
located on each of the L supersites. Here we have treated
all GL up to L = 12 extracting the graph-dependent
hopping elements of triplon excitations. Embedding the
results into the thermodynamic limit and performing a
Fourier transformation, yields the one-triplon dispersion
ω(k) displayed in fig. 33.

First, we use the standard gCUT scheme with the QP-
generator giving suitable results up to λ ≈ 1. This ap-
proach fully breaks down for larger values of λ which
is consistent with the observation that the first artificial
anti-level crossing takes place at λ ≈ 1.16 for L ≤ 12
(see footnote 4). This is exactly the situation described
above where the one-particle mode is stable in the ther-
modynamic limit due to momentum conservation. The be-
haviour is completely different with the optimized gCUT

3We observe a strong even-odd effect with respect to L for the
two-leg ladder. Consequently, we reduce this effect by taking mean
values (ω(k)(L) + ω(k)(L−1))/2.

4Note that results with the standard generator become even worse
for λ = 2, so we decided for clarity reasons not to display it explicitly.
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Fig. 3: (Color online) One-triplon dispersion ω(k) of the two-
leg Heisenberg ladder for different values of leg exchange λ
setting the exchange on rungs to 1. Solid lines (circles) corre-
spond to optimized gCUTs (standard gCUTs) treating graphs
up to L = 12. Inset: one-triplon gap Δ for λ = 2 vs. 1/L.
The black (cyan) line is a fit of the form a0 + a1 e−a2 L using
optimized gCUT data with even (odd) L. The dashed line
represents DMRG data for λ = 2 [36].

treating the effects of artificial anti-level crossings prop-
erly. The results are robust and smooth up to rather large
values of λ, as can be seen in fig. 3.

Next we turn to the transverse-field Ising model on the
square lattice, setting the magnetic field (antiferromag-
netic Ising exchange) to 1 (λ). In contrast to the two-leg
Heisenberg ladder, this model is known to display a zero-
temperature quantum phase transition at λcrit = 0.3285
separating the polarized phase at small λ from the Z2

symmetry-broken phase [5,37,38]. We concentrate on the
unbroken polarized phase and therefore discuss elemen-
tary excitations of this phase in terms of dressed spin-flip
excitations.

Here we use a rectangular cluster expansion [20,39] up
to N = 22 spins to calculate the one-particle dispersion
ω(
k) at the quantum critical point λcrit as shown in fig. 4,
which is by definition the most challenging situation for
any NLCE, since ξ → ∞ and one has gapless excitations at

kaf = (π, π). Interestingly, we observe a fast convergence
with increasing cluster sizes for all momenta being not in
the vicinity of 
kaf. As expected, the gapless nature of the
spectrum can only be resolved with a scaling using an ap-
propriate length scale L of the considered clusters. For the
rectangular clusters we take L =

√
N [20] as displayed in

the inset of fig. 4 for the one-particle gap Δ. Extrapolating
in terms of 1/L gives convincing evidence that the gCUT
is even capable of catching the correct quantum critical
behaviour5.

Conclusions. – In this work we have identified an
inherent complication for NLCEs originating from the

5For the transverse-field Ising model on the square lattice, no
avoided anti-level crossing is detected and the optimized gCUT
scheme reduces to the conventional one.
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Fig. 4: (Color online) One-magnon dispersion ω(�k) of the
transverse-field Ising model on the square lattice at the quan-
tum critical point λ = 0.3285. Inset: scaling of the one-magnon
gap Δ = ω(�kaf) as a function of 1/

√
N reflecting the known

exact dynamical exponent z = 1.

reduced graph symmetry leading to artificial anti-level
crossings when calculating one-particle excitation ener-
gies. Our findings are clearly important in a much more
general manner, since the same kind of problem is ex-
pected to arise for any separation of degrees of freedom
like for many-particle excitations, dynamical correlation
functions, or the derivation of effective low-energy mod-
els using clusters with reduced symmetry, as done in any
NLCE, CORE, or gCUT calculation, e.g. the derivation of
effective spin models in the Mott phase of Hubbard models
separating charge and spin degrees of freedom. More gen-
erally, effective models are widely used in various fields of
quantum physics [40–43], and their derivation often suffers
from the appearance of intruder states in the low-energy
spectrum which may cause either discontinuities or spuri-
ous behaviours [29,30]. Thus, our algorithm might also be
used in different fields, for instance quantum chemistry, in
order to produce continuous physical results.

Furthermore, it might be worth investigating whether
similar problems are also present in high-temperature or
non-equilibrium NLCEs as well as in cluster dynamical
mean-field theory which all break translational symme-
try on clusters. Finally, we are convinced that our op-
timized gCUT scheme is a potentially useful platform to
explore the physics of a vast variety of quantum many-
body systems.
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